Как рассчитать напор циркуляционного насоса? - ELSTROIKOMPLEKT.RU

Как рассчитать напор циркуляционного насоса?

Расчет насоса для системы отопления: подбираем оптимальный насос по ключевым параметрам

Большинство автономных систем отопления, которые используются для обогрева загородных домов и дач, сегодня оснащаются циркуляционными насосами. Чтобы при установке такой гидравлической машины добиться требуемых результатов, необходимо выполнить предварительный расчет циркуляционного насоса для системы отопления и, основываясь на полученных значениях, выбрать насосное оборудование с соответствующими характеристиками.

Грамотный подбор циркуляционного насоса обеспечит эффективную работу отопительной системы и позволит избежать лишних затрат

Сферы использования циркуляционных насосов

Главная задача циркуляционного насоса состоит в том, чтобы улучшить циркуляцию теплоносителя по элементам отопительной системы. Проблема поступления в радиаторы отопления уже остывшей воды хорошо знакома жильцам верхних этажей многоквартирных домов. Связаны подобные ситуации с тем, что теплоноситель в таких системах перемещается очень медленно и успевает остыть, пока достигнет участков отопительного контура, находящихся на значительном отдалении.

При эксплуатации в загородных домах автономных систем отопления, циркуляция воды в которых осуществляется естественным путем, тоже можно столкнуться с проблемой, когда радиаторы, установленные в самых дальних точках контура, еле нагреваются. Это также является следствием недостаточного давления теплоносителя и его медленного движения по трубопроводу. Избежать подобных ситуаций как в многоквартирных, так и в частных домах позволяет установка циркуляционного насосного оборудования. Принудительно создавая в трубопроводе требуемое давление, такие насосы обеспечивают высокую скорость движения нагретой воды даже к самым отдаленным элементам системы отопления.

Насос повышает эффективность действующего отопления и позволяет совершенствовать систему, добавляя дополнительные радиаторы или элементы автоматики

Свою эффективность системы отопления с естественной циркуляцией жидкости, переносящей тепловую энергию, проявляют в тех случаях, когда их используют для обогрева домов небольшой площади. Однако, если оснастить такие системы циркуляционным насосом, можно не только повысить эффективность их использования, но и сэкономить на отоплении, снизив количество потребляемого котлом энергоносителя.

По своему конструктивному исполнению циркуляционный насос представляет собой мотор, вал которого передает вращение ротору. На роторе устанавливается колесо с лопатками – крыльчатка. Вращаясь внутри рабочей камеры насоса, крыльчатка выталкивает поступающую в нее нагретую жидкость в нагнетательную магистраль, формируя поток теплоносителя с требуемым давлением. Современные модели циркуляционных насосов могут работать в нескольких режимах, создавая в системах отопления различное давление перемещающегося по ним теплоносителя. Такая опция позволяет быстро прогреть дом при наступлении холодов, запустив насос на максимальную мощность, а затем, когда во всем здании сформируется комфортная температура воздуха, переключить устройство на экономичный режим работы.

Устройство циркуляционного насоса для отопления

Все циркуляционные насосы, используемые для оснащения систем отопления, делятся на две большие категории: устройства с «мокрым» и «сухим» ротором. В насосах первого типа все элементы ротора постоянно находятся в среде теплоносителя, а в устройствах с «сухим» ротором только часть таких элементов контактирует с перекачиваемой средой. Большей мощностью и более высоким КПД отличаются насосы с «сухим» ротором, но они сильно шумят в процессе работы, чего не скажешь об устройствах с «мокрым» ротором, которые издают минимальное количество шума.

Для чего необходимо выполнять расчет

Циркуляционный насос, установленный в системе отопления, должен эффективно решать две основные задачи:

  1. создавать в трубопроводе такой напор жидкости, который будет в состоянии преодолеть гидравлическое сопротивление в элементах отопительной системы;
  2. обеспечивать постоянное движение требуемого количества теплоносителя через все элементы отопительной системы.

Чтобы циркуляционный насос был в состоянии справляться с решением вышеперечисленных задач, выбирать такое устройство следует только после того, как будет сделан расчет отопления.

При выполнении такого расчета учитывают два основных параметра:

  • общую потребность здания в тепловой энергии;
  • суммарное гидравлическое сопротивление всех элементов создаваемой отопительной системы.

Таблица 1. Тепловая мощность для различных помещений

После определения данных параметров уже можно выполнить расчет центробежного насоса и, основываясь на полученных значениях, выбрать циркуляционный насос с соответствующими техническими характеристиками. Подобранный таким образом насос будет не только обеспечивать требуемое давление теплоносителя и его постоянную циркуляцию, но и работать без чрезмерных нагрузок, которые могут стать причиной быстрого выхода устройства из строя.

Как правильно рассчитать производительность насоса

Такой важный параметр циркуляционного насоса, как его производительность, указывает на то, какое количество теплоносителя он может переместить за единицу времени. Расчет производительности циркуляционного насоса, которая обозначается буквой Q, выполняется по следующей формуле:

Параметры, которые используются в данной формуле, указаны в таблице.

Таблица 2. Параметры теплоносителя для расчета производительности насоса

Потребность помещений дома в количестве тепла для их обогрева, которая обозначается буквой R, определяется в зависимости от климатических условий местности, в которой такой дом расположен. Так, для домов, которые эксплуатируются в условиях европейского климата, выбирают следующие значения данного параметра:

  • частные дома небольшой и средней площади – 100 кВт на 1 м 2 ;
  • многоквартирные дома – 70 кВт на 1 м 2 площади их помещения.

В том случае, если расчет производительности насоса для отопления выполняется для зданий с низкими теплоизоляционными характеристиками, значение тепловой мощности, подставляемое в формулу, следует увеличить. Для производственных помещений, а также помещений, расположенных в зданиях с хорошей теплоизоляцией, значение параметра R принимают равным 30–50 кВт/м 2 .

Как рассчитать гидравлические потери отопительной системы

На выбор циркуляционного насоса по его мощности и создаваемому им напору, как уже говорилось выше, оказывает влияние и такой важный параметр отопительной системы, как гидравлическое сопротивление, которое создают все элементы ее оснащения. Зная гидравлическое сопротивление, создаваемое отдельными элементами отопительной системы, можно рассчитать высоту всасывания насоса и, руководствуясь таким параметром, подобрать модель оборудования по мощности и создаваемому напору. Для расчета высоты всасывания насоса, которая обозначается буквой H, нужна следующая формула:

Параметры, используемые в данной формуле, указаны в таблице.

Таблица 3. Параметры для расчета высоты всасывания

Значения R1 и R2, используемые в данной формуле, следует выбирать по специальной информационной таблице.

Значения гидравлического сопротивления, создаваемого различными устройствами, которые применяются для оснащения систем отопления, обычно указываются в технической документации на них. Если таких данных в паспорте на устройство нет, то можно воспользоваться приблизительными значениями гидравлического сопротивления:

  • отопительный котел – 1000–2000 Па;
  • сантехнический смеситель – 2000–4000 Па;
  • термоклапан – 5000–10000 Па;
  • прибор для определения количества тепла – 1000–1500 Па.

Существуют специальные информационные таблицы, по которым можно определить гидравлическое сопротивление практически для любого элемента оснащения отопительных систем.

Зная высоту всасывания, для расчета которой используется вышеуказанная формула, можно оптимально выбрать насосное оборудование по его мощности, а также определить, каким должен быть напор насоса.

Как выбрать циркуляционный насос по количеству скоростей

Обычно современные модели циркуляционных насосов оснащаются регулирующим механизмом, позволяющим изменять скорость их работы. Используя такой механизм, имеющий, как правило, три ступени регулировки, можно настраивать насос по расходу жидкости, подаваемой в систему отопления. Так, при резком похолодании на улице и, соответственно, в доме, насос можно включать на максимальную скорость работы, а при потеплении выбирать другой режим.

Элементом управления, при помощи которого изменяют скорость работы циркуляционного насоса, выступает рычаг на корпусе устройства. Отдельные модели циркуляционных насосов оснащаются системой авторегулирования скорости их работы, которая изменяется в зависимости от температурного режима в помещении.

Насос Wilo-Stratos с автоматической регулировкой мощности

Приведенная выше методика – это только один пример выполнения расчетов, которые необходимы для того, чтобы выбрать циркуляционный насос для теплого пола или системы отопления. Специалисты, занимающиеся системами отопления, используют различные методики расчета напора насоса (а также производительности и других параметров таких устройств), позволяющие подбирать такое оборудование по его мощности и создаваемому давлению. Во многих случаях собственнику дома, в котором необходимо смонтировать отопительную систему, можно даже не задаваться вопросами о том, как рассчитать мощность насоса и как подобрать насосное оборудование. Многие производители предоставляют услуги квалифицированных специалистов или предлагают воспользоваться онлайн-сервисами по расчету параметров циркуляционного насоса и его выбору для систем отопления или теплого пола.

Выбирая мощность циркуляционного насоса, следует принимать во внимание, что все предварительные расчеты выполняют, исходя из значений максимальных нагрузок, которые такое оборудование может испытывать в процессе эксплуатации.

В реальных условиях эксплуатации такие нагрузки будут ниже, что даст вам возможность сделать выбор насоса, технические характеристики которого несколько ниже рассчитанных. Выбор менее мощного насоса при таком подходе не отразится на эффективности его использования в системе отопления. В том случае, если мощность насоса, который вы выбрали, значительно выше значений, полученных при расчете, это не улучшит работу отопительной системы, но при этом увеличит ваши расходы на оплату электроэнергии.

Читайте также  Как рассчитать драйвер для светодиодной ленты?

Помочь сделать выбор циркуляционного насоса из нескольких моделей по их напорно-расходным характеристикам и скорости работы помогает специальный график. При построении такого графика используются реальные значения напора и расхода, необходимые для нормального функционирования системы отопления, а также значения, которые соответствуют конкретным моделям насосного оборудования, работающего на различных скоростях. Чем ближе точки, расположенные на двух графиках, тем больше подходит насос для его использования в системе отопления.

Расчет циркуляционного насоса для отопления в примерах и формулах

Современную автономную систему отопления невозможно представить без хорошего циркуляционного насоса. С помощью этого полезного устройства можно в несколько раз повысить качество обогрева жилища и эффективность работы отопительного оборудования. Чтобы выбрать из многочисленных предложений производителей модель, которая подходит конкретной системе, следует выполнить правильный расчет насоса для отопления, а также учесть ряд важных практических нюансов.

Для чего нужен насос в системе отопления?

Большинству жителей верхних этажей в многоквартирных домах хорошо знакомо такое явление как холодные батареи. Это результат отсутствия в системе давления, необходимого для ее нормальной работы. Теплоноситель перемещается по трубам медленно и остывает уже на нижних этажах. С такой же ситуацией могут столкнуться и владельцы частного дома: в самой дальней точке отопительной системы трубы и радиаторы слишком холодные. Эффективно решить проблему поможет циркуляционный насос. Обратите внимание, что системы отопления с естественной циркуляцией теплоносителя могут быть вполне эффективны в небольших частных домах, но даже в этом случае имеет смысл подумать о принудительной циркуляции, поскольку при правильной настройке системы это позволит снизить общие расходы на отопление.

Упрощенно такой насос представляет собой мотор с ротором, который погружен в теплоноситель. Ротор вращается, заставляя воду или другую нагретую жидкость перемещаться по системе с заданной скоростью, создавая необходимое давление. Насос может работать в различных режимах. Например, установив устройство на максимум, можно быстро прогреть остывший в отсутствие хозяев дом. Затем восстанавливают настройки, которые позволяют получить наибольшее количество тепла при минимальных расходах. Различают модели циркуляционных насосов с «сухим» и «мокрым» ротором. В первом случае ротор насоса погружен в жидкость только частично, а во втором случае — полностью. Насосы с «мокрым» ротором издают при работе меньше шума.

Как рассчитать параметры насоса?

Правильно подобранный водяной насос для отопления должен решать две задачи:

  • создавать в системе напор, способный преодолеть гидравлическое сопротивление отдельных ее элементов;
  • обеспечивать перемещение по системе достаточного для обогрева здания количества тепла.

Исходя из этого, при выборе циркуляционного насоса следует рассчитать потребность здания в тепловой энергии, а также общее гидравлическое сопротивление всей отопительной системы. Без этих двух показателей подобрать подходящий насос просто невозможно.

Полезная информация о выборе циркуляционного насоса содержится в следующем видеоматериале:

Расчеты производительности насоса

Производительность насоса, которую в расчетных формулах обычно обозначают как Q, отражает количество тепла, которое может быть перемещено за единицу времени. Формула для расчетов выглядит так:

  • Q — объемный расход, куб. м./ч;
  • R — необходимая тепловая мощность для помещения, кВт;
  • TF — температура на подаче в систему, градусов Цельсия;
  • TR — температура на выходе из системы, градусов Цельсия.

Потребность помещения в тепле (R) рассчитывается в зависимости от условий. В Европе принято рассчитывать этот показатель, исходя из норматива:

  • 100 Вт/кв. м площади небольшого частного дома, в котором не более двух квартир;
  • 70 Вт/кв. м площади многоквартирного дома.

Если же расчеты проводятся для зданий с низкой теплоизоляцией, значение показателя следует увеличить. Для расчетов по помещениям на производстве, а также по зданиям с очень высокой степенью теплоизоляции рекомендуется использовать показатель в пределах 30-50 кВт/ кв. м.

С помощью этой таблицы можно более точно рассчитать потребность в тепловой энергии для помещений различного назначения и с различным уровнем теплоизоляции

Расчет гидравлического сопротивления системы

Следующий важный показатель — гидравлическое сопротивление, которое необходимо будет преодолеть циркуляционному насосу. Для этого следует рассчитать высоту всасывания насоса. Обычно этот показатель обозначают как «H». Можно использовать следующую формулу:

  • R1, R2 – потеря давления на подаче и обратке, Па/м;
  • L1,L2 – длина линии подающего и обратного трубопровода, м;
  • Z1,Z2…..ZN – сопротивление отдельных элементов отопительной системы, Па.

Для определения R1 и R2 следует воспользоваться приведенной ниже таблицей:

В этой таблице представлены дополнительные данные для более точного расчета гидравлического сопротивления, возникающего в отопительной системе частного дома

Гидравлическое сопротивление отдельных элементов и узлов отопительной системы обычно указано в сопровождающей их технической документации. Если по какой-то причине такая документация отсутствует, можно воспользоваться примерными данными:

  • котел — 1000-2000 Па;
  • смеситель — 2000-4000 Па;
  • термостатический вентиль — 5000-10000 Па;
  • тепломер — 1000-15000 Па.

Для других частей отопительной системы смотрите данные в этой таблице:

Если техническая документация по каким-то причинам утрачена, можно рассчитать гидравлическое сопротивление отдельных элементов отопительной системы с помощью данных, приведенных в этой таблице

Количество скоростей циркуляционного насоса

Большинство современных моделей циркуляционных насосов снабжены возможностью регулировать скорость работы устройства. Чаще всего это трехскоростные модели, с помощью которых можно корректировать количества тепла, поступающего в помещение. Так, при резком похолодании скорость работы насоса увеличивают, а в случае потепления — уменьшают, чтобы температура воздуха в комнатах оставалась комфортной для проживания.

Для переключения скоростей существует специальный рычаг, размещенный на корпусе устройства. Большой популярностью пользуются модели циркуляционных насосов, снабженные системой автоматического регулирования скорости работы устройства в зависимости от изменения температуры наружного воздуха.

Следует отметить, что это лишь один из вариантов такого рода расчетов. Некоторые производители используют при подборе насоса несколько иную методику вычислений. Можно попросить выполнить все расчеты квалифицированного специалиста, сообщив ему подробности устройства конкретной отопительной системы и описав условия ее работы. Обычно рассчитываются показатели максимальной нагрузки, при которой будет работать система. В реальных условиях нагрузка на оборудование будет ниже, поэтому можно смело приобретать циркуляционный насос, характеристики которого несколько ниже расчетных показателей. Приобретение более мощного насоса не целесообразно, поскольку это приведет к ненужным расходам, но работу системы не улучшит.

После того, как все необходимые данные получены, следует изучить напорно-расходные характеристики каждой модели с учетом разных скоростей работы. Эти характеристики могут быть представлены в виде графика. Ниже приведен пример такого графика, на котором отмечены и расчетные характеристики устройства.

С помощью этого графика можно подобрать подходящую модель циркуляционного насоса для отопления по показателям, рассчитанным для системы конкретного частного дома

Точка А соответствует необходимым показателям, а точкой В обозначены реальные данные конкретной модели насоса, максимально приближенные к теоретическим расчетам. Чем меньше расстояние между точками А и В, тем лучше подходит модель насоса для конкретных условий эксплуатации.

Несколько важных замечаний

Как уже отмечалось выше, различают циркуляционные насосы с «сухим» и «мокрым» ротором, а также с автоматической или ручной системой регулировки скоростей. Специалисты рекомендуют использовать насосы, ротор которых полностью погружен в воду, не только из-за пониженного уровня шума, но и потому, что такие модели справляются с нагрузкой более успешно. Установку насоса осуществляют таким образом, чтобы вал ротора располагался горизонтально. Подробнее про установку читайте здесь.

При производстве высококачественных моделей используется прочная сталь, а также керамический вал и подшипники. Срок эксплуатации такого устройства составляет не менее 20 лет. Не стоит выбирать для системы горячего водоснабжения насос с чугунным корпусом, поскольку в таких условиях он быстро разрушится. Предпочтение стоит отдать нержавейке, латуни или бронзе.

Если при работе насоса в системе появляется шум, это не всегда говорит о поломке. Нередко причина этого явления — воздух, оставшийся в системе после запуска. Перед пуском системы следует спустить воздух через специальные клапаны. После того, как система проработает несколько минут, нужно повторить эту процедуру, а затем отрегулировать работу насоса.

Если запуск производится с использованием насоса с ручной регулировкой, необходимо сначала установить прибор на максимальную скорость работы, в регулируемых моделях при пуске отопительной системы следует просто отключить блокировку.

4 формулы, от которых зависит тепло в доме: правила расчета циркуляционного насоса для системы отопления

Правильный расчёт насоса позволит избежать возникновения проблем в течение эксплуатации отопления. Характеристики должны быть рассчитаны точно, чтобы избежать неисправностей.

Читайте также  Как рассчитать нагрузку на электросеть?

Для этого необходимо знать четыре формулы. И также следует понимать значение понятия РТ.

Рабочая точка: что это такое?

Является пересечением графиков двух характеристик: насоса и трубопровода. В этой точке полезные мощности расхода и потребления равны. От её положения зависит производительность системы. Подачу воды изображают как возрастающую из нуля величину, а напор — как убывающую из максимального значения пропускной способности труб.

Фото 1. Пример того, как может измениться рабочая точка при изменении характеристик системы отопления.

У подачи есть минимальный порог. Если не учитывать его, система перегревается, что приводит к повреждениям. Давление также может отклоняться от нормального показателя, что частично влияет на характеристику сети.

Важно! Дросселирование и образование отложений влияют на изменение положения точки.

Необходимо соблюдать требования к эксплуатации:

  • теплопотребление строения;
  • пиковые расходы.

Выбрав РТ, под её характеристики подбирают циркуляционный насос. Желательно взять прибор с показаниями, расположенными правее рабочей точки. Запас позволит избежать проблем при изменении значений.

Формулы расчета характеристик насоса для системы отопления

Для определения места установки необходимо рассчитать РТ. Следует помнить, что двукратное увеличение напора — квадрат коэффициента повышения подачи.

Мощность циркуляционного насоса

N = (P * Q * H) / (367 * КПД), где:

  • P — плотность воды.
  • Q — расход рабочей жидкости.
  • H — уровень напора.

Мощность вычисляется в кВт. При покупке следует ориентироваться на этот показатель, выбирая устройство с аналогичным или большим значением. Лучше брать с запасом и вручную ограничивать.

Как подобрать производительность

Q = (S * Qуд) / 1000, где:

  • S — площадь помещений, в которых размещена обвязка.
  • Qуд — удельное потребление энергии.

Производительность вычисляется в кВт на метр квадратный. В многоквартирных и частных домах это значение различно. Во втором случае он больше на 40—45%. Это связано с потерями тепла, которые в малоэтажных строениях выше.

Какой нужен напор воды

H = (R * L * ZF) / 10000, где:

  • R — сопротивление трубопровода.
  • L — длиннейший отрезок отопления.
  • ZF — коэффициент запаса, в большинстве случаев принимается равным 2,2.

Напор жидкости измеряется в метрах. Отображают как убывающий график. Максимальное значение достигается в начальной точке, поскольку по мере удаления от котла показатель падает.

Как рассчитать подачу воды

V = Q / (1,16 * T), где:

  • T — разница температур теплоносителя в отопительной системе, обычно составляет от 10 до 20 °C.
  • Q — производительность насоса.

Подача измеряется в кубометрах в час. За T принимают разность между температурой воды в котле и в крайней точке обратки. Подачу отображают как возрастающий график. Вместе с ней изменяется скорость потока и гидравлическое сопротивление.

Справка! Последнее меняется в квадратичном соотношении, поэтому выглядит как парабола.

Полезное видео

Посмотрите видео, в котором показано, как производятся необходимые вычисления при выборе насоса для отопления.

Правильность расчётов

Весьма важно получить качественные значения. Иначе возможно возникновение неисправностей. Рекомендуется обратиться к специалистам по сантехнике.

Как рассчитать параметры циркуляционного насоса

В данной статье рассказывается о том, как рассчитать параметры циркуляционного насоса в отопительной системе, руководствуясь при этом малым объемом технической информации об особенностях и характеристиках данной системы. Этот метод расчета применяется в основном для частных малоэтажных зданий.

Мы подготовили пример расчета, чтобы наглядно вам показать, что на самом деле произвести расчет важных параметров для определения оптимальных характеристик циркуляционного насоса намного легче, чем может показаться на первый взгляд.

Циркуляционный насос выбирается по двум основным характеристикам: H — напору, выраженному в метрах; Q — расходу, выраженному в м 3 /час.

Определение напора циркуляционного насоса

Насос должен создавать необходимое давление, чтобы жидкость могла преодолевать все препятствия в системе отопления и заполнять радиаторы теплоносителем. При проектировании новой системы возможны точные расчеты с учетом сопротивления всех элементов нитки (труб, фитингов, арматуры и приборов); обычно необходимые сведения приводятся в паспортах на оборудование. Если такой информации нет, можно использовать формулу:

Расчет производительности циркуляционного насоса

Для того, чтобы вычислить производительность циркуляционного насоса Q pu , необходимо знать тепловую мощность Q, удельную теплоемкость теплоносителя Cw, его плотность p и разность температур конструкции Δt .

Подача насоса в расчетной точке вычисляется при помощи следующей формулы:

Символ формулы Описание
Q Тепловой поток или тепловая мощность. В этом случае речь идет о необходимой тепловой нагрузке или имеющейся мощности котла, которые должны соответствовать поставленной задаче.
p Плотность теплоносителя. В данном случае можно принять ≈ 1 кг/л. (вода).
Cw Удельная теплоемкость. Считается как 1,16 Вт*ч/кг*К (вода).
Δt Разница температур Δt зависит от вида отопительной системы: Δt=20 °С для стандартных двухтрубных систем; Δt=10 °С для низкотемпературных отопительных систем и теплых полов.

Пример расчета

Руководствуясь данным примером, вы сможете достоверно разобраться с тем, как совершать расчеты, чтобы определить параметры циркуляционного насоса. Помимо этого, представленный ниже эскиз имеет все необходимые данные для расчета производительности и высоты подъема.

Эскиз для примера расчета

Посмотрев на эскиз можно определить следующие значения:

  • ширина – 15 м;
  • длина – 20 м;
  • высота – 12 м;
  • год постройки – 1990;
  • ZF = 2,2 (фитинги + клапан термостата);
  • потери давления – 120Па/м;
  • потери тепла – 80 кВт;
  • температуры в системе отопления – 75/55.

Расчет напора Н

  1. R = 120 Па/м;
  2. L = (15+20+12)*2=94 м
  3. ZF = 2.2

Расчет потока Qpu

  1. Q = 80 кВт
  2. p = 1 кг/л
  3. Cw = 1,16 (Вт*ч)/(кг*К)
  4. Δt = 75C-55C = 20К

Наиболее важные данные для определения оптимальных параметров циркуляционного насоса успешно рассчитаны. На следующем этапе пользуясь каталогом, или проконсультировавшись с продавцами в магазине, необходимо определить группу насосов, в параметры которых попадает необходимая рабочая точка.

Для примера воспользуемся онлайн-программой компании Grundfos. Данное приложения является бесплатным. Более детально интерфейс и функционал программы будет рассмотрен далее.

Определение насоса через сайт Grundfos

Для того, чтобы иметь возможность выбрать насос на базе программной платформы, Grundfos запустила онлайн приложение WebCAPS. Как можно это сделать, Вы узнаете далее, а пока Вам необходимо перейти на сайт компании Grundfos WebCAPS и перейти в раздел «Подбор» насоса.

Далее задайте расчеты высоты подъема и потока, а в поле «Выбор варианта подбора по:» выберите пункт «Отопление». Есть еще много настроек, этих трех значений вполне достаточно, чтобы приложение смогло произвести расчеты и предложить оптимальный вариант насоса, который эффективно будет функционировать в данной системе. Затем нажмите кнопку «Начать подбор».

Готово. Grundfos предлагает варианты насосов на основании введенных данных. Для получения дополнительной информации о продукте, а также подробного описания всего функционала данного насоса, необходимо кликнуть на любой из насосов.

Определение рабочей точки

Теперь очень важно найти насос, который будет иметь функциональные параметры соответствующие допустимому диапазону рабочих значений. Называется набор таких параметров «рабочей точкой насоса». Она должна располагаться в середине красной области приведенного ниже графика.

На графике: оптимальная рабочая точка насоса

Области кривой характеристик насоса и что они значат:

  1. Область минимальной потребности системы в теплоносителе. Если рабочая точка находится в этой области, нужно выбрать меньший насос.
  2. Если рабочая точка находится в этом диапазоне, насос будет работать в оптимальном режиме до 98 % от общего рабочего времени.
  3. Максимальная нагрузка на систему отопления, рассчитанная на холодную пятидневку. Если рабочая точка находится в этом диапазоне, насос будет работать в оптимальном режиме только в течении нескольких самых холодных дней в году.

Трехскоростные насосы следует выбирать по графику второй скорости.

Для того, чтобы выяснить, какой насос будет более подходящим сравните характерные кривые друг с другом.

На фото: характеристическая кривая насоса MAGNA3 25-40

Для примера выбран MAGNA3 25-40. Здесь рабочая точка находится во второй трети характеристической кривой насоса. Так, можно предположить, что в основном насос будет работать в оптимальном режиме.

Как видите, с помощью этих нескольких шагов, можно выбрать насос, который будет идеально подходить для функционирования вашей отопительной системы.

Вывод

Используя данные советы можно с легкостью рассчитать напор и производительность насоса, а потом посредством приложения подобрать оптимальные модели. Однако, если вы не уверены в правильности своих расчетов, следует обратиться за консультацией к специалисту.

В нашем рейтинге лучших циркуляционных насосов, мы определили самые лучшие насосы по отзывам пользователей. А если вас интересуют насосы Grundfos, то мы подготовили обзор, как определить подделку от оригинала.

Подбор циркуляционного насоса для системы ГВС

Циркуляционные насосы в системах ГВС чрезвычайно популярны в Европе, их монтаж регламентирован специальными строительными нормами. В России пока еще не все осознали удобство рециркуляции горячей воды, полностью приближающее эффект от использования бойлера к центральному водоснабжению. Предлагаем вниманию читателей распространенную на Западе методику подбора циркуляционного насоса ГВС.

Читайте также  Как рассчитать УЗО по мощности?

Прежде всего, необходимо помнить, что циркуляционный и повысительных насосы — это совершенно разные приборы. Циркуляционный насос не изменяет статическое давление системы, а лишь обеспечивает перемещение теплоносителя по трубам.

Основной характеристикой любого циркуляционного насоса является рабочий график, который в случае варианта для рециркуляции в системе ГВС обычно состоит из одной кривой, поскольку он обычно не имеет переключающихся скоростей (рис. 1). Из графика видно, что по мере возрастания объема перекачиваемой жидкости напор падает. И наоборот, с ростом высоты подъема проток падает. В крайней точке с максимальным напором проток равен нулю, в точке с максимальным протоком нулю равен напор.

Физический смысл данной кривой очень удобно проиллюстрировать на примере открытой системы (рис. 1 и 2). Если длина трубы H будет равна Hmax, вода из нее вытекать не будет, поскольку при таком значении напора проток V равен нулю. Если укоротить трубу до длины H1, вода из нее будет вытекать со скоростью V1. Убрав трубу вовсе, мы получим проток на выходе Vmax, поскольку напор H = 0.

Описанная выше ситуация верна лишь для открытых систем. В закрытой системе создаваемый циркуляционным насосом напор призван не преодолевать высоту подъема жидкости, а компенсировать потери давления, вызванные сопротивлением труб и арматуры.

Рабочая точка циркуляционного контура ГВС

В циркуляционном контуре потери давления и объемный проток находятся в тесной взаимосвязи. Между потерями давления в системе, которые необходимо преобразовать в потери высоты напора, и напором насоса существует равновесие. Это означает, что потери системы совпадают с напором насоса в рабочей точке.

Поскольку каждому значению напора насоса соответствует единственная величина протока, объем циркулирующей в системе воды напрямую связан с сопротивлением трубопроводов и арматуры. Для определения рабочей точки необходимо наложить кривую контура ГВС на график циркуляционного насоса.

Нередки случаи, когда неизвестны ни кривая системы, ни ее рабочая точка. В этом случае необходимые значения потерь давления в системе и требуемого объема горячей воды для циркуляции можно определить арифметически путем расчета сопротивлений отдельных отрезков системы.

При этом необходимо учитывать, что добиться расчетных характеристик получится лишь в том случае, если все циркуляционные ветки, завязанные на один насос, будут гидравлически сбалансированы с помощью регулирующих вентилей, механических или термостатических. Целью балансировки является поддержание оптимальной скорости протока во всей системе независимо от длины труб и их диаметра с тем, чтобы не допустить чрезмерного понижения температуры воды, возвращающейся в бойлер. В идеале разница между подающей трубой на выходе и линией рециркуляции на входе в водонагреватель должна составлять для малых систем протяженностью менее 200 м и для больших (больше 200 м в длину).

В стандартном случае, при равных диаметрах всех циркуляционных трубопроводов, в ветках, расположенных ближе к насосу, сопротивление необходимо повысить до такой степени, чтобы оно соответствовало потерям давления в дальних ветках. Вдали от насоса, напротив, требуется создать повышенный проток, дабы циркулирующая вода не успела сильно остыть.

Диаметр циркуляционной трубы зависит от диаметра трубы подающей. Четких рекомендаций на сей счет российский СНиП «Внутренний водопровод и канализация», к сожалению, не имеет, поэтому обратимся к немецкому DIN 1988, ч. 3 (табл. 1).

Расчет рабочей точки

Теперь приступим к определению рабочей точки системы. Для этого нам требуются проток Vc и потери давления (напор) Δpc. Проток, который необходимо обеспечить, зависит от общего объема циркулирующей во всех ветках воды. Для предотвращения чрезмерного охлаждения жидкости насос должен обеспечивать такую скорость, чтобы вся вода, находящаяся в трубах, не успела сильно охладиться. Также следует учитывать, что максимальная скорость не должна превышать 0,5 м/с для медных труб и 1 м/с для труб из других материалов.

Напор определяется по сумме сопротивлений наиболее длинной циркуляционной ветки, если считать от присоединения циркуляционного трубопровода к подающей линии до входа в водонагреватель. Рабочая точка должна подбираться с таким расчетом, чтобы температура горячей воды в трубах не опускалась ниже °C для недопущения размножения бактерий.

Существуют разные методики расчета. Мы предлагаем здесь одну из них [1],достаточно простую, основанную на некоторых усредненных данных. Из недостатков этого способа можно лишь отметить возможность его использования для сравнительно небольших систем с диаметром циркуляционной трубы на разных участках от DN 10 до DN 20 и, соответственно, проходным сечением насоса не более 3/4&#698.

Вначале определим теплопотери в трубопроводах. Если данных от производителя труб и теплоизоляции не имеется, для хорошо утепленной трубы принимаем: qтп.неот = 11 Вт/с на 1 м трубы, проложенной в неотапливаемом помещении (например, подвал), а такжеqтп.от = 7 Вт/с на 1 м трубы, проложенной в отапливаемом помещении (например, сантехнический короб, кухня, ванная комната). Теплопотери арматуры (вентили, счетчики и т.п.) можно не учитывать ввиду их незначительного влияния на общий результат. Таким образом, общие потери тепла в системе составляют:

где Σlтп.неот и Σlтп.от — суммарная длина трубопроводов, проложенных в холодных и обогретых помещениях, соответственно.

Максимально допустимую разницу температур между подающей и циркуляционной линиями принимаем равной Δtтп = 2 K. По этим данным мы теперь можем вычислить требуемый расход:

где ρ — плотность воды, равная 1 кг/л; c — удельная теплоемкость воды, равная 1,2 Вт*ч/(кг*K). Так можно найти требуемую скорость воды в отдельных ветках.

Если ветка всего одна, то проток в ней равен общему расходу. Но так бывает редко, поскольку циркуляционная линия охватывает все водоразборные точки, следовательно, изобилует ответвлениями.

В узловых пунктах проток делится на основной проток и дополнительный. Проток в основной части равен:

а в дополнительной:

Напорная составляющая рабочей точки определяется, как указывалось ранее, по самой длинной ветке с коэффициентом на изгибы и стыки K = Чем более извилистая труба, тем большее значение коэффициента следует принять. Проток в этом случае в каждом узловом пункте делится на основной и дополнительный. В случае, если после разветвления ни одна из труб не идет непосредственно к водоразборной точке, дополнительной считается та, объем воды в которой меньше. Также учитывают сопротивление различной арматуры, не вошедшей в расчет теплопотерь — вентили, клапаны и пр.:

Рассчитанные таким образом напор и проток представляют собой рабочую точку системы. Рассмотрим пример (рис. 3). В табл. 2 указаны основные характеристики системы горячего водоснабжения трехэтажного здания с пятью стояками: длина металлопластиковых трубопроводов, проложенных в подвале и в обогреваемых комнатах, внутренний диаметр труб, тип протока при делении в узловых точках, а также рассчитаны теплопотери в каждом отрезке. После этого находим общий проток по (2):

Расчет требуемого расхода на каждом отрезке трубы на основании определенных в табл. 2 теплопотерь приведен в табл. 3. Теплопотери основных и дополнительных отрезков просуммированы в колонке «Общие теплопотери», а соответствующие значения протока вычислены по формулам (3) и (4).

В табл. 4 на основании СП [2] рассчитаны скорость движения теплоносителя и потери давления на трение (если трубы пластиковые или медные, то пользоваться нужно СП [3] или СП [4], соответственно).Самая длинная ветка: потери давления в ней составляют величину 1271,27 Па. По формуле (6) найдем напор в рабочей точке:

Δpc = KΣlтрRтр + ΣRарм = 1,4 × 1271,27 + 200 = 1979,78 Па,

при K = 1,4 и Rарм = 200 Па. В пересчете на метры напора 1979,78 Па = 0,2 м.

По имеющимся в табл. 4 данным необходимо также настроить регулировочные вентили.

Итак, для данной системы подходит насос с рабочей точкой Vc = 189,17 л/ч, Δpc = 0,2 Па. С такими незначительными параметрами без труда справится практически любой из имеющихся на рынке циркуляционных насосов ГВС.

1. Брошюра VORTEX Brauchwasserpumpen. Technische Broschu..re. Trinkwasserzirkulation mit VORTEX Pumpen // 09de0090 11/09.

2. СП Проектирование и монтаж трубопроводов систем отопления зданий с использованием метало-полимерных труб.

3. СП Проектирование и монтаж трубопроводов из полипропилена «рандом сополимер».

4. СП Проектирование и монтаж трубопроводов внутренних систем водоснабжения и отопления зданий из медных труб.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: