Как рассчитать радиатор для светодиода? - ELSTROIKOMPLEKT.RU

Как рассчитать радиатор для светодиода?

Термоклей для светодиодов – алюминиевый радиатор своими руками

Устройство и принципы функционирования радиатора для светодиодов. Правила выбора материала и площади детали. Делаем радиатор своими руками легко и быстро.

Распространенное мнение, что светодиоды не нагреваются – заблуждение. Возникло оно потому, что маломощные светодиоды на ощупь не горячие. Все дело в то, что они оснащены отводчиками тепла – радиаторами.

Принцип действия теплоотвода

Главным потребителем тепла, выделяемого светодиодом, является окружающий воздух. Его холодные частицы подходят к нагретой поверхности теплообменника (радиатора), нагреваются и устремляются вверх, освобождая место новым холодным массам.

При столкновении с другими молекулами происходит распределение (рассеивание) тепла. Чем больше площадь поверхности радиатора, тем интенсивнее он передаст тепло от светодиода воздуху.

Подробнее о принципах работы светодиодов читайте здесь.

Количество поглощенного воздушной массой тепла с единицы площади не зависит от материала радиатора: эффективность естественного «теплового насоса» ограничено его физическими свойствами.

Материалы для изготовления

Радиаторы для охлаждения светодиодов различаются по конструкции и материалу.

Окружающий воздух может принять не более 5-10 Вт с единичной поверхности. При выборе материала для изготовления радиатора следует принять во внимание выполнение следующего условия: теплопроводность его должна быть не менее 5-10 Вт. Материалы с меньшим параметром не смогут обеспечить передачу всего тепла, которое может принять воздух.

Теплопроводность выше 10 Вт будет технически избыточной, что повлечет за собой неоправданные финансовые затраты без увеличения эффективности радиатора.

Для изготовления радиаторов традиционно используют алюминий, медь или керамику. В последнее время появились изделия, выполненные из теплорассеивающих пластмасс.

Рекомендуем Вам также более подробно прочитать про импульсный блок питания своими руками.

Алюминиевые

Основным недостатком алюминиевого радиатора является многослойность конструкции. Это неизбежно приводит к возникновению переходных тепловых сопротивлений, преодолевать которые приходится с помощью применения дополнительных теплопроводящих материалов:

  • клейких веществ;
  • изолирующих пластин;
  • материалов, заполняющих воздушные промежутки и пр.

Алюминиевые радиаторы встречаются чаще всего: они хорошо прессуются и вполне сносно справляется с отводом тепла.

Медные

Медь обладает большей теплопроводностью, чем алюминий, поэтому в некоторых случаях ее использование для изготовления радиаторов оправдано. В целом же данный материал уступает алюминию в плане легкости конструкции и технологичности (медь – менее податливый металл).

Изготовление медного радиатора методом прессования – наиболее экономичным – невозможно. А обработка резанием дает большой процент отходов дорогостоящего материала.

Керамические

Одним из наиболее удачных вариантов теплоотводчика является керамическая подложка, на которую предварительно наносятся токоведущие трассы. Непосредственно к ним и подпаиваются светодиоды. Такая конструкция позволяет отвести в два раза больше тепла по сравнению с металлическими радиаторами.

Пластмассы теплорассеивающие

Все чаще появляется информация о перспективах замены металла и керамики на терморассеивающую пластмассу. Интерес к этому материалу понятен: стоит пластмасса намного дешевле алюминия, а ее технологичность намного выше. Однако теплопроводность обычной пластмассы не превышает 0,1-0,2 Вт/м.К. Добиться приемлемой теплопроводности пластмассы удается за счет применения различных наполнителей.

При замене алюминиевого радиатора на пластмассовый (равной величины) температура в зоне подвода температур возрастает всего на 4-5%. Учитывая, что теплопроводность теплорассеивающей пластмассы намного меньше алюминия (8 Вт/м.К против 220-180 Вт/м.К), можно сделать вывод: пластический материал вполне конкурентоспособен.

Таблица – Сравнение теплопроводности различных материалов
Материал Теплопроводность, Вт/м.К
Алюминий 120-240
Медь 401
Керамика 15-40; 100-200
Теплорассеивающие пластмассы 1 – 40
Термопаста 0,1 – 10

Конструктивные особенности

Конструктивные радиаторы делятся на две группы:

  • игольчатые;
  • ребристые.

Первый тип, в основном, применяется для естественного охлаждения светодиодов, второй – для принудительного. При равных габаритных размерах пассивный игольчатый радиатор на 70 процентов эффективнее ребристого.

Но это не значит, что пластинчатые (ребристые) радиаторы годятся только для работы в паре с вентилятором. В зависимости от геометрических размеров, они могут применяться и для пассивного охлаждения.

Обратите внимание на расстояние между пластинами (или иглами): если оно составляет 4 мм – изделие предназначено для естественного отвода тепла, если зазор между элементами радиатора всего 2 мм – его необходимо комплектовать вентилятором.

Оба типа радиаторов в поперечном сечении могут быть квадратными, прямоугольными или круглыми.

Рекомендуем Вам также ознакомиться с электромагнитным устройством – дроссель для ламп.

Расчет площади радиатора

Методики точного расчета параметров радиатора предполагают учет множество факторов:

  • параметры окружающего воздуха;
  • площадь рассеивания;
  • конфигурацию радиатора;
  • свойства материала, из которого изготовлен теплообменник.

Но все эти тонкости нужны для проектировщика, разрабатывающего теплоотвод. Радиолюбители чаще всего используют старые радиаторы, взятые из отслужившей свой срок радиоаппаратуры. Все, что им надо знать – какова максимальная рассеиваемая мощность теплообменника.

Подсчитать этот параметр можно по формуле:

Ф = а х Sх (Т1 – Т2), где

  • Ф – тепловой поток (Вт);
  • S – площадь поверхности радиатора (сумма площадей всех ребер или иголок и подложки в кв. м). Подсчитывая площадь, следует иметь в виду, что ребро или пластина имеет две поверхности отвода тепла. То есть площадь теплоотвода прямоугольника площадью 1 см2 составит 2 см2. Поверхность иглы рассчитывается как длина окружности (π х D), умноженная на ее высоту;
  • Т1 – температура теплоотводящей среды (граничной), К;
  • Т2 – температура нагретой поверхности, К;
  • а – коэффициент теплоотдачи. Для неполированных поверхностей принимается равным 6-8 Вт/(м2К).

Есть еще одна упрощенная формула, полученная экспериментальным путем, по которой можно рассчитать необходимую площадь радиатора:

S = [22 – (M x 1.5)] x W, где

  • S – площадь теплообменника;
  • W – подведенная мощность (Вт);
  • M – незадействованная мощность светодиода.

Для ребристых радиаторов, изготовленных из алюминия, можно воспользоваться примерными данными, представленными тайваньскими специалистами:

  • 1 Вт – от 10 до 15 см2;
  • 3 Вт – от 30 до 50 см2;
  • 10 Вт – около 1000 см2;
  • 60 Вт – от 7000 до 73000 см2.

Однако следует учесть, что вышеприведенные данные неточные, так как они указываются в диапазонах с достаточно большим разбегом. К тому же определены данные величины для климата Тайваня. Их можно использовать только для проведения предварительных расчетов.

Получить наиболее достоверный ответ об оптимальном способе расчета площади радиатора можно на следующем видео:

Сделать своими руками

Радиолюбители редко берутся за изготовление радиаторов, поскольку этот элемент – вещь ответственная, напрямую влияющая на долговечность светодиода. Но в жизни бывают разные ситуации, когда приходится мастерить теплоотводчик из подручных средств.

Рекомендуем Вам также более подробно прочитать про изготовление диммера своими руками.

Вариант 1

Самая простая конструкция самодельного радиатора – круг, вырезанный из листа алюминия с выполненными на нем надрезами. Полученные сектора немного отгибаются (получается нечто, похожее на крыльчатку вентилятора).

По осям радиатора отгибаются 4 усика для крепления конструкции к корпусу лампы. Светодиод можно закрепить через термопасту саморезами.

Вариант 2

Радиатор для светодиода можно изготовить своими руками из куска трубы прямоугольного сечения и алюминиевого профиля.

  • труба 30х15х1,5;
  • пресс-шайба диаметром 16 мм;
  • термоклей;
  • термопаста КТП 8;
  • профиль 265 (Ш-образный);
  • саморезы.

В трубе для улучшения конвекции сверлятся три отверстия диаметром 8 мм, а в профиле – отверстия диаметром 3,8 мм – для его крепления саморезами.

Светодиоды приклеиваются к трубе – основанию радиатора – при помощи термоклея.

В местах соединения деталей радиатора наносится слой термопасты КТП 8. Затем производится сборка конструкции с помощью саморезов с пресс шайбой.

Читайте также  Как рассчитать освещенность помещения светодиодными лампами?

Способы крепления светодиодов к радиатору

Светодиоды прикрепляют к радиаторам двумя способами:

  • механическим;
  • приклеиванием.

Приклеить светодиод можно на термоклей. Для этого на металлическую поверхность наносится капелька клеящей массы, затем на нее садится светодиод.

Для получения прочного соединения светодиод необходимо на несколько часов придавить небольшим грузом – до полого высыхания клея.

Однако большинство радиолюбителей предпочитают механическое крепление светодиодов. Сейчас выпускаются специальные панели, с помощью которых можно быстро и надежно смонтировать светодиод.

В некоторых моделях предусмотрены зажимы для вторичной оптики. Монтаж выполняется просто: на радиатор устанавливается светодиод, на него – панелька, которая крепится к основанию саморезами.

Но не только радиаторы для светодиода можно изготовить самостоятельно. Любителям заниматься растениями рекомендуем ознакомиться со светодиодной лампой для рассады своими руками.

Качественное охлаждение светодиода является залогом долговечности светодиода. Поэтому к подбору радиатора следует подходить со всей серьезностью. Лучше всего использовать готовые теплообменники: они продаются в магазинах радиотоваров. Стоят радиаторы недешево, зато легко монтируются и светодиод защищает от избытка тепла надежнее.

Расчет и изготовление радиатора для светодиодов

Светодиоды считаются одним из наиболее эффективных источников света, их световой поток доходит до фантастических значений, порядка 100 Лм/Вт. Люминесцентные лампы выдают в два раза меньше, а именно 50-70 Лм/Вт. Однако для долгой работы светодиода нужно выдерживать их тепловые режимы. Для этого применяются фирменные или самодельные радиаторы для светодиодов.

Зачем диодам нужно охлаждение?

Несмотря на высокие показатели светоотдачи светодиоды излучают света примерно на треть потребляемой мощности, а остальное выделяется в тепло. Если диод перегревается структура его кристалла нарушается, начинает деградировать, световой поток снижается, а степень нагрева лавинообразно увеличивается.

Причины перегрева светодиодов:

  • Слишком большой ток;
  • плохая стабилизация питающего напряжения;
  • плохое охлаждение.

Первые две причины решаются применением качественного источника питания для светодиодов. Такие источники часто называют драйвер для светодиода. Их особенность заключается не в стабилизации напряжения, а именно в стабилизации выходного тока.

Дело в том, что при перегреве сопротивление светодиода снижается и ток, протекающий через него, возрастает. Если в качестве блока питания использовать стабилизатор напряжения – процесс получится лавинообразным: больше нагрев – больше ток, а больший ток – это больший нагрев и так по кругу.

Стабилизируя ток, вы отчасти стабилизируете и температуру кристалла. Третья причина – это плохое охлаждение для светодиодов. Рассмотрим этот вопрос подробнее.

Решаем проблему охлаждения

Маломощные светодиоды, например: 3528, 5050 и им подобные отдают тепло за счёт своих контактов, да и мощность у таких экземпляров гораздо меньше. Когда мощность прибора возрастает, появляется вопрос отвода лишнего тепла. Для этого применяют системы пассивного или активного охлаждения.

Пассивное охлаждение – это обычный радиатор, выполненный из меди или алюминия. О преимуществах материалов для охлаждения ходят споры. Достоинством такого типа охлаждение является – отсутствие шума и практически полное отсутствие необходимости его обслуживания.

Установка LED с пассивным охлаждением в точечный светильник

Активная система охлаждения – это способ охлаждения с применением внешней силы для улучшения отвода тепла. В качестве простейшей системы можно рассмотреть связку радиатор + кулер. Преимуществом является то, что такая система может быть значительно компактнее чем пассивная, до 10 раз. Недостатком — шум от кулера и необходимость его смазки.

Как подобрать радиатор?

Расчет радиатора для светодиода процесс не совсем простой, тем более для начинающего. Для его выполнения нужно знать тепловое сопротивление кристалла, а также перехода кристалл-подложка, подложка-радиатор, радиатор-воздух. Чтобы упростить решение многие пользуются соотношением 20-30 см 2 /Вт.

Это значит, что на каждый ватт LED света нужно использовать радиатор площадью порядка 30 см 2 .

Естественно, такое решение не является уникальным. Если ваша осветительная конструкция будет использоваться в подвальном прохладном помещении можно взять меньшую площадь, но при этом убедитесь, что температура светодиода в пределах нормы.

Предыдущие поколения LED комфортно чувствовали себя при температуре кристалла 50-70 градусов, новые светодиоды могут переноситьтемпературу до 100 градусов. Проще всего определить – прикоснуться рукой, если рука едва терпит – всё в порядке, а если кристалл может вас обжечь – принимайте решение для улучшения условий его работы.

Считаем площадь

Допустим мы имеем светильник мощностью 3Вт. Площадь радиатора для светодиода 3Вт, согласно описанному выше правилу будет равна 70-100см 2 . С первого взгляда может показаться большой.

Но рассмотрим расчет площади радиатора для светодиода. Для плоского пластинчатого радиатора площадь считается:

a * b * 2 = S

Где a, b – длины сторон пластины, S – полная площадь радиатора.

Откуда взялся коэффициент 2? Дело в том, что у такого радиатора две стороны и они равносильно отдают тепло окружающей среде, поэтому полная полезная площадь радиатора равна площади каждой из его сторон. Т.е. в нашем случае нужна пластина с размерами сторон 5*10см.

Для ребристого радиатора полная площадь равна – площади основания и площадям каждого из рёбер.

Охлаждение своими руками

Простейшим примером радиатора будет «солнышко», вырезанное из жести или листа алюминия. Такой радиатор может охладить 1-3Вт светодиодов. Скрутив два таких листа между собой через термопасту, можно увеличить площадь теплоотдачи.

Это банальный радиатор из подручных средств, он получается довольно тонким и использовать его для более серьёзных светильников нельзя.

Сделать своими руками радиатор для светодиода на 10W таким образом будет невозможно. Поэтому можно применить для таких мощных источников света радиатор от центрального процессора компьютера.

Если если оставить кулер, активное охлаждение светодиодов позволит использовать и более мощные LED. Такое решение создаст дополнительный шум от вентилятора и потребует дополнительного питания, плюс периодическое ТО кулера.

Площадь радиатора для 10Вт светодиода будет довольно большой – порядка 300см 2 . Хорошим решением будет использование готовых алюминиевых изделий. В строительном или хозяйственном магазине вы можете приобрести алюминиевый профиль и использовать его для охлаждения мощных светодиодов.

Сделав сборку нужной площади из таких профилей, вы можете получить неплохое охлождение, не забудьте все стыки промазать хотя бы тонким слоем термопасты. Стоит сказать, что есть специальный профиль для охлаждения, который выпускается промышленно самых разнообразных видов.

Если у вас нет возможности сделать радиатор охлаждения светодиодов своими руками вы можете поискать подходящие экземпляры в старой электронной аппаратуре, даже в компьютере. На материнской плате расположены несколько. Они нужны для охлаждения чипсетов и силовых ключей цепей питания. Отличный пример такого решения изображен на фото ниже. Их площадь обычно от 20 до 60см 2 . Что позволяет охлаждать светодиод мощностью 1-3 Вт.

Еще один интересный вариант изготовления радиатора из листов алюминия. Такой метод позволит набрать практически любую необходимую площадь охлаждения. Смотрим видео:

Как закрепить светодиод

Существует два основных способа крепления, рассмотрим оба из них.

Первый способ – это механический. Он заключается в том, чтобы прикрутить светодиод саморезами или другим крепежом к радиатору, для этого нужна специальная подложка типа «звезда» (см. star). К ней припаивается диод, предварительно смазанный термопастой.

Читайте также  Как рассчитать катушку тесла?

На «пузе» у светодиода есть специальный контактный пятачок диаметром как сигарета типа slim. После чего к этой подложке припаиваются питающие провода, и она прикручивается к радиатору. Некоторые светодиоды поступают в продажу уже закреплённые на переходной пластине, как на фото.

Второй способ – это клеевой. Он пригоден как и для монтажа через пластину, так и без неё. Но метал к металлу крепить не всегда получается, чем приклеить светодиод к радиатору? Для этого нужно приобрести специальный термопроводящий клей. Он может встречаться как в хозяйственной, так и в магазине радиодеталей.

Выглядит результат такого крепления следующим образом.

Выводы

Как вы могли убедится радиатор для светодиода можно найти как в магазине, так и порывшись в своих старых приборах, или просто в залежах всяких мелочей. Не обязательно использовать специальное охлаждение.

Площадь радиатора зависит от ряда условий, таких как влажность, температура окружающего воздуха и материал радиатора, но при бытовом решении ими пренебрегают.

Всегда уделяйте особое внимание проверке тепловых режимов ваших устройств. Таким образом вы обеспечите их надёжность и долговечность. Можно определять температуру рукой, но лучше приобретите мультиметр с возможностью её измерения.

Как рассчитать радиатор для светодиода?

Есть примерные данные Тайваньских специалистов для алюминиевых ребристых радиаторов:

  • 1Вт 10-15кв/см
  • 3Вт 30-50кв/см
  • 6Вт 150-250кв/см
  • 15Вт 900-1000кв/см
  • 24Вт 2000-2200кв/см
  • 60Вт 7000-73000кв/см

Эти данные для пассивного охлаждения светодиодов.

Но эти данные были высчитаны для их климатических условий и все же они примерны т.к. значения не точны, есть разбег в площади.

Для расчета нужно знать следующие параметры:

1. Нужно понимать какой тип радиатора вы собралисьиспользовать:

пластинчатый, штыревой, ребристый

  • Штыревой (игольчатый)


2. Также нужно учитывать материал, из которого состоит радиатор. Чаще всего это медь или алюминий, но в последнее время появились и гибриды.


У гибридов идет встроенная медная пластина, которая соприкасается с рабочим элементом(элементом который требует охлаждения, в данном случае светодиод), далее алюминий.

3. Радиатор рассчитывается не по площади поверхности, а по полезной площади рассеивания.

4. Следующим фактором является, каким способом происходит теплоотвод от рабочего элемента на радиатор, т.е. применена термопаста или термоскотч, или же просто припаян.

5. Полезным будет знать сопротивление кристалл – корпус светодиода

6. Будет ли дополнительное охлаждение радиатора, и какое оно будет:

  • С помощью кулера (небольшого вентилятора):

  • Водяное охлаждение:


Конечно водяное охлаждение будет более эффективно, нежели просто кулером, но и охлаждение им в зависимости от мощности позволит вам снизить площадь радиатора в 3-5 раз. А с водяным могут возникнуть другие проблемы, как не герметичность системы например.

7. Так же необходимо учитывать и подводимую мощность, т.е. если светодиод будет работать на максимуме своих возможностей, то и в охлаждении он будет нуждаться сильнее, избыточная мощность вовсе будет переходить в тепло, если же в нагрузку снизить, допустим, в половину, то и перегрев будет намного ниже.

Так же следует учитывать место расположения устройства в помещении или на улице оно будет эксплуатироваться.

Так же в интернете есть формула, полученная экспериментальным путем, возможна будет полезна:

S охладителя = (22-(M х 1.5)) х W
S – площадь радиатора (охладителя)
W – подведенная мощность в ваттах
M – оставшаяся не задействованная мощность светодиода

При полученной площади не требуется дополнительного устройства охлаждающего радиатор, охлаждение происходит естественным путем и даст хороший теплоотвод в любых условиях.
Формула применима для алюминиевого радиатора. Для медного же площадь будет снижена почти в 2 раза.

Теплопроводность в Вт / м * °C различных материалов

Светлый угол — светодиоды

. форум о светодиодах и свете

  • Список форумовСВЕТОДИОДЫ — теорияТеоретические аспекты использования светодиодов
  • Изменить размер шрифта
  • Для печати
  • FAQ
  • Регистрация
  • Вход

Примерный расчет площади радиатора

Примерный расчет площади радиатора

alexbor15 » 03 янв 2012, 01:01

Re: Примерный расчет площади радиатора

VokaS » 03 янв 2012, 02:29

Re: Примерный расчет площади радиатора

vlad54 » 03 янв 2012, 02:44

Re: Примерный расчет площади радиатора

Батяня » 03 янв 2012, 12:52

Re: Примерный расчет площади радиатора

monia » 03 янв 2012, 14:04

20-30 см2 на Ватт это если ровная пластина с равномерно смонтированными диодами

что касается ребристых радиаторов то там все гораздо сложней
с ребристыми доходит до 70см2 на/вт

Re: Примерный расчет площади радиатора

MainFrame » 03 янв 2012, 14:20

Re: Примерный расчет площади радиатора

monia » 03 янв 2012, 15:06

это уже крайности.

речь идет о максимальной эффективности использования радиатора

Re: Примерный расчет площади радиатора

soratnik » 04 янв 2012, 16:36

monia писал(а): это уже крайности.

речь идет о максимальной эффективности использования радиатора

Для максимальной эфективности радиатора нужно учитывать его пространственное положение.
Этот параметр у вас учитывается

Re: Примерный расчет площади радиатора

monia » 04 янв 2012, 21:10

monia писал(а): это уже крайности.

речь идет о максимальной эффективности использования радиатора

Для максимальной эфективности радиатора нужно учитывать его пространственное положение.
Этот параметр у вас учитывается

Re: Примерный расчет площади радиатора

limp507 » 26 фев 2012, 22:55

monia писал(а): 20-30 см2 на Ватт это если ровная пластина с равномерно смонтированными диодами

что касается ребристых радиаторов то там все гораздо сложней
с ребристыми доходит до 70см2 на/вт

Интересно откуда такая цифра 20-30 см2?

Это примерно квадрат алюминия 5*5 см на 1 Вт! Как же стандартные лампы с цоколем Е27 идут как минимум с 3 — мя светодиодами одноватниками, и там максимум диаметр радиатора 5 см! Тем более они рядом расположены друг относительно друга! Как же тогда она работает?

Интересно а какая же пластина алюминия нужна для 3HPD-3, если он работает на свои 3 Вт! По Вашим расчетам примерно 90 см2, т.е квадрат 10*10 см!
Что-то на форуме никто такие параметры радиатора не придерживается. Как быть ?

Кто разяснит более подробно методику выбора радиатора и расстояние расположения нескольких светодиодов друг относительно друга, буду благодарен!

Re: Примерный расчет площади радиатора

Andrew46 » 26 фев 2012, 23:39

Вот здесь посмотрите и попробуйте разобраться,что и где является радиатором и как работает! http://alled.ru/rubicon-1-led-lamp-diy-kit.html

Re: Примерный расчет площади радиатора

limp507 » 27 фев 2012, 00:34

Здесь обьемный радиатор, пример не корректный, там явно не по наружному диаметру идет отдача тепла.

Re: Примерный расчет площади радиатора

Лександр » 27 фев 2012, 00:39

Re: Примерный расчет площади радиатора

Andrew46 » 27 фев 2012, 00:45

Re: Примерный расчет площади радиатора

Zhiv » 27 фев 2012, 13:06

Как подобрать и установить радиатор для светодиодов?

Светодиодные лампы считаются наиболее экономичными и эффективными источниками света. При правильной эксплуатации они служат не менее 50 тыс. часов. Считается, что такие элементы не нагреваются, однако это не так. Чтобы осветительный прибор служил долго, устанавливают радиаторы для светодиодов. Их покупают в готовом виде или делают самостоятельно.

Читайте также  Как рассчитать мощность генератора для частного дома?

Особенности применения радиатора для светодиодов

Полупроводниковые устройства не имеют 100%-ного КПД. Часть получаемой энергии преобразуется в тепло, которое выделяется в окружающую среду. Величина КПД определяется типом диода. Например, слаботочные приборы имеют эффективность 10-15%. У белых светодиодов КПД составляет 30%. Остальная энергия преобразуется в тепло.

При продолжительной работе температура элемента повышается. Для рассеивания лишнего тепла применяется радиатор. В маломощных системах его роль играют выводы. В мощные приборы устанавливается дополнительный теплоотвод. Такая технология увеличивает срок службы в 1,5-2 раза.

Разновидности радиаторов

Для отведения тепла применяется 3 типа устройств:

  • стержневые;
  • пластинчатые;
  • ребристые.

Основания радиаторов имеют форму круга, квадрата или прямоугольника. При выборе учитывают толщину устройства. Основание отвечает за получение и рассеивание тепла. Охлаждающий радиатор может функционировать с естественной или искусственной вентиляцией. В первом случае расстояние между ребрами должно составлять более 4 мм. При наличии принудительной вентиляции его можно уменьшить до 1 мм.

Особенности конструкции

Приборы делятся на 2 типа: ребристые и игольчатые. Второй вариант используют для естественного отведения тепла, второй – для искусственного. При равных размерах игольчатая конструкция считается более эффективной. Однако из этого не следует, что пластинчатые устройства нормально работают только в паре с кулерами. С учетом размера они могут использоваться и для пассивного охлаждения.

Из чего изготавливаются?

Для охлаждения светодиодных элементов мощностью более 10W применяют алюминиевые радиаторы. Монтаж медного радиатора оправдан при изготовлении компактного светильника.

Из алюминия

Показатель теплопроводности этого металла составляет 200-235 Вт/м*К. Этот коэффициент у алюминия в 2 раза выше, чем у латуни и стали. Кроме того, материал легко поддается обработке. Для повышения теплопроводности радиаторную конструкцию анодируют (окрашивают в черный цвет).

Из керамики

Для производства радиаторов этот материал стал использоваться недавно. Керамика имеет среднюю теплопроводность, однако характеризуется низкой шероховатостью и не проводит электрический ток.

Из меди

Коэффициент теплопроводности металла достигает 400 Вт/м*К. В этом плане материал уступает только серебру. Однако медные радиаторы выпускаются намного реже, чем алюминиевые.

  • большим весом конструкции;
  • сложностью механической обработки;
  • высокой стоимостью материала.

Использование меди повышает себестоимость осветительного прибора, делая его неконкурентоспособным.

Из термопластика

Теплопроводные полимеры уступают алюминию, однако имеют меньшие вес и стоимость. Производители светодиодных приборов используют материал для создания корпусов. При изготовлении светильников мощностью более 10 Вт термопластик не может конкурировать с металлами.

Охлаждение мощных светодиодов

Для отведения тепла применяются принудительные или естественные системы. Использование второго варианта при изготовлении осветительных приборов мощностью более 50W нецелесообразно. Габариты радиаторов достигают 20-30 см, вес – 0,5 кг. В таком случае устройства совмещают с компактными вентиляторами. Прибор требует подведения питающего кабеля. Кроме того, светильник снабжается системой аварийного отключения, которая срабатывает в случае поломки вентилятора.

Существует и другой метод охлаждения мощных светодиодных элементов – установка готового устройства SynJet.

Главными преимуществами модуля являются:

  • увеличенная производительность;
  • минимальное тепловое сопротивление;
  • небольшой вес.

Габариты устройства зависят от модели. Недостатками считаются высокая цена и необходимость подключения дополнительного источника питания. Обеспечить самый лучший тепловой контакт модуля с подложкой диода невозможно, поэтому поверхности покрывают термопастой. Качественный состав характеризуется низкой вязкостью, неспособностью к затвердеванию.

Как рассчитать площадь?

Применяют 2 способа вычисления параметра:

  • проектный, при котором определяют геометрические размеры конструкции при требуемом температурном режиме;
  • проверочный, предполагающий выполнение расчетов в обратной последовательности (при данных размерах радиатора вычисляют количество тепла, которое конструкция способна рассеивать).

Применение того или иного способа зависит от имеющихся исходных параметров. Точный расчет является более сложной задачей.

Точный расчет

Около 70% потребляемой мощности преобразуется в тепло. При расчете параметров радиатора нужно знать количество рассеиваемой энергии.

Для его вычисления применяют формулу Т=k*UПР*IПР, где:

  • PТ – преобразующаяся в тепло мощность (Вт);
  • UПР – снижение напряжения при прохождении номинального тока по светодиоду (В);
  • k – процент энергии, превращающейся в тепло (для мощных приборов составляет 0,7-0,8);
  • IПР – номинальный ток (А).

На следующем этапе рассчитывают количество препятствий, находящихся на пути теплового потока. Каждый из таких объектов является сопротивлением, обозначаемым символами Rθ.

Систему охлаждения представляют как схему из параллельно-последовательного включения Rθja= Rθjc+ Rθcs+ Rθsa, где:

  • Rθjc – сопротивление корпус-переход;
  • Rθsa – радиатор-воздух;
  • Rθcs – корпус-теплоотвод.

Если диод монтируется на печатную плату с использованием термопасты, их сопротивления также учитывают. Для вычисления значения Rθsa последовательно используют несколько формул.

Сначала – Rθja=(Tj-Ta)/Pт, где

  • Rθja – сопротивление переход-воздух;
  • Tj – наибольшая температура (справочное значение);
  • Ta – показатель нагрева расположенных возле радиатора областей.

На втором этапе применяют формулу Rθsa= Rθja-Rθjc-Rθcs, где Rθjc и Rθcs – справочные величины. По рассчитанному Rθsa выбирают радиатор. Заявленный производителем параметр должен быть меньше полученного.

Приблизительный

Некоторые домашние мастера применяют радиаторы, извлеченные из старых электронных устройств. Для подсчета рассеиваемой такими деталями энергии используют формулу, не отличающуюся высокой точностью вычислений: Rθsa=50/√S, где S – площадь поверхности радиатора. Подставляя значение, полученное с учетом ребер и боковых граней, рассчитывают тепловое сопротивление.

Максимальную мощность вычисляют по формуле Pт=(Tj-Ta)/Rja. При расчете не учитывают множество факторов, отражающихся на работе системы охлаждения, – температурный режим светодиодов, направление ребер радиатора. Поэтому полученное значение умножают на 0,7.

Как сделать радиатор для светодиода своими руками?

Собрать простую алюминиевую конструкцию для маломощного осветительного прибора несложно. Для этого потребуется металлическая лента толщиной 2-3 мм.

Радиатор изготавливают так:

  1. Делают на пластине надрезы с шагом 5 мм. Полученные сектора загибают, придавая конструкции вид крыльчатки.
  2. Формируют отверстия для фиксации радиатора.

Сделать радиатор для светильника мощностью 10 Вт сложнее. Для этого потребуется 1 м алюминиевого профиля толщиной 2 мм, шириной 2 см. Сначала полосу разрезают на 8 частей. Отрезки укладывают друг на друга, делают сквозное отверстие, закрепляют элементы болтом с гайкой. Одну грань шлифуют для фиксации светодиодной ленты. Разгибают пластины в разные стороны. В местах установки модуля проделывают отверстия. Обрабатывают самодельный радиатор термоклеем, устанавливают матрицу, которую закрепляют саморезами.

Как крепить светодиоды к радиатору?

Применяют 2 способа фиксации элементов:

  1. Механический. Диоды прикручивают саморезами или болтами с использованием специальных подложек. К ним припаивают осветительные элементы, обработанные термопастой. Светодиод снабжен контактной площадкой диаметром около 5 мм. Некоторые элементы продаются прикрепленными к переходной подложке.
  2. Клеевой. Выполняется как с использованием пластины, так и без нее. Для этого приобретают теплопроводный клей.

Первый способ считается более надежным.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: