Как рассчитать мощность тэна для нагрева воды? - ELSTROIKOMPLEKT.RU

Как рассчитать мощность тэна для нагрева воды?

Расчет расходов на нагрев воды

Сколько кВт·ч энергии тратится на нагрев воды

Справка

Этот калькулятор высчитает сколько денег, электроэнергии и времени тратится на нагрев воды. Вам не потребуется ни формул, ни коэффициентов: просто введите ваши данные и получите ответ.

Для расчета потребленной электроэнергии надо указать температуру холодной и горячей воды, а также её объём (массу). Вы можете указать КПД нагревательного прибора, если он вам известен. Если задать КПД 100%, то расчет покажет только полезную мощность затраченную на нагрев воды. При указании реального КПД расчет выдаст полную мощность, потребленную от сети.

Чтобы высчитать полную стоимость нагрева воды, необходимо задать ваш тариф на электроэнергию в рублях.

Чтобы оценить сколько времени занимает нагрев, укажите мощность электроприбора, которым вы греете воду, в киловаттах (кВт). Мощность часто указана на корпусе прибора, а также в его руководстве по эксплуатации или паспорте.

Примеры

Кипячение воды в электрочайнике

Обычно я наливаю в чайник воду комнатной температуры 20°C до отметки 1 литр и всегда довожу до кипения (до 100 градусов). Мощность чайника 2 кВт. Простейший расчет показывает, что на кипячение потратится примерно 0,1 кВт ч (киловатт часов) электроэнергии, 3 минуты времени, и, по московским тарифам, пятьдесят копеек денег.

Значит, каждое чаепитие прибавляет пол рубля в счет за электроэнергию, но это значительно меньше цены порции чая или кофе.

Подогрев воды в накопительном водонагревателе

Принимая душ, я каждый раз полностью опустошаю всю горячую воду из накопительного нагревателя, потому как в конце вода становится холодной. Зимой нагреватель греет холодную водопроводную воду от 5 до 45 градусов. Объем бачка 80 литров. При мощности тэнов 2 кВт, свежая вода в бачке будет нагреваться 2 часа, при этом потратится примерно 4 кВт электроэнергии и 20 рублей денег на её оплату. Летом вода греется от 18 до 45.

Значит, зимой каждое принятие душа обходится семейной казне в 20 рублей, а летом — в 15 рублей, если не считать стоимость холодной воды.

Замечание о кпд нагрева воды

Существует распространенное ошибочное мнение о том, что водяные электронагреватели имеют кпд равный 100%. Это вызвано тем, что в теоретических расчётах потерями энергии нередко пренебрегают из-за их малой величины. Но когда расчёты имеют практическое применение, то нетрудно заметить, что в действительности потери энергии при нагреве воды происходят уже с первых секунд. В зависимости от нагревательного прибора это могут быть следующие основные виды потерь:

  • на разогрев самого нагревательного элемента (особенно много для электроплиты),
  • на нагрев стенок ёмкости (чайника, бака),
  • теплопередача и тепловое излучение энергии в окружающую среду от стенок ёмкости и непогружного нагревательного элемента),
  • испарение с поверхности воды в открытых емкостях (кастрюлях и чайниках без крышки),
  • потери на парообразование при кипении (самый мощный канал потерь).

Исходя из направлений основных потерь, нетрудно определить мероприятия по повышению кпд процесса нагрева воды:

  • использование погружного нагревательного элемента,
  • использование закрытой ёмкости,
  • теплоизоляция ёмкости,
  • использование минимально необходимой температуры нагрева,
  • отключение при возникновении кипения.

В качестве дополнительных потерь можно отметить:

  • потери в электрических проводах и контактах (разогрев проводов и штепсельной вилки электроприбора).
  • потери на побочных электрохимических процессах (ионные нагреватели, электрохимическое разложение воды, электрохимическое растворение анода),
  • потери на звук (шум, издаваемый пузырьками пара в месте контакта нагревателя или горячей поверхности с водой).

С точки зрения только потерь энергии дополнительные потери являются мизерными и несущественными, однако с точки зрения незапланированных расходов и рисков эти потери требуют особого внимания:

  • Разогрев проводов электропитания в лучшем случае приводит к временной поломке проводов/розетки/вилки, в худшем — к пожару, поражению электрическим током, ожогу.
  • Электрохимические процессы насыщают воду ионами металлов, разъедают бак и погружной нагревательный элемент. Первое делает воду непригодной для питья, второе сокращает срок службы водонагревателя и может вызвать потоп, если бак проржавеет насквозь.
  • Шум при нагреве воды является индикатором того, что на поверхности контакта воды с горячим металлом происходит парообразование. Этот процесс приводит к образованию накипи. Из-за того, что накипь плохо проводит тепло, нагревательный элемент начинает перегреваться, приходя в негодность ускоренными темпами (также немного увеличивается время нагрева). Поломка нагревательного элемента может привести к поражению людей электрическим током). Также, шум сам по себе может мешать окружающим, вызывая шумовое загрязнение.

Исходя из направлений дополнительных потерь, выделяются мероприятия по избеганию и снижению их негативных последствий:

  • Использование исправной электросети (исправного заземления), периодическая проверка нагрева питающих проводов, своевременное устранение проблем.
  • Нагрев питьевой воды только специально предназначенными для этого приборами.
  • Своевременная замена анода в водонагревателях (магниевый анод, алюминиевый анод).
  • Отключение нагревателя от водопровода и электросети на время отсутствия людей.
  • Использование активных систем защиты от протечек (автоматический клапан перекрывает подачу воды при намокании пола там, где установлен датчик).
  • Использование УЗО (устройство защитного отключения) для водонагревателей, и периодическая проверка работоспособности этого устройства 1 раз в полгода.
  • Снижение температуры поверхности горячего металла в месте контакта с водой (для снижения образования накипи и шума) следующими способами или их комбинациями:
    — снижение мощности нагревателя без снижения площади контакта;
    — увеличение площади контакта нагревателя с водой без увеличения мощности (например, предпочесть тен с бОльшей удельной площадью, если позволяет пространство);
    — активное регулирование (ограничение) температуры нагревателя симисторным (транзисторным) блоком управления;
    — установка дополнительных тенов, работающих одновременно, но со сниженной мощностью (последовательное включение);
    — периодическая проверка наличия накипи, своевременная очистка;
    — увеличение скорости потока воды около тена или нагревательной поверхности.

Расчет ТЭНа

Допустимая удельная поверхностная мощность PF=P⁄F,

где Р – мощность проволочного нагревателя, Вт;

F=π∙d∙l – площадь поверхности нагревателя, м2; l – длина провода, м.

Согласно первому методу

где ρд – удельное электрическое сопротивление материала провода при действительной температуре, Ом•м; U – напряжение проволочного нагревателя, В; PF – допустимые значения удельной поверхностной мощности для различных нагревателей:

Во втором методе используют таблицу токовых нагрузок (см. таблицу 1), составленную по экспериментальным данным. Для того чтобы воспользоваться указанной таблицей, необходимо определить расчетную температуру нагрева Tр, связанную с действительной (или допустимой) температурой провода Tд соотношением:

где Kм – коэффициент монтажа, учитывающий ухудшение условий охлаждения нагревателя из-за его конструктивного исполнения; Kс – коэффициент среды, учитывающий улучшение условий охлаждения нагревателя по сравнению с неподвижной воздушной средой.

Для нагревательного элемента из провода, свитого в спираль, Kм=0,8…0,9; то же, с керамическим основанием Kм=0,6…0,7; для провода нагревательных плиток и некоторых ТЭНов Kм=0,5…0,6; для провода электронагревателей пола, почвы и ТЭНов Kм=0,3…0,4. Меньшее значение Kм соответствует нагревателю меньшего диаметра, большее – большего диаметра.

При работе в условиях, отличающихся от свободной конвекции, для нагревательных элементов в воздушном потоке принимают Kс=1,3…2,0; для элементов в неподвижной воде Kс=2,5; в потоке воды – Kс=3,0…3,5.

Если заданы напряжение Uф и мощность Pф будущего (проектируемого) нагревателя, то его ток (на одну фазу)

По расчетному значению тока нагревателя для требуемой расчетной температуры его нагрева по таблице 1 находят необходимый диаметр нихромового провода d и рассчитывают необходимую длину провода, м, для изготовления нагревателя:

где d – выбранный диаметр провода, м; ρд – удельное электрическое сопротивление провода при действительной температуре нагрева, Ом•м,

Для того чтобы определить параметры спирали из нихрома, принимают средний диаметр витков D=(6…10)∙d, шаг спирали h=(2…4)∙d,

длину спирали lсп=h∙n.

При расчете ТЭНов следует помнить, что сопротивление провода спирали после опрессовки ТЭНа

где k(у.с) – коэффициент, учитывающий уменьшение сопротивления спирали; по опытным данным k(у.с)=1,25. Следует также учитывать, что удельная поверхностная мощность провода спирали больше в 3,5. 5 раз удельной поверхностной мощности на трубке ТЭНа.

Читайте также  Как рассчитать пусковой ток электродвигателя?

В практических расчетах ТЭНа сначала определяют температуру на его поверхности Tп=Tо+P∙Rт1,

где Tо – температура окружающей среды, °С; P – мощность ТЭНа, Вт; Rт1 – термическое сопротивление на границе трубка – среда, о С/Вт.

Затем определяют температуру спирали: Tсп=Tо+P∙(Rт1+Rт2+Rт3 ),

где Rт2 – термическое сопротивление стенки трубки, о С/Вт; Rт3 – термическое сопротивление наполнителя, о С/Вт; Rт1=1⁄(α∙F), где α – коэффициент теплоотдачи, Вт/(м^2• о С); F – площадь поверхности нагревателя, м2; Rт2=δ⁄(λ∙F), где δ – толщина стенки, м; λ – теплопроводность стенки, Вт/(м• о С).

Таблица 1. Таблица токовых нагрузок

Пример 1. Рассчитать электрический нагреватель в виде проволочной спирали по допустимой удельной поверхностной мощности PF.

Условие. Мощность нагревателя P=3,5 кВт; напряжение питания U=220 В; материал провода – нихром Х20Н80 (сплав из 20 % хрома и 80 % никеля), поэтому удельное электрическое сопротивление провода ρ20=1,1∙10^(-6) Ом•м; температурный коэффициент сопротивления αр=16∙10^(-6) 1/ о С; спираль открытая, находится в металлической пресс-форме, рабочая температура спирали Tсп=400 о С, PF=12∙10^4 Вт/м2. Определить d, lп, D, h, n, lсп.

Решение. Сопротивление проволочной спирали: R=U^2⁄P=220^2⁄3500=13,8 Ом.

Удельное электрическое сопротивление при Tсп=400 о С

Находим диаметр провода:

Из выражения R=(ρ∙l)⁄S получаем l⁄d^2 =(π∙R)⁄(4∙ρ), откуда длина провода

Средний диаметр витка спирали D=10∙d=10∙0,001=0,01 м=10 мм. Шаг спирали h=3∙d=3∙1=3 мм.

Число витков спирали

Длина спирали lсп=h∙n=0,003∙311=0,933 м=93,3 см.

Пример 2. Конструктивно рассчитать проволочный нагреватель сопротивления при определении диаметра провода d с помощью таблицы токовых нагрузок (см. табл. 1).

Условие. Мощность проволочного нагревателя P=3146 Вт; напряжение питания U=220 В; материал провода – нихром Х20Н80 ρ20=1,1∙10^(-6) Ом•м; αр=16∙10^(-6) 1/℃; спираль открытая, расположенная в потоке воздуха (Kм=0,85, Kс=2,0); допустимая рабочая температура провода Tд=470 о С.

Определить диаметр d и длину провода lп.

Tр=Kм∙Kс∙Tд=0,85∙2∙470 о С=800 о С.

Ток проектируемого нагревателя I=P⁄U=3146⁄220=14,3 А.

По таблице токовых нагрузок (см. табл. 1) при Tр=800 о С и I=14,3 А находим диаметр и сечение провода d=1,0 мм и S=0,785 мм2.

Длина провода lп=(R∙S)⁄ρ800,

где R=U^2⁄P=220^2⁄3146=15,3 Ом, ρ800=1,1∙10^(-6)∙[1+16∙10^(-6)∙(800-20)]=1,11∙10^(-6) Ом•м, lп=15,3∙0,785∙10^(-6)⁄(1,11∙10^(-6) )=10,9 м.

Далее при необходимости аналогично первому примеру могут быть определены D, h, n, lсп.

Пример 3. Определить допустимое напряжение на трубчатом электрическом нагревателе (ТЭНе).

Условие . Спираль ТЭНа выполнена из нихромовой проволоки диаметром d=0,28 мм и длиной l=4,7 м. ТЭН находится в спокойном воздухе, имеющем температуру 20 о С. Характеристика нихрома: ρ20=1,1∙10^(-6) Ом•м; αр=16∙10^(-6) 1/°С. Длина активной части оболочки ТЭНа Lа=40 см.

ТЭН гладкий, наружный диаметр dоб=16 мм. Коэффициент теплоотдачи α=40 Вт/(м^2∙°С). Термические сопротивления: наполнителя Rт3=0,3 о С/Вт, стенки оболочки Rт2=0,002 о С/Вт.

Определить, какое максимальное напряжение можно приложить к ТЭНу, чтобы температура его спирали Tсп не превышала 1000 ℃.

Решение. Температура спирали ТЭНа

где Tо – температура окружающего воздуха; P – мощность ТЭНа, Вт; Rт1 – контактное термическое сопротивление на границе трубка – среда.

Мощность ТЭНа P=U^2⁄R,

где R – сопротивление спирали нагревателя. Следовательно, можем записать Tсп-Tо=U^2/R∙(Rт1+Rт2+Rт3), откуда напряжение на ТЭНе

где ρ1000=ρ20∙[1+αр∙(T-20)]=1,1∙10^(-6)∙[1+16∙10^(-6)∙(1000-20)]=1,12∙10^(-6) Ом•м.

Тогда R=1,12∙10^(-6)∙(4∙4,7) ⁄ (3,14∙(0,28∙10^(-3) )^2)=85,5 Ом.

Контактное термическое сопротивление Rт1=1⁄(α∙F),

где F – площадь активной части оболочки ТЭНа; F=π∙dоб∙Lа=3,14∙0,016∙0,4=0,02 м2.

Находим Rт1=1⁄(40∙0,02=1,25) о С/Вт.

Определяем напряжение на ТЭНе U=√((85,5∙(1000-20)) / (1,25+0,002+0,3))=232,4 В.

Если номинальное напряжение, указанное на ТЭНе, равно 220 В, то перенапряжение при Tсп=1000 о С составит 5,6%∙Uн.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Расчет мощности тэнов

Оптимальным источником энергии, для нагрева испарительной емкости, является квартирная электрическая сеть, напряжением 220 В. Можно просто использовать для этих целей бытовую электроплиту. Но, при нагреве на электроплите, много энергии расходуется на бесполезный нагрев самой плиты, а также излучается во внешнюю среду, от нагревательного элемента, не совершая при этом, полезной работы. Эта, понапрасну затрачиваемая энергия, может достигать приличных значений — до 30-50 %, от общей затраченной мощности на нагрев куба. Поэтому использование обычных электроплит, является нерациональным с точки зрения экономии. Ведь за каждый лишний киловатт энергии, приходится платить. Наиболее эффективно использовать врезанные в испарительную емкость эл. ТЭНы. При таком исполнении, вся энергия расходуется только на нагрев куба + излучение от его стенок вовне. Стенки куба, для уменьшения тепловых потерь, необходимо теплоизолировать. Ведь затраты на излучение тепла, от стенок самого куба могут так же, составлять до 20 и более процентов, от всей затрачиваемой мощности, в зависимости от его размеров. Для использования в качестве нагревательных элементов врезанных в емкость, вполне подходят ТЭНы, от бытовых эл.чайников, или другие подходящие по размерам. Мощность таких ТЭНов, бывает разная. Наиболее часто применяются ТЭНы с выбитой на корпусе мощностью 1.0 кВт и 1.25 кВт. Но есть и другие.

Поэтому мощность 1-го ТЭНа, может не соответствовать по параметрам, для нагрева куба и быть больше или меньше. В таких случаях, для получения необходимой мощности нагрева, можно использовать несколько ТЭНов, соединенных последовательно или последовательно-параллельно. Коммутируя различные комбинации соединения ТЭНов, переключателем от бытовой эл. плиты, можно получать различную мощность. Например имея восемь врезанных ТЭНов, по 1.25 кВт каждый, в зависимости от комбинации включения, можно получить следующую мощность.

  1. 625 Вт
  2. 933 Вт
  3. 1,25 кВт
  4. 1,6 кВт
  5. 1,8 кВт
  6. 2,5 кВт

Такого диапазона вполне хватит для регулировки и поддержания нужной температуры при перегонке и ректификации. Но можно получить и иную мощность, добавив количество режимов переключения и используя различные комбинации включения.

Последовательное соединение 2-х ТЭНов по 1.25 кВт и подключение их к сети 220В, в сумме дает 625 Вт. Параллельное соединение, в сумме дает 2.5 кВт.

Рассчитать можно по следующей формуле.

Мы знаем напряжение, действующее в сети, это 220В. Далее мы так же знаем мощность ТЭН, выбитую на его поверхности допустим это 1,25 кВт, значит, нам нужно узнать силу тока, протекающую в этой цепи. Силу тока, зная напряжение и мощность, узнаем из следующей формулы.

Сила тока = мощность, деленная на напряжение в сети.

Записывается она так:I = P / U.

ГдеI- сила тока в амперах.

P- мощность в ваттах.

U- напряжение в вольтах.

При подсчете нужно мощность, указанную на корпусе ТЭН в кВт, перевести в ватты.

1,25 кВт = 1250Вт. Подставляем известные значения в эту формулу и получаем силу тока.

I= 1250Вт / 220 = 5,681 А

Далее зная силу тока подсчитываем сопротивление ТЭНа, по следующей формуле.

R- сопротивление в Омах

U- напряжение в вольтах

I- сила тока в амперах

Подставляем известные значения в формулу и узнаем сопротивление 1 ТЭНа.

R = 220 / 5.681 = 38,725 Ом.

Далее подсчитываем общее сопротивление всех последовательно соединенных ТЭНов. Общее сопротивление равно сумме всех сопротивлений, соединенных последовательно ТЭНов

Rобщ = R1+ R2 + R3и т.д.

Таким образом, два последовательно соединенных ТЭНа, имеют сопротивление равное77,45Ом. Теперь нетрудно подсчитать мощность выделяемую этими двумя ТЭНами.

P- мощность в ваттах

U2- напряжение в квадрате, в вольтах

R- общее сопротивление всех посл. соед. ТЭНов

P = 624,919 Вт, округляем до значения625 Вт.

Далее при необходимости можно подсчитать мощность любого количества последовательно соединенных ТЭНов, или ориентироваться на таблицу.

В таблице 1.1 приведены значения для последовательного соединения ТЭНов.

Кол-воТЭН Мощность(Вт) Сопротивление(Ом) Напряжение(В) Сила тока(А)
1 1250,000 38,725 220 5,68
Последовательное соединение
2 625 2 ТЭН =77,45 220 2,84
3 416 3 ТЭН =1 16,175 220 1,89
4 312 4 ТЭН=154,9 220 1,42
5 250 5 ТЭН=193,625 220 1,13
6 208 6 ТЭН=232,35 220 0,94
7 178 7 ТЭН=271,075 220 0,81
8 156 8 ТЭН=309,8 220 0,71
Читайте также  Как рассчитать какую вытяжку надо на кухню?

В таблице 1.2 приведены значения для параллельного соединения ТЭНов.

Кол-воТЭН Мощность(Вт) Сопротивление(Ом) Напряжение(В) Сила тока(А)
Параллельное соединение
2 2500 2 ТЭН=19,3625 220 11,36
3 3750 3 ТЭН=12,9083 220 17,04
4 5000 4 ТЭН=9,68125 220 22,72
5 6250 5 ТЭН=7,7450 220 28,40
6 7500 6 ТЭН=6,45415 220 34,08
7 8750 7 ТЭН=5,5321 220 39,76
8 10000 8 ТЭН=4,840 220 45,45

Еще один немаловажный плюс, который дает последовательное соединение ТЭНов, это уменьшенный в несколько раз протекающий через них ток, и соответственно малый нагрев корпуса нагревательного элемента, тем самым не допускается пригорание браги во время перегонки и не привносит неприятного дополнительного вкуса и запаха в конечный продукт. Так же ресурс работы ТЭНов, при таком включении, будет практически вечным.

Расчеты выполнены для ТЭНов, мощностью1.25 кВт. Для ТЭНов другой мощности, общую мощность нужно пересчитать согласно законаОма,пользуясь выше приведенными формулами.

Как рассчитать мощность тэна для нагрева воды?

01.Компания Воронежский ТЭН разработала и
запустила в производство
изготовление тэнов с АЛЮМИНИЕВЫМ
ОРЕБРЕНИЕМ.

02. Ленточные гибкие ТЭНы
предназначен для специальных
областей применения.

03. Хомутовые и полухомутовые
ТЭНы
предназначен для комплектации
отечественных и импортных
промышленных установок.

Настоящий стандарт распространяется
на двухконцовые трубчатые
электронагреватели круглого сечения
общего назначения вида климатического
исполнения УХЛ4 предназначенные
для комплектации промышленных
установок, осуществляющих нагрев
различных сред путем излучения,
конвекции или теплопроводимости. подробнее

Производственная Компания ТЭН
имеет представительства в городах:
Москва,
С.Петербург,
Саратов,
Волгоград,
Белгород,
Ростов-на — Дону,
Тверь

Рекомендации по выбору ТЭНа.

Для выбора ТЭНа необходимо определить количество тепла, необходимое для нагрева среды с учётом всех тепловых потерь.
Суммарная мощность электронагревателей определяется из равенства

P сум = К*Р, [КВт] где Р – мощность, необходимая для нагрева среды с учётом тепловых потерь;

К =1.1-1.3 – коэффициент запаса мощности.

Затем подбирают ТЭН, соответствующий требуемым условиям эксплуатации, т.е. с учётом температуры на оболочке ТЭНа, нагреваемой среды, мощности, напряжения. Выбирают конфигурацию и размеры ТЭНа в зависимости от рабочего пространства комплектуемой установки. Определяют необходимое количество ТЭНов в зависимости от суммарной мощности и мощности одного ТЭНа. Для рационального обеспечения питания установки от трёхфазной электрической сети (исключения перекоса фаз) желательно, чтобы количество ТЭНов было кратно трём. После выбора ТЭНа производят поверочный теплотехнический расчёт с целью определения температуры на оболочке нагревателей, которая зависит от удельной мощности и конкретных условий эксплуатации (условий теплообмена).
Для гарантированного обеспечения заданной температуры оболочки ТЭНа рекомендуется проверять её путём замеров при испытаниях вновь разработанных промышленных установок; при этом установка должна работать в наиболее жёстком режиме. В случае необходимости установка комплектуется терморегулятором. Фактическая температура на оболочке ТЭНа не должна превышать предельно допустимых значений. При этом следует учитывать, что при эксплуатации ТЭНов с меньшими значениями температуры на оболочке их долговечность и надёжность повышаются.

ТЭН — Расчёт мощности нагрева.

Ниже приведены формулы для расчёта мощности ТЭН для различных тепловых процессов

1. Количество теплоты необходимой для нагрева

где m — масса нагреваемого тела, [кг];
C — удельная теплоёмкость, [ Дж/кг/К]
T 1 , T — конечная и начальная температуры нагрева, [К]

2. Количество теплоты необходимой для плавления твёрдого тела

Q пл = λ * m , [ Дж] (2)

где λ — удельная теплота плавления, [ Дж/кг];
m — масса тела, [кг]

3. Количество теплоты необходимой для превращения жидкости в пар

Q кип = r * m , [ Дж] (3)

где r — удельная теплота парообразования, [ Дж/кг];
m — масса тела, [кг] Любой технологический тепловой процесс сопровождается потерями, мощность которых можно учесть по формуле:

где P уд — удельные потери с единицы площади, [ Вт/м 2 ];
S — площадь поверхности потерь, [м 2 ]

Таким образом необходимую суммарную мощность нагревателей можно рассчитать по формуле:

P = k *( Q / t + P пот ), [Вт] (5)

где k — коэффициент учитывающий запас мощности ( можно принять k =1.2-1.3);
Q — суммарное количество теплоты для обеспечения теплового процесса, [Дж];
t — время теплового процесса, [с]
P пот — суммарная мощность потерь, [Вт]

Пример 1. Необходимая мощность для нагрева пресс-формы

Стальная пресс-форма с размерами 254*203* 100 мм используется для изготовления полиэтиленовых деталей. Каждый час, 2.5 кг полиэтилена помещается в пресс-форму. Пресс-форма расположена между двумя плитами из нержавеющей стали размерами 380*305*38 мм., которые изолированы от прессового механизма теплоизоляцией толщиной 12.5 мм. Рабочая температура пресс-формы 205 °С. Необходимо обеспечить достижение этой температуры за 1 час при температуре окружающей среды 21 °С.

1. Находимое количество тепла

1.1 Количество тепла для нагрева пресс-формы

Q 1 = m 1 * C 1 *( T 1 — T )=80.4*0.46*(205-21)=6800кДж ,
где масса пресс-формы m 1 =2*254*203*100*2*7.8*10-6=80.4кг,
удельная теплоёмкость стали C 1 =0.46кДж/кг/К,
начальная T = 21 °С и конечная T 1 =205 °С температуры нагрева.

1.2 Количество тепла для нагрева плит

Q 2 = m 2 * C 2 *( T 1 — T )=68.7*0.47*(205-21)=5940кДж,
где масса пластин m 2 =380*305*38*2*7.8*10-6=68.7кг , удельная теплоёмкость нерж.стали C 2 =0.47кДж/кг/К

1.3 Количество тепла для нагрева полиэтилена

где масса полиэтилена m 3 =2.5кг, удельная теплоёмкость полиэтилена C 3 =2.3Дж/кг/К

1.4 Мощность необходимая для нагрева

P н = k *( Q 1 + Q 2 + Q 3 )/ t =1.2*(6800+5940+1060)/3600=4.6кВт=4600Вт, где k =1.2 — коэффициент учитывающий запас мощности
t =3600 c — время нагрева.

2. Потери тепла при рабочей температуре

2.1 Потери на пресс-форме с вертикальных поверхностей

P = S * P уд.в =.182*3800=690Вт
где S =(254*100+203*100)*4=182800мм 2 =.182м 2 — площадь вертикальных поверхностей пресс-формы
P уд.в =3800Вт/м 2 — удельные потери с вертикальной стальной поверхности при температуре 205 °С ( по рис. 1)

2.2 Потери на плитах с вертикальных поверхностей

P = S * P уд.в =.104*3800=395Вт
где S =(38*380+38*305)*4=104120мм 2 =.104м 2 — площадь вертикальных поверхностей плит
P уд.в =3800Вт/м 2 — удельные потери с вертикальной стальной поверхности при температуре 205 °С ( по рис. 1 )

2.3 Потери на плитах с неизолированных горизонтальных поверхностей

P = S * P уд.г =0.129*2700=350Вт
где S =(380*305-254*203)*2=128676мм 2 =129м 2 — площадь неизолированных горизонтальных поверхностей плит
P уд.г =2700Вт/м 2 — удельные потери с горизонтальной неизолированной стальной поверхности при температуре 205 °С ( по рис. 1 )

2.4 Потери на плитах с изолированных горизонтальных поверхностей

P 2ги = S 2ги * P уд.ги =0.232*1100=255Вт
где S 2ги =380*305*2=231800мм 2 =.232м 2 — площадь неизолированных горизонтальных поверхностей плит
P уд.ги =1100Вт/м2 — удельные потери с горизонтальной изолированной стальной поверхности при температуре 205 °С ( по рис. 4 )

2.5 Суммарные потери при рабочей температуре

P пот = k *( P + P + P + P 2ги )=1.2*(690+395+350+255)=2030Вт
k =1.2 — коэффициент учитывающий запас мощности

3. Необходимая суммарная мощность

P = P н + P пот =4600+2030=6630Вт. При выборе нагревателей необходимо учитывать, что суммарная мощность всех нагревателей должна быть не менее рассчитанной. При этом, удельная поверхностная мощность нагревателя не должна превосходить предельно допустимую.

Пример 2. Плавление парафина

Неизолированная стальная ёмкость без крышки имеет размеры 455*610*455 мм и весит 63.5 кг. В этой ёмкости находится 76 кг парафина, который необходимо нагреть до 65 °С за 2.5 часа. Температура окружающей среды 22 °С.

1. Находимое количество тепла

1.1 Количество тепла для нагрева ёмкости

Q 1 = m 1 * C 1 *( T 1 — T )=63.5*0.46*(65-22)=1260кДж,
где масса ёмкости m 1 =63.5 кг,
удельная теплоёмкость стали по C 1 =0.46 кДж/кг/К,
начальная T =22 °С и конечная T 1 = 65 °С температуры нагрева.

1.2 Количество тепла для нагрева парафина до температуры плавления

Q 2 = m 2 * C 2 *( T 2 — T )=76*2.89*(54-22)=7028кДж,
где масса парафина m 2 =76кг,
температура плавления парафина T 2 =54 °С,
удельная теплоёмкость твёрдого парафина C 2 =2.89кДж/кг/К

1.3 Количество тепла для нагрева расплавленного парафина до конечной температуры

Q 3 = m 2 * C 3 *( T 1 — T )=76*2.93*(65-54)=2450кДж,
где масса парафина m 2 =76кг,
удельная теплоёмкость жидкого парафина C 2 =2.93кДж/кг/К

1.4 Количество тепла для плавления парафина

Q 4 = m 2 * λ =76*147 =11205 кДж,
где масса парафина m 2 =76 кг,
удельная теплота плавления парафина λ =147 Дж/кг

1.5 Мощность необходимая для нагрева

P н = k *( Q 1 + Q 2 + Q 3 + Q 3 )/ t =1.2*(1260+7028+2450+11205)/9000=2.95кВт=2950Вт,
где k =1.2 — коэффициент учитывающий запас мощности,
t =2.5*3600=9000 c — время нагрева.

2. Потери тепла при рабочей температуре

2.1 Потери с поверхности парафина

P п = S п * P удп =0.28*750=210Вт,
где S п =455*610=277550 мм 2 =.28м 2 — площадь поверхности парафина,
P уд.п =750 Вт/м 2 — удельные потери с поверхности парафина ( по рис.

Читайте также  Как рассчитать сопротивление провода?

При выборе нагревателей необходимо учитывать, что суммарная мощность всех нагревателей должна быть не менее рассчитанной. При этом, удельная поверхностная мощность нагревателя не должна превосходить предельно допустимую 2.5Вт/см 2

Расчет тэна для нагрева алюминия

Допустимая удельная поверхностная мощность PF=P⁄F,

где Р – мощность проволочного нагревателя, Вт;

F=π∙d∙l – площадь поверхности нагревателя, м2; l – длина провода, м.

где ρд – удельное электрическое сопротивление материала провода при действительной температуре, Ом•м; U – напряжение проволочного нагревателя, В; PF – допустимые значения удельной поверхностной мощности для различных нагревателей:

Во втором методе используют таблицу токовых нагрузок (см. таблицу 1), составленную по экспериментальным данным. Для того чтобы воспользоваться указанной таблицей, необходимо определить расчетную температуру нагрева Tр, связанную с действительной (или допустимой) температурой провода Tд соотношением:

где Kм – коэффициент монтажа, учитывающий ухудшение условий охлаждения нагревателя из-за его конструктивного исполнения; Kс – коэффициент среды, учитывающий улучшение условий охлаждения нагревателя по сравнению с неподвижной воздушной средой.

Для нагревательного элемента из провода, свитого в спираль, Kм=0,8…0,9; то же, с керамическим основанием Kм=0,6…0,7; для провода нагревательных плиток и некоторых ТЭНов Kм=0,5…0,6; для провода электронагревателей пола, почвы и ТЭНов Kм=0,3…0,4. Меньшее значение Kм соответствует нагревателю меньшего диаметра, большее – большего диаметра.

При работе в условиях, отличающихся от свободной конвекции, для нагревательных элементов в воздушном потоке принимают Kс=1,3…2,0; для элементов в неподвижной воде Kс=2,5; в потоке воды – Kс=3,0…3,5.

Если заданы напряжение Uф и мощность Pф будущего (проектируемого) нагревателя, то его ток (на одну фазу)

По расчетному значению тока нагревателя для требуемой расчетной температуры его нагрева по таблице 1 находят необходимый диаметр нихромового провода d и рассчитывают необходимую длину провода, м, для изготовления нагревателя:

где d – выбранный диаметр провода, м; ρд – удельное электрическое сопротивление провода при действительной температуре нагрева, Ом•м,

Для того чтобы определить параметры спирали из нихрома, принимают средний диаметр витков D=(6…10)∙d, шаг спирали h=(2…4)∙d,

При расчете ТЭНов следует помнить, что сопротивление провода спирали после опрессовки ТЭНа

где k(у.с) – коэффициент, учитывающий уменьшение сопротивления спирали; по опытным данным k(у.с)=1,25. Следует также учитывать, что удельная поверхностная мощность провода спирали больше в 3,5. 5 раз удельной поверхностной мощности на трубке ТЭНа.

В практических расчетах ТЭНа сначала определяют температуру на его поверхности Tп=Tо+P∙Rт1,

где Tо – температура окружающей среды, °С; P – мощность ТЭНа, Вт; Rт1 – термическое сопротивление на границе трубка – среда, о С/Вт.

Затем определяют температуру спирали: Tсп=Tо+P∙(Rт1+Rт2+Rт3 ),

где Rт2 – термическое сопротивление стенки трубки, о С/Вт; Rт3 – термическое сопротивление наполнителя, о С/Вт; Rт1=1⁄(α∙F), где α – коэффициент теплоотдачи, Вт/(м^2• о С); F – площадь поверхности нагревателя, м2; Rт2=δ⁄(λ∙F), где δ – толщина стенки, м; λ – теплопроводность стенки, Вт/(м• о С).

Таблица 1. Таблица токовых нагрузок

Пример 1. Рассчитать электрический нагреватель в виде проволочной спирали по допустимой удельной поверхностной мощности PF.

Условие. Мощность нагревателя P=3,5 кВт; напряжение питания U=220 В; материал провода – нихром Х20Н80 (сплав из 20 % хрома и 80 % никеля), поэтому удельное электрическое сопротивление провода ρ20=1,1∙10^(-6) Ом•м; температурный коэффициент сопротивления αр=16∙10^(-6) 1/ о С; спираль открытая, находится в металлической пресс-форме, рабочая температура спирали Tсп=400 о С, PF=12∙10^4 Вт/м2. Определить d, lп, D, h, n, lсп.

Решение. Сопротивление проволочной спирали: R=U^2⁄P=220^2⁄3500=13,8 Ом.

Удельное электрическое сопротивление при Tсп=400 о С

Из выражения R=(ρ∙l)⁄S получаем l⁄d^2 =(π∙R)⁄(4∙ρ), откуда длина провода

Средний диаметр витка спирали D=10∙d=10∙0,001=0,01 м=10 мм. Шаг спирали h=3∙d=3∙1=3 мм.

Длина спирали lсп=h∙n=0,003∙311=0,933 м=93,3 см.

Пример 2. Конструктивно рассчитать проволочный нагреватель сопротивления при определении диаметра провода d с помощью таблицы токовых нагрузок (см. табл. 1).

Условие. Мощность проволочного нагревателя P=3146 Вт; напряжение питания U=220 В; материал провода – нихром Х20Н80 ρ20=1,1∙10^(-6) Ом•м; αр=16∙10^(-6) 1/℃; спираль открытая, расположенная в потоке воздуха (Kм=0,85, Kс=2,0); допустимая рабочая температура провода Tд=470 о С.

Определить диаметр d и длину провода lп.

Tр=Kм∙Kс∙Tд=0,85∙2∙470 о С=800 о С.

Ток проектируемого нагревателя I=P⁄U=3146⁄220=14,3 А.

По таблице токовых нагрузок (см. табл. 1) при Tр=800 о С и I=14,3 А находим диаметр и сечение провода d=1,0 мм и S=0,785 мм2.

где R=U^2⁄P=220^2⁄3146=15,3 Ом, ρ800=1,1∙10^(-6)∙[1+16∙10^(-6)∙(800-20)]=1,11∙10^(-6) Ом•м, lп=15,3∙0,785∙10^(-6)⁄(1,11∙10^(-6) )=10,9 м.

Далее при необходимости аналогично первому примеру могут быть определены D, h, n, lсп.

Пример 3. Определить допустимое напряжение на трубчатом электрическом нагревателе (ТЭНе).

Условие . Спираль ТЭНа выполнена из нихромовой проволоки диаметром d=0,28 мм и длиной l=4,7 м. ТЭН находится в спокойном воздухе, имеющем температуру 20 о С. Характеристика нихрома: ρ20=1,1∙10^(-6) Ом•м; αр=16∙10^(-6) 1/°С. Длина активной части оболочки ТЭНа Lа=40 см.

ТЭН гладкий, наружный диаметр dоб=16 мм. Коэффициент теплоотдачи α=40 Вт/(м^2∙°С). Термические сопротивления: наполнителя Rт3=0,3 о С/Вт, стенки оболочки Rт2=0,002 о С/Вт.

Определить, какое максимальное напряжение можно приложить к ТЭНу, чтобы температура его спирали Tсп не превышала 1000 ℃.

Решение. Температура спирали ТЭНа

где Tо – температура окружающего воздуха; P – мощность ТЭНа, Вт; Rт1 – контактное термическое сопротивление на границе трубка – среда.

где R – сопротивление спирали нагревателя. Следовательно, можем записать Tсп-Tо=U^2/R∙(Rт1+Rт2+Rт3), откуда напряжение на ТЭНе

где ρ1000=ρ20∙[1+αр∙(T-20)]=1,1∙10^(-6)∙[1+16∙10^(-6)∙(1000-20)]=1,12∙10^(-6) Ом•м.

Тогда R=1,12∙10^(-6)∙(4∙4,7) ⁄ (3,14∙(0,28∙10^(-3) )^2)=85,5 Ом.

Контактное термическое сопротивление Rт1=1⁄(α∙F),

где F – площадь активной части оболочки ТЭНа; F=π∙dоб∙Lа=3,14∙0,016∙0,4=0,02 м2.

Находим Rт1=1⁄(40∙0,02=1,25) о С/Вт.

Определяем напряжение на ТЭНе U=√((85,5∙(1000-20)) / (1,25+0,002+0,3))=232,4 В.

Если номинальное напряжение, указанное на ТЭНе, равно 220 В, то перенапряжение при Tсп=1000 о С составит 5,6%∙Uн.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Расчет ТЭНа

Расчет скорости нагрева

При расчете мощности электронагревательных элементов использованы следующие расчетным данные: масса воды, начальная и конечная (желаемая) температура воды и время, затрачиваемое на нагревание. Мощность ТЭНа P определяется математическим выражением: P=0,0011m(tk-tн)/T, в котором: m — масса нагреваемой воды, tk и tн — начальная и конечная температура воды, T — затрачиваемое на ее нагревание время.
Вычисление мощности нагревательного элемента выполняется данным калькулятором без учета тепловых потерь, связанных с конструктивными особенностями емкости, температуры окружающей среды, состоянием греющей поверхности ТЭНа и пр. Кроме того, следует учесть фактическое напряжение питающей сети, которое может сильно отличаться от номинального значения. Так, при пониженном напряжении, температура рабочей поверхности будет меньше значения, заявленного изготовителем, следовательно, и времени для нагрева потребуется больше. Учитывая удельный вес воды составляет 1 г/см 3 , в поле калькулятора “Масса нагреваемой воды” при вводе данных может быть использовано значение ее объема. Результат вычисления (P) может быть значением мощности как одного ТЭНа, так и нескольких параллельно соединенных элементов.

Расчет удельной поверхностной мощности

Удельная поверхностная мощность ТЭНа P определяется математическим выражением: Q=P/(3,14dL), в котором: P — номинальная потребляемая мощность, L — развернутая длина, d — диаметр оболочки.
Чем меньше удельная плотность, тем более спокойно передается мощность от ТЭНа к нагреваемой жидкости и меньше подгорает.

Расчет силы тока

Сила тока: I=P/U, в котором: P — номинальная потребляемая мощность, U — напряжение в сети.
По расчитанной силе тока подбираются соответствующие провода, разъемы, устройства автоматического отключения и защиты.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: