Как рассчитать ток по мощности трансформатора? - ELSTROIKOMPLEKT.RU

Как рассчитать ток по мощности трансформатора?

Силовой трансформатор: формулы для определения мощности, тока, uk%

Силовой трансформатор представляет собой сложную систему, которая состоит из большого числа других сложных систем. И для описания трансформатора придумали определенные параметры, которые разнятся от машины к машине и служат для классификации и упорядочивания.

Разберем основные параметры, которые могут пригодиться при расчетах, связанных с силовыми трансформаторами. Данные параметры должны быть указаны в технических условиях или стандартах на тип или группу трансформаторов (требование ГОСТ 11677-85). Сами определения этих параметров приведены в ГОСТ 16110.

Номинальная мощность трансформатора — указанное на паспортной табличке трансформатора значение полной мощности на основном ответвлении, которое гарантируется производителем при установке в номинальном месте, охлаждающей среды и при работе при номинальной частоте и напряжении обмотки.

Числовое значение мощности в кВА изначально выбирается из ряда по ГОСТ 9680-77. На изображении ниже приведен этот ряд.

Значения в скобках принимаются для экспортных или специальных трансформаторов.

Если по своим характеристикам оборудование может работать при разных значениях мощностей (например, при различных системах охлаждения), то за номинальное значение мощности принимается наибольшее из них.

К силовым трансформаторам относятся:

  • трехфазные и многофазные мощностью более 6,3 кВА
  • однофазные — более 5 кВА

Номинальное напряжение обмотки — напряжение между зажимами трансформатора, указанное на паспортной табличке, на холостом ходу.

Номинальный ток обмотки — ток, определяемый мощностью, напряжением обмотки и множителем, учитывающим число фаз. То есть если трансформатор двухобмоточный, то мы будем иметь ток с низкой стороны и ток с высокой стороны. Или же ток, приведенный к низкой или высокой стороне.

Напряжение короткого замыкания — дадим два определения.

Приведенное к расчетной температуре линейное напряжение, которое нужно подвести при номинальной частоте к линейным зажимам одной из обмоток пары, чтобы в этой обмотке установился ток, соответствующий меньшей из номинальных мощностей обмоток пары при замкнутой накоротко второй обмотке пары и остальных основных обмотках, не замкнутых на внешние цепи

Взято из ГОСТ 16110

Напряжение короткого замыкания uk — это напряжение, при подведении которого к одной из обмоток трансформатора при замкнутой накоротко другой обмотке в ней проходит ток, равный номинальному

Источник — Электрооборудование станций и подстанций

Определились с основными терминами, далее разберем как определить мощность, ток и сопротивление трансформатора на примере:

ТМ-750/10 с номинальными напряжениями 6 кВ и 0,4 кВ. Ток с высокой стороны будет 72,2 А, напряжение короткого замыкания — 5,4%. Определим ток из формулы определения полной мощности:

Так что, если недобрали данных для расчетов, всегда можно досчитать. Но это рассмотрен случай двухобмоточного Т.

Чтобы определить сопротивление двухобмоточного трансформатора в именованных единицах (Ом), например, для расчета тока короткого замыкания, воспользуемся следующими выражениями:

  • x — искомое сопротивление в именованных единицах, Ом
  • xT% — относительное сопротивление, определяемое через uk% (в случае двухобмоточных эти числа равны), отн.ед.
  • Uб — базисное напряжение, относительно которого мы ведем наш расчет (более подробно будет рассмотрено в статье про расчет токов КЗ), кВ
  • Sном — номинальная мощность, МВА

В формуле выше важно следить за единицами измерения, не спутать вольты и киловольты, мегавольтамперы с киловольтамперами. Будьте начеку.

Формулы для расчета относительных сопротивлений обмоток (xT%)

В двухобмоточном трансформаторе все просто и uk=xt.

Трехобмоточный и автотрансформаторы

В данном случае схема эквивалентируется в три сопротивления (по секрету, одно из них частенько бывает равно нулю, что упрощает дальнейшее сворачивание).

Трехфазный у которого НН расщепленная

Частенько в схемах ТЭЦ встречаются данные трансформаторы с двумя ногами.

В данном случае всё зависит от исходных данных. Если Uk дано только для в-н, то считаем по верхней формуле, если для в-н и н1-н2, то нижней. Схема замещения представляет собой звезду.

Группа двухобмоточных однофазных трансформаторов с обмоткой низшего напряжения, разделенной на две или на три ветви

Хоть внешне и похоже на описанные выше, и схемы замещения подобны, однако, формулы будут немного разные.

2020 Помегерим! — электрика и электроэнергетика

Расчет и выбор силового трансформатора по мощности и количеству

Расчетный срок службы трансформатора обеспечивается при соблюдений условий:

При проектировании, строительстве, пуске и эксплуатации эти условия никогда не выполняются (что и определяет ценологическаятеория).

  1. Определение номинальной мощности трансформатора
  2. Режимы работы трансформатора
  3. Перегрузки силовых трансформаторов
  4. Расчет номинальной мощности трансформатора

Определение номинальной мощности трансформатора

Для правильного выбора номинальной мощности трансформатора (автотрансформатора) необходимо располагать суточным графиком нагрузки, из которого известна как максимальная, так и среднесуточная активная нагрузки данной подстанции, а также продолжительность максимума нагрузки.

График позволяет судить, соответствуют ли эксплуатационные условия загрузки теоретическому сроку службы (обычно 20…25 лет), определяемому заводом изготовителем.

Для относительного срока службы изоляции и (или) для относительного износа изоляции пользуются выражением, определяющим экспоненциальные зависимости от температуры. Относительный износ L показывает, во сколько раз износ изоляции при данной температуре больше или меньше износа при номинальной температуре. Износ изоляции за время оценивают по числу отжитых часов или суток: Н=Li.

В общем случае, когда температура изоляции не остается постоянной во времени, износ изоляции определяется интегралом:

В частности, среднесуточный износ изоляции:

Влияние температуры изоляции определяет, сколько часов с данной температурой может работать изоляция при условии, что ееизнос будет равен нормированному износу за сутки:

При температуре меньше 80°С износ изоляции ничтожен и им можно пренебречь. Температура охлаждающей среды, как правило, не равна номинальной температуре и, кроме того, изменяется во времени. В связи с этим для упрощения расчетов используют эквивалентную температуру охлаждающей среды, под которой понимают такую неизменную за расчетный период температуру, при которой износ изоляции трансформатора будет таким же, как и при изменяющейся температуре охлаждающей среды в тот же период.

Допускается принимать эквивалентную температуру за несколько месяцев или год равной среднемесячным температурам или определять эквивалентные температуры по специальным графикам зависимости эквивалентных месячных температур от среднемесячных и среднегодовых, эквивалентных летних (апрель—август), осенне-зимних (сентябрь—март) и годовых температур от среднегодовых.

Если при выборе номинальной мощности трансформатора на однотрансформаторной подстанции исходить из условия

(где Рмах — максимальная активная нагрузка пятого года эксплуатации; Рр — проектная расчетная мощность подстанции), то при графике с кратковременным пиком нагрузки (0,5… 1,0 ч) трансформатор будет длительное время работать с недогрузкой. При этом неизбежно завышение номинальной мощности трансформатора и, следовательно, завышение установленной мощности подстанции.

В ряде случаев выгоднее выбирать номинальную мощность трансформатора близкой к максимальной нагрузке достаточной продолжительности с полным использованием его перегрузочной способности с учетом систематических перегрузок в нормальном режиме.

Режимы работы трансформатора

Наиболее экономичной работа трансформатора по ежегодным издержкам и потерям будет в случае, когда в часы максимума он работает с перегрузкой (эксплуатация же стремится работать в режимах, когда в часы максимума загрузки данного трансформатора он не превышает свою номинальную мощность). В реальных условиях значение допустимой нагрузки выбирается в соответствии с графиком нагрузки и коэффициентом начальной нагрузки и зависит также от температуры окружающей среды, при которой работает трансформатор.

Коэффициент нагрузки, или коэффициент заполнения суточного графика нагрузки, практически всегда меньше единицы:

В зависимости от характера суточного графика нагрузки (коэффициента начальной загрузки и длительности максимума), эквивалентной температуры окружающей среды, постоянной времени трансформатора и вида его охлаждения согласно ГОСТ допускаются систематические перегрузки трансформаторов.

Перегрузки силовых трансформаторов

Перегрузки определяются преобразованием заданного графика нагрузки в эквивалентный в тепловом отношении (рис. 3.5). Допустимая нагрузка трансформатора зависит от начальной нагрузки, максимума нагрузки и его продолжительности и характеризуется коэффициентом превышения нагрузки:

Допустимые систематические перегрузки трансформаторов определяются из графиков нагрузочной способности трансформаторов, задаваемых таблично или графически. Коэффициент перегрузки передается в зависимости от среднегодовой температуры воздуха /сп вида охлаждения и мощности трансформаторов, коэффициента начальной нагрузки кн н и продолжительности двухчасового эквивалентного максимума нагрузки tmах.

Для других значений tmax допустимый можно определить по кривым нагрузочной способности трансформатора.

Если максимум графика нагрузки в летнее время меньше номинальной мощности трансформатора, то в зимнее время допускается длительная 1%я перегрузка трансформатора на каждый процент недогрузки летом, но не более чем на 15 %. Суммарная систематическая перегрузка трансформатора не должна превышать 150 %. При отсутствии систематических перегрузок допускается длительная нагрузка трансформаторов током на 5 % выше номинального при условии, что напряжение каждой из обмоток не будет превышать номинальное.

На трансформаторах допускается повышение напряжения сверх номинального: длительно — на 5 % при нагрузке не выше номинальной и на 10% при нагрузке не выше 0,25 номинальной; кратковременно (до 6 ч в сутки) — на 10 % при нагрузке не выше номинальной.

Дополнительные перегрузки одной ветви за счет длительной недогрузки другой допускаются в соответствии с указаниями заводом — изготовителя. Так, трехфазные трансформаторы с расщепленной обмоткой 110 кВ мощностью 20, 40 и 63 М ВА допускают следующие относительные нагрузки: при нагрузке одной ветви обмотки 1,2; 1,07; 1,05 и 1,03 нагрузки другой ветви должны составлять соответственно 0; 0,7; 0,8 и 0,9.

Читайте также  Как рассчитать мощность теплых пленочных полов?

Расчет номинальной мощности трансформатора

Номинальная мощность, MB • А, трансформатора на подстанции с числом трансформаторов п > 1 в общем виде определяется из выражения

Для сетевых подстанций, где примерно до 25 % потребителей из числа малоответственных в аварийном режиме может быть отключено, обычно принимается равным 0,75…0,85. При отсутствии потребителей III категории К 1-2 = 1 Для производств (потребителей) 1й и особой группы известны проектные решения, ориентирующиеся на 50%ю загрузку трансформаторов.

Рекомендуется широкое применение складского и передвижного резерва трансформаторов, причем при аварийных режимах допускается перегрузка трансформаторов на 40 % на время максимума общей суточной продолжительностью не более 6 ч в течение не более 5 сут.

При этом коэффициент заполнения суточного графика нагрузки трансформаторов кн в условиях его перегрузки должен быть не более 0,75, а коэффициент начальной нагрузки кпн — не более 0,93.

Так как К1-2 1 их отношение К = К 1-2 / К пер. всегда меньше единицы и характеризует собой ту резервную мощность, которая заложена в трансформаторе при выборе его номинальной мощности. Чем это отношение меньше, тем меньше будет закладываемый в трансформаторы резерв установленной мощности и тем более эффективным будет использование трансформаторной мощности с учетом перегрузки.

Завышение коэффициента к приводит к завышению суммарной установленной мощности трансформаторов на подстанции.

Уменьшение коэффициента возможно лишь до такого значения, которое с учетом перегрузочной способности трансформатора и возможности отключения неответственных потребителей позволит покрыть основную нагрузку одним оставшимся в работе трансформатором при аварийном выходе из строя второго трансформатора.

Таким образом, для двухтрансформаторной подстанции

В настоящее время существует практика выбора номинальной мощности трансформатора для двух трансформаторной подстанции с учетом значения к = 0,7, т.е.

Формально выражение (3.14) выглядит ошибочно: действительно, единица измерения активной мощности — Вт; полной (кажущейся) мощности — ВА. Есть различия и в физической интерпретации S и Р. Но следует подразумевать, что осуществляется компенсация реактивной мощности на шинах подстанции 5УР, ЗУР и что коэффициент мощности cos ф находится в диапазоне 0,92… 0,95.

Тогда ошибка, связанная с упрощением выражения (3.13) до (3.14), не превышает инженерную ошибку 10%, которая включает в себя и приблизительность значения 0,7, и ошибку в определении фиксированного Рмах

Таким образом, суммарная установленная мощность двухтрансформаторной подстанции

При этом значении к в аварийном режиме обеспечивается сохранение около 98 % Рмах без отключения неответственных потребителей. Однако, учитывая принципиально высокую надежность трансформаторов, можно считать вполне допустимым отключение в редких аварийных режимах какойто части неответственных потребителей.

При двух и более установленных на подстанции трансформаторах при аварии с одним из параллельно работающих трансформаторов оставшиеся в работе трансформаторы принимают на себя его нагрузку. Эти аварийные перегрузки не зависят от предшествовавшего режима работы трансформатора, являются кратковременными и используются для обеспечения прохождения максимума нагрузки.

Далее приведены значения кратковременных перегрузок масляных трансформаторов с системами охлаждения М, Д, ДЦ, Ц сверх номинального тока (независимо от длительности предшествующей нагрузки, температуры окружающей среды и места установки).

Аварийные перегрузки масляных трансформаторов со всеми видами охлаждения:

Для трехобмоточных трансформаторов и автотрансформаторов указанные перегрузки относятся к наиболее нагруженной обмотке.

Как выбрать трансформатор тока — по мощности

Суммарный нагрузочный ток на линию жилого, коммерческого объекта или предприятия в некоторых случаях может превышать ее фактические возможности. Правильный расчет трансформатора тока поможет обеспечить качество линейного преобразования, контроль и защиту электросети.

  1. Причины для установки токовых трансформаторов
  2. Разновидности трансформаторов тока
  3. Назначение
  4. Тип монтажа
  5. Конструкция первичной обмотки
  6. Тип изоляции
  7. Класс точности
  8. Особенности выбора
  9. Подбор токового трансформатора для организации релейной защиты
  10. Нюансы выбора устройств для цепи учета
  11. Таблица предварительного выбора трансформатора тока по мощности и току
  12. Надежность измерительных трансформаторов напряжения в сети с изолированной нейтралью
  13. Расчет трансформатора тока по мощности
  14. Пример расчета на 10 кВ

Причины для установки токовых трансформаторов

Трансформатор тока РТП-58

Устройство предназначено для трансформации первичного значения тока до безопасного для сети. Трансформаторы также эксплуатируются с целью:

  • разграничения низковольтной учетной аппаратуры и реле, подкинутых на вторичную обмотку, если в сети первичное высокое напряжение;
  • повышения или понижения показателей напряжения;
  • замера состояния электросети и параметров переменного тока;
  • обеспечения безопасности ремонтных и диагностических работ;
  • быстрой активации релейной защиты при коротких замыканиях;
  • учета энергозатрат – с ними обычно совмещен электросчетчик.

Для измерения понадобится подключить ТТ в разрыв провода, а на вторичную отметку подсоединить вольтметр или амперметр, совмещенный с резистором.

Разновидности трансформаторов тока

Выбирать прибор, подходящий под напряжение сети или конкретные работы, необходимо на основании классификации по разным признакам.

Назначение

Существуют такие трансформаторы:

  • измерительные – замеряют параметры цепи;
  • защитные – предотвращают перегрузки, выход оборудования из строя;
  • промежуточные – подключаются в цепь с релейной защитой, выравнивают токи в схемах дифзащиты;
  • лабораторные – отличаются высокой точностью.

У лабораторных моделей больше коэффициентов преобразования.

Тип монтажа

Для частного дома и квартиры можно подобрать аппарат, монтируемый внутри или снаружи помещения. Некоторые модификации встраиваются в оборудование, а также надеваются на проходную изоляцию. Для измерения и лабораторных тестов используются переносные модели.

Конструкция первичной обмотки

Существуют шинные, одновитковые (со стержнем) и многовитковые (с катушкой, обмоткой петлевого типа и «восьмеркой») устройства.

Тип изоляции

Бывают следующие преобразователи:

  • сухая изоляция – на основе литой эпоксидки, фарфора или бакелита;
  • бумажно-масляная – стандартная или конденсаторная;
  • газонаполненные – внутри находится неорганический элегаз с высоким пробивным напряжением;
  • компаундные – внутри находится заливка из термоактивной и термопластичной смолой.

Компаунд имеет самые высокие показатели влагостойкости.

В зависимости от количества ступеней трансформации можно подобрать одноступенчатые и каскадные модели. Вся линейка имеет рабочее напряжение более 1000 В.

Класс точности

Класс точности токового трансформатора прописан в ГОСТ 7746-2001 и зависит от его назначения, а также параметров первичного тока и вторичной нагрузки:

  • В условиях малого сопротивления происходит почти полное шунтирование намагниченной ветви. Прибор работает с большой погрешностью.
  • При повышении сопротивления также увеличивается погрешность. Причина – функционирование устройства на участке насыщения.
  • При минимальном номинале первичного тока трансформатор работает в нижней части намагниченной кривой, при максимальном – на участке насыщения.

Точный подбор трансформатора по классу точности можно произвести на основе таблицы.

Класс точности Номинал первичного тока в % Предел вторичной нагрузки в %
0,1 5, 20, 100-200 25-100
0,2
0,2 S 1,5, 20, 100, 120
0,5 5, 20, 100, 120
0,5 S 1, 5, 20, 100, 120
1 5, 20, 100-120
3 50-120 50-100
5
10

Для устройств защиты класс точности также определяется по таблице.

Класс точности Предельная погрешность Процент предельной вторичной нагрузки
тепловая угловая
мин ср
±1 ±60 ±1,8 5
10Р ±3 Норма отсутствует 10

Для энергоучета применяются модели с классом точности 0,2S — 0,5, для амперметров с минимальной чувствительностью – с 1-м или 3-м, для релейной защиты – 5P и 10Р.

Особенности выбора

В процессе выбора трансформатора тока необходимо руководствоваться базовыми параметрами:

  • Номинал сетевого напряжения. Номинальный показатель должен превышать или быть равным рабочему напряжению.
  • Ток первичной и вторичной обмотки. Первый показатель зависит от коэффициента трансформации, второй – зависит от того, какой счетчик.
  • Коэффициент преобразования. Подбирается по нагрузке в аварийных случаях, но ПУЭ устанавливают необходимость монтажа устройств с коэффициентом, большим, чем номинальный.
  • Класс точности. Зависит от целевого использования счетчика. На коммерческом предприятии оправданы приборы 0,5S, в частном доме – 1S.
Читайте также  Как рассчитать максимальную токовую защиту?

Конструктивное исполнение определяется типом счетчика. Для моделей до 18 кВ подойдет однофазный или трехфазный аппарат. Если значение больше 18 кВ, используется трансформатор на одну фазу.

Подбор токового трансформатора для организации релейной защиты

Релейный токовый трансформатор отличается классом точности 10Р и 5Р. В ПУЭ установлено, что его погрешность не должна быть более 10 % по току и 7 градусов по углу. При превышении погрешности устанавливается дополнительное оборудование.

В нормальных условиях трансформаторное реле определяет тип поломки (низкое напряжение, повышенный/пониженный ток или частота). После измерения параметров и обнаружения отклонений активируется защита – сеть обесточивается.

Нюансы выбора устройств для цепи учета

К цепи учета для корректности замеров можно подключать приборы с классом точности не более 0,5(S). При наличии колебаний и аварий графики протекания тока и напряжения бывают некорректными. Несоблюдение класса точности может привести к завышению показателей счетчика.

В п. 1.5.17 ПУЭ установлено, что при завышенном коэффициенте трансформатор для цепи учета должен иметь вторичный ток:

  • при максимальной нагрузке – не более 40 %;
  • при минимальной нагрузке – не более 5 %;
  • класс точности – от 25 до 100 % от номинала.

Коэффициент ТТ по мощности бывает от 1 до 5 % первички.

Таблица предварительного выбора трансформатора тока по мощности и току

Табличный подбор оборудования целесообразно производить после уточнения технических параметров аппарата. Если они известны, стоит выбрать ТТ по таблице, где указана мощность, нагрузка и трансформационный коэффициент.

Максимальная мощность при расчете, кВА Сеть 380 В
Нагрузка, А Коэффициент трансформации, А
10 16 20/5
15 23 30/5
20 30 30/5
25 38 40/5
35 53 50/5 или 75/5
40 61 75/5
50 77 75/5 или 100/5

Для сети с напряжением 1,5 кВ применяется аналогичная таблица.

Максимальная мощность при расчете, кВА Сеть 1,5 кВ
Нагрузка, А Коэффициент трансформации, А
100 6 10/5
160 9 10/5
180 10 10/5 или 15/5
240 13 15/5

При табличном способе нужно учитывать, что вторичный ток прибора не должен быть больше 110 % от номинала.

Надежность измерительных трансформаторов напряжения в сети с изолированной нейтралью

Простой измерительный аппарат предназначен для понижения номиналов напряжения, которое подается на измерители и защитные реле, подключенные к сети 6-10 кВ. Трансформатор исправно работает только в условиях заземления нейтрали.

При феррорезонансных реакциях (обрыв фазы ЛЭП, прикосновение ветвями, стекание капель росы по проводам, некорректная коммутация) существуют риски поломок трансформаторов напряжения. Частота сбоев составляет 17 и 25 Гц. В этих условиях через первичную обмотку протекает сверхток и она перегорает.

Если используется схема «Звезда-Звезда», в условиях повышения напряжения повышается индукция магнитопровода. Прибор перегорает. Предотвратить этот процесс можно при помощи:

  • уменьшения показателей рабочей индукции;
  • подключения в сети устройств, демпфирующих сопротивление;
  • создания трехфазного устройства с общей магнитной пятистержневой системой;
  • эксплуатации аппаратов, подключенный в сеть при размыкании треугольника;
  • заземления нейтрали посредством реактора-токоограничителя.

Простейший вариант – использовать специальные обмотки или релейные схемы.

Расчет трансформатора тока по мощности

Токовый трансформатор ставится на 3 жилы провода, но модели с классом точности 0,5S, где одно кольцо идет на одну фазу, можно подключать к одножильному кабелю. Перед установкой прибора производится его расчет.

Пример расчета на 10 кВ

Модели на 10 кВ подходят для коммерческого учета энергии. Для вычислений можно использовать онлайн-программу – калькулятор. После ввода данных в поля и нажатия кнопки расчета появится нужная информация.

Если программы нет, рассчитать параметры устройства можно самостоятельно. Понадобится перевести трехсекундный ток термической стойкости в односекундный. Для этого используется формула I3с=I1с/1,732.

Сложность применения данного аппарата – минимальный, около 10 А, силовой ток цепи.

Трансформаторы тока, устанавливаемые на производстве или в жилом многоквартирном доме, самостоятельно не рассчитываются. Понадобится обратиться в компанию энергоснабжения для получения ТУ с моделью узла учета и типом устройства, номиналом автоматов. Это исключает сложности самостоятельных вычислений.

Выбор трансформаторов тока для электросчетчика 0,4кВ

Учет электроэнергии с потребляемым током более 100А выполняется счетчиками трансформаторного включения, которые подключаются к измеряемой нагрузке через измерительные трансформаторы. Рассмотрим основные характеристики трансформаторов тока.

1 Номинальное напряжение трансформатора тока.

В нашем случае измерительный трансформатор должен быть на 0,66кВ.

2 Класс точности.

Класс точности измерительных трансформаторов тока определяется назначением электросчетчика. Для коммерческого учета класс точности должен быть 0,5S, для технического учета допускается – 1,0.

3 Номинальный ток вторичной обмотки.

4 Номинальный ток первичной обмотки.

Вот этот параметр для проектировщиков наиболее важен. Сейчас рассмотрим требования по выбору номинального тока первичной обмотки измерительного трансформатора. Номинальный ток первичной обмотки определяет коэффициент трансформации.

Коэффициент трансформации измерительного трансформатора – отношение номинального тока первичной обмотки к номинальному току вторичной обмотки.

Коэффициент трансформации следует выбирать по расчетной нагрузке с учетом работы в аварийном режиме. Согласно ПУЭ допускается применение трансформаторов тока с завышенным коэффициентом трансформации:

1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5 %.

В литературе можно встретить еще требования по выбору трансформаторов тока. Так завышенным по коэффициенту трансформации нужно считать тот трансформатор тока, у которого при 25%-ной расчетной присоединяемой нагрузке (в нормальном режиме) ток во вторичной обмотке будет менее 10% номинального тока счетчика.

А сейчас вспомним математику и рассмотрим на примере данные требования.

Пусть электроустановка потребляет ток 140А (минимальная нагрузка 14А). Выберем измерительный трансформатор тока для счетчика.

Выполним проверку измерительного трансформатора Т-066 200/5. Коэффициент трансформации у него 40.

140/40=3,5А – ток вторичной обмотки при номинальном токе.

5*40/100=2А – минимальный ток вторичной обмотки при номинальной нагрузке.

Как видим 3,5А>2А – требование выполнено.

14/40=0,35А – ток вторичной обмотки при минимальном токе.

5*5/100=0,25А – минимальный ток вторичной обмотки при минимальной нагрузке.

Как видим 0,35А>0,25А – требование выполнено.

140*25/100 – 35А ток при 25%-ной нагрузке.

35/40=0,875 – ток во вторичной нагрузке при 25%-ной нагрузке.

5*10/100=0,5А – минимальный ток вторичной обмотки при 25%-ной нагрузке.

Как видим 0,875А>0,5А – требование выполнено.

Вывод: измерительный трансформатор Т-066 200/5 для нагрузки 140А выбран правильно.

По трансформаторам тока есть еще ГОСТ 7746—2001 (Трансформаторы тока. Общие технические условия), где можно найти классификацию, основные параметры и технические требования.

При выборе трансформаторов тока можно руководствоваться данными таблицы:

Выбор трансформаторов тока по нагрузке

Обращаю ваше внимание, там есть опечатки

welder’s блог

Расчет Трансформаторов

Запись опубликована welder · 6 марта 2010

12 665 просмотров

Выкладываю свой метод расчета мощности трансформатора и расчета обмоток.

На рисунках ниже, указано где нужно замерять размеры железа

На рисунках а, б, в и г, нарисованы соответственно Ш, ШЛ, П и ПЛ-тип исполнения железа трансформаторов.

a — ширина керна на котором намотана обмотка,

c — толщина керна (набора пластин),

b — ширина окна,

h — высота окна.

Добавил рисунок для железа ОЛ-типа (тороиды).

a — ширина керна, a=(D-d)/2

Читайте также  Как рассчитать длину кабеля для проводки?

D — Внешний диаметр,

d — Внутренний диаметр, окно трансформатора.

h — Высота железа

S — на рисунке, площадь железа.

Все размеры желательно записывать в миллиметрах, но при расчетах будут использоваться размеры в сантиметрах.

В зависимости от толщины пластин (для железа типа Ш и П) или ленты (для ШЛ, ПЛ и ОЛ) в расчет площади железа берется коэффициент заполнения сталью — Кст . Для пластин толщиной 0,2мм Кст =0,85; при 0,35мм Кст =0,9; при 0,5мм Кст =0,93. 0,95.

Витые сердечники имеют обычно толщину ленты 0,2мм и Кст=0,9. Коэффициент этот учитывает зазор между пластинами или лентой трансформатора, образующийся из-за окислов или специального изоляционного покрытия каждой пластины сердечника.

Для примера, возьму в расчет железо трансформатора ТС-270 с такими параметрами

a — 25мм, c — 45мм, b — 40мм, h — 100мм, конструкция сердечника П-образная, ленточная, т.е. тип-ПЛ.

Площадь железа определяется по формуле

S c =a*c*Кст = 2,5*4,5*0,9=10,125см 2

Для тороидов, S c =(D-d)h*К ст /2 , и площадь окна S o =3,14d 2 /4

Активная площадь железа найдена, теперь нужно узнать габаритную мощность,

Габаритную мощность можно определить по формуле:

P габ =(S c *B m ) 2 ,

где B m — это величина индукции в железе, Тл . Берется это значение исходя из свойств материала сердечника и его конструкции. Еще немного зависит от мощности трансформатора, от размеров железа.

Нужное значение B m и другие необходимые параметры — можно найти из таблицы 1 ,

Таблица 1 . Некоторые поля пустые, потому что не нашел данных.

Но сразу возникает вопрос, как-же определить для какой мощности брать значение B m если мощность еще не известна? Все просто, для грубой оценки нужно умножить площадь железа на 1,3 и возвести в квадрат, (10,125см 2 *1,3) 2 =173,25Вт, что близко к строке в таблице для 200 Вт.

По таблице находим величину B m для сердечника типа ПЛ = 1,5 Тл. На практике, если пересчитать любой заводской трансформатор, эта величина берется немного больше, примерно на 10. 15%, для экономии железа. Можно так и поступить, просто прибавить к табличному значению еще 10%. В итоге величина индукции получается 1,5+10% = 1,65Тл

Габаритная мощность железа

(10,125*1,65) 2 = 279,1 Вт .

Число витков на вольт

W’=50/S c *B m , где S c — площадь железа, с учетом коеффициента Кст , для данного трансформатора Кст =0,9.

Число витков на вольт, 50/10,125*1,65= 2,99 вит/в .

Теперь можно расчитать первичку на 220в, с запасом по напряжению как обычно до 250в. Чтобы железо не вошло в насыщение при напряжении 240. 250в.

Расчет чила витков первички

W 1 =W’*U 1 =250*2,99= 748 витков .

Трансформатор конструкции ПЛ, значит на каждую из двух катушек необходимо намотать половину витков, и затем соединить обмотки последовательно, соблюдая фазировку .

Расчет диаметра провода обмоток

Обычно берется в расчет медный провод. Значение плотности тока, J , А/мм 2 в таблице 1 , указано для обмоток из медного провода. Если предполагается мотать обмотки алюминиевым проводом, то плотность тока необходимо уменьшить на 38%, или что то-же самое — в 1,6 раза. Потому что у алюминия большее удельное сопротивление по сравнению с медью. Для алюминия удельное сопротивление 0,0283 Ом*мм 2 /м, для меди 0,0175 Ом*мм 2 /м (пишут по разному, в пределах 0,0172. 0,0178 Ом*мм 2 /м).

Таблица 2

Максимальный ток потребляемый первичной обмоткой

I 1 =P габ /U 1 , 279,1/220 = 1,268 А . (Обмотка намотана на 250в, но в расчет берется ее рабочее напряжение, в данном случае 220в. Можно 230в, зависит от качества сети).

Теперь зная ток в обмотке, и материал провода обмотки, можно определить необходимый диаметр провода.

Диаметр провода обмоток определяется по формуле

Плотность тока в обмотке, J , найденная в таблице 1 , = 2,9 А/мм 2 . Диаметр медного провода — 0,747мм , без изоляции.

Можно уточнить по таблице 3 ближайший стандартный диаметр провода, узнать диаметр провода с изоляцией.

Таблица 3

По таблице 3 , уточняем диаметр провода с изоляцией до 0,74мм.

Длина провода первички

L 1 =W 1 [2(a+c)+3,14*b]10 -2 = 748[2(2,5+4,5)+3,14*4]10 -2 = 199м

Если трансформатор будет работать при полной нагрузке то желательно учесть падение напряжения в первичной обмотке из-за ее внутреннего сопротивления, в данном случае оно будет около 8 Ом.

Падение напряжения в первичной обмотке

U 1 пад =2,25*10 -2 *I 1 *L 1 /d 2 = 2,25*10 -2 *1,268*199/0,74 2 = 10,3в

Точное число витков первичной обмотки

W 1 точн =(U 1 -U 1 пад )W’ = (220-10,3)*2,99= 627 вит

Если требуется минимальный ток холостого хода, когда трансформатор работает без нагрузки и в первичке практически нет просадки напряжения, можно не учитывать падение напряжения в первичке и мотать первичку на 748 вит.

Вес провода первички

По таблице 3 , найдем вес 100м провода 0,74мм (0,80мм с изол) = 390 грамм.

(199*390)10 -2 = 776 грамм

Теперь вторичка

Допустим напряжение вторички будет 15в.

Мощность вторички , учитывая КПД трансформатора, найденный по таблице 1 = 0,94

P 2 =P габ *кпд = 279,1*0,94= 262 Вт .

Ток вторички

I 2 =P 2 /U 2 = 262/15= 17,5а

Сечение или диаметр провода вторички

S 2 =I 2 /J = 17,5/2,9= 6 мм 2 , в пересчете на диаметр — 2,77мм. Можно мотать сразу в несколько проводов, если мотать в 4 провода одновременно, то диаметр проводов нужен 1,38мм, ближайший по таблице диаметр — 1,4мм (1,48мм с изол).

Количество витков вторички

W 2 =W 1 точн (U 2 /U 1 ) = 627(15/220) = 42,75вит. Можно округлить до 44 вит, чтобы на каждой из двух катушек трансформатора намотать по 22 витка.

Вес вторички (или всех вторичек) должен быть таким-же как и вес первички.

Проверяем размещение обмоток с учетом коэффициента Км приведенного в Таблице 1.

(все размеры в см)

где, Км — коэффициент заполнения окна медью, Q o — площадь окна трансформатора в котором размещаются обмотки. Для Ш , ШЛ , П , ПЛ типов, находится простым перемножением ширины и высоты окна, Q o =b*h , а для тороидов площадь окна считается по формуле S o =3,14d 2 /4 .

Подставляя значения в формулу, диаметр провода первички и вторички 0,8мм и 3мм (с изоляцией), число витков 627вит и 44вит и площадь окна 40см 2 — находим значение Км=0,16.

На первый взгляд, результат намного меньше чем указано в Таблице 1 , но это получилось из-за больших размеров окна железа, расчитанного на алюминиевые обмотки. Поэтому медная обмотка будет свободно размещаться.

Если брать железо предназначенное для медных обмоток, то найденный коэффициент не должен превысить того что в таблице, чтобы расчитанная обмотка вся поместилась в окне трансформатора. При меньшем значении, можно увеличить диаметр проводов, как в этом случае (можно пересчитать диаметры на алюминий), или наоборот, уменьшить диаметры проводов при завышенном результате расчета Км.

В расчете я принял что во вторичке провод круглого сечения, из-за особенности формулы. Если мотать шиной того-же сечения — результат Км будет тот-же.

Диаметр провода в расчет желательно брать с изоляцией.

Для работы трансформатора при кратковременной перегрузке, нужно учитывать периодичность включения, ПВ %

Для зарядно-пусковых можно брать ПВ=10. 20%, для сварочников ПВ 40. 60%. Таким образом, можно применить железо на меньшую мощность по сравнению с мощностью нагрузки.

Величина перегрузки в зависимости от ПВ считается так:

квадратный корень из 100/ПВ %.

Если например, нужно во вторичке сварочника получить 3кВт, при ПВ 60% то понадобится трансформатор с габаритной мощностью 2,3кВт. Для зарадно пускового с ПВ 20%, при мощности на вторичке 1,5кВт, мощность трансформатора понадобится 0,7 кВт. Но учитывая повышенные потери в сопротивлении обмоток, при большем токе, то габаритная мощность железа, понадобится на 10% больше.

ПВ 20% — 1 минута под нагрузкой, 4 минуты х.х.

Еще по перегрузкам трансформаторов

Допускается перегрузка трансформатора 30% — 2 ч, 60% — 45 мин, 75% — 20 мин, 100% — 10,5 мин, 200% — 1 мин.

Кажется это пока все что я хотел рассказать

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: