Рассчитать токи во всех ветвях электрической цепи - ELSTROIKOMPLEKT.RU

Рассчитать токи во всех ветвях электрической цепи

Расчёт электрических цепей онлайн

На сайте появилась программа для расчёта установившихся режимов электрических цепей по законам ТОЭ. На настоящий момент реализованы методы расчёта по законам Ома, по законам Кирхгофа, по методу узловых потенциалов, методу контурных токов, методу эквивалентного генератора. Также программа позволяет рассчитать эквивалентное сопротивление цепи относительно источника питания. Программа позволяет нарисовать схему, задать параметры её элементов и рассчитать схему. В результате формируется текстовое описание порядка расчёта, рассчитывается баланс мощностей и строятся векторные диаграммы.

Рисование схемы производится путём перетаскивания элементов методом drag-and-drop из боковой панели и последующим соединением выбранных элементов.

В боковой панели доступны следующие элементы с задаваемыми параметрами:

  • резистор :
    • номер элемента;
    • сопротивление, Ом;
  • конденсатор :
    • номер элемента;
    • сопротивление, Ом;
  • катушка индуктивности :
    • номер элемента;
    • сопротивление, Ом;
  • источник ЭДС :
    • номер элемента;
    • амплитудное значение, В;
    • начальная фаза, °;
  • источник тока :
    • номер элемента;
    • амплитудное значение, В;
    • начальная фаза, °.

Инструкция по применению программы приведена здесь.

Методы расчёта

После завершения рисования схемы при нажатии кнопки «Расчёт» запускается расчёт электрической цепи. Программа анализирует исходную схему и при выявлении каких-либо ошибок сообщает об этом. При успешном анализе схемы запускается расчёт по методам ТОЭ.

Расчёт по закону Ома

Расчёт по закону Ома осуществляется для одноконтурных схем. Используемая методика расчёта приведена здесь.

Пример схемы и расчёт:

Исходные данные и схема:

  • E1:
    • Номер элемента: 1
    • Амплитудное значение: 100 В
    • Начальная фаза: 0
  • R1:
    • Номер элемента: 1
    • Сопротивление, Ом: 1

После нажатия кнопки «Расчёт» формируется решение:

В исходной схеме только один контур. Рассчитаем её по закону Ома.

Согласно закону Ома, ток в замкнутой цепи равен отношению ЭДС цепи к сопротивлению. Составим уравнение, приняв за положительное направление тока $ underline $ направление источника ЭДС $ underline_ <1>$:

$$ R_<1>cdot underline = underline_ <1>$$

Подставим в полученную систему уравнений значения сопротивлений и источников и получим:

Отсюда искомый ток в цепи равен

$$ underline = 100space textrm<А>$$

Расчёт по законам Кирхгофа

Для многоконтурных схем расчёт осуществляется по законам Кирхгофа. Используемая методика расчёта приведена здесь.

Пример схемы и расчёт:

Исходные данные и схема:

  • E1:
    • Номер элемента: 1
    • Амплитудное значение: 100 В
    • Начальная фаза: 0
  • R1:
    • Номер элемента: 1
    • Сопротивление, Ом: 1
  • L1:
    • Номер элемента: 1
    • Сопротивление, Ом: 1
  • C1:
    • Номер элемента: 1
    • Сопротивление, Ом: 1

После нажатия кнопки «Расчёт» на исходной схеме появляется нумерация узлов и формируется решение:

Рассчитаем схему по законам Кирхгофа.

В данной схеме: узлов − 2 , ветвей − 3, независимых контуров − 2.

Произвольно зададим направления токов в ветвях и направления обхода контуров.

Принятые направления токов:
Ток $ underline_ <1>$ направлен от узла ‘2 у.’ к узлу ‘1 у.’ через элементы $ underline_ <1>$, $ R_ <1>$.
Ток $ underline_ <2>$ направлен от узла ‘1 у.’ к узлу ‘2 у.’ через элементы $ L_ <1>$.
Ток $ underline_ <3>$ направлен от узла ‘1 у.’ к узлу ‘2 у.’ через элементы $ C_ <1>$.

Принятые направления обхода контуров:
Контур №1 обходится через элементы $ underline_ <1>$, $ R_ <1>$, $ L_ <1>$ в указанном порядке.
Контур №2 обходится через элементы $ L_ <1>$, $ C_ <1>$ в указанном порядке.

Составим уравнения по первому закону Кирхгофа. При составлении уравнений «втекающие» в узел токи будем брать со знаком «+», а «вытекающие» − со знаком «−».

Количество уравнений, составляемых по первому закону Кирхгофа, равно $ N_textrm <у>− 1 $, где $ N_textrm <у>$ − число узлов. Для данной схемы количество уравнений по первому закону Кирхгофа равно 2 − 1 = 1.

Составим уравнение для узла №1:

$$ underline_ <1>− underline_ <2>− underline_ <3>= 0 $$

Составим уравнения по второму закону Кирхгофа. При составлении уравнений положительные значения для токов и ЭДС выбираются в том случае, если они совпадают с направлением обхода контура.

Количество уравнений, составляемых по второму закону Кирхгофа, равно $ N_textrm <в>− N_textrm <у>+ 1 $, где $ N_textrm <в>$ — число ветвей. Для данной схемы количество уравнений по второму закону Кирхгофа равно 3 − 2 + 1 = 2.

Составим уравнение для контура №1:

$$ R_<1>cdot underline_ <1>+ jX_cdot underline_<2>=underline_ <1>$$

Составим уравнение для контура №2:

$$ jX_cdot underline_ <2>− (−jX_)cdot underline_<3>=0 $$

Объединим полученные уравнения в одну систему, при этом перенесём известные величины в правую сторону, оставив в левой стороне только составляющие с искомыми токами. Система уравнений по законам Кирхгофа для исходной цепи выглядит следующим образом:

$$ beginunderline_ <1>− underline_ <2>− underline_ <3>= 0 \ R_<1>cdot underline_<1>+jX_cdot underline_ <2>= underline_ <1>\ jX_cdot underline_<2>−(−jX_)cdot underline_ <3>= 0 \ end $$

Подставим в полученную систему уравнений значения сопротивлений и источников и получим:

$$ beginunderline_ <1>− underline_ <2>− underline_<3>=0 \ underline_<1>+ j cdot underline_<2>=100 \ j cdot underline_<2>+ j cdot underline_<3>=0 \ end $$

Решим систему уравнений и получим искомые токи:

Рекомендуемые записи

Наряду с решением электрических схем по законам Кирхгофа и методом контурных токов используется метод узловых…

При расчёте электрических цепей, в том числе для целей моделирования, широко применяются законы Кирхгофа, позволяющие…

При исследовании электрических цепей и моделировании часто пользуются векторными диаграммами токов и напряжений. Под векторной…

Метод контурных токов.Решение задач

Один из методов анализа электрической цепи является метод контурных токов. Основой для него служит второй закон Кирхгофа. Главное его преимущество это уменьшение количества уравнений до m – n +1, напоминаем что m — количество ветвей, а n — количество узлов в цепи. На практике такое уменьшение существенно упрощает расчет.

Основные понятия

Контурный ток — это величина, которая одинакова во всех ветвях данного контура. Обычно в расчетах они обозначаются двойными индексами, например I11, I22 и тд.

Действительный ток в определенной ветви определяется алгебраической суммой контурных токов, в которую эта ветвь входит. Нахождение действительных токов и есть первоочередная задача метода контурных токов.

Контурная ЭДС — это сумма всех ЭДС входящих в этот контур.

Собственным сопротивлением контура называется сумма сопротивлений всех ветвей, которые в него входят.

Общим сопротивлением контура называется сопротивление ветви, смежное двум контурам.

Общий план составления уравнений

1 – Выбор направления действительных токов.

2 – Выбор независимых контуров и направления контурных токов в них.

3 – Определение собственных и общих сопротивлений контуров

4 – Составление уравнений и нахождение контурных токов

5 – Нахождение действительных токов

Итак, после ознакомления с теорией предлагаем приступить к практике! Рассмотрим пример.

Выполняем все поэтапно.

1. Произвольно выбираем направления действительных токов I1-I6.

2. Выделяем три контура, а затем указываем направление контурных токов I11,I22,I33. Мы выберем направление по часовой стрелке.

3. Определяем собственные сопротивления контуров. Для этого складываем сопротивления в каждом контуре.

Затем определяем общие сопротивления, общие сопротивления легко обнаружить, они принадлежат сразу нескольким контурам, например сопротивление R4 принадлежит контуру 1 и контуру 2. Поэтому для удобства обозначим такие сопротивления номерами контуров к которым они принадлежат.

Читайте также  Как рассчитать трансформатор на светодиодную ленту?

4. Приступаем к основному этапу – составлению системы уравнений контурных токов. В левой части уравнений входят падения напряжений в контуре, а в правой ЭДС источников данного контура.

Так как контура у нас три, следовательно, система будет состоять из трех уравнений. Для первого контура уравнение будет выглядеть следующим образом:

Ток первого контура I11, умножаем на собственное сопротивление R11 этого же контура, а затем вычитаем ток I22, помноженный на общее сопротивление первого и второго контуров R21 и ток I33, помноженный на общее сопротивление первого и третьего контура R31. Данное выражение будет равняться ЭДС E1 этого контура. Значение ЭДС берем со знаком плюс, так как направление обхода (по часовой стрелке) совпадает с направление ЭДС, в противном случае нужно было бы брать со знаком минус.

Те же действия проделываем с двумя другими контурами и в итоге получаем систему:

В полученную систему подставляем уже известные значения сопротивлений и решаем её любым известным способом.

5. Последним этапом находим действительные токи, для этого нужно записать для них выражения.

Контурный ток равен действительному току, который принадлежит только этому контуру. То есть другими словами, если ток протекает только в одном контуре, то он равен контурному.

Но, нужно учитывать направление обхода, например, в нашем случае ток I2 не совпадает с направлением, поэтому берем его со знаком минус.

Токи, протекающие через общие сопротивления определяем как алгебраическую сумму контурных, учитывая направление обхода.

Например, через резистор R4 протекает ток I4, его направление совпадает с направлением обхода первого контура и противоположно направлению второго контура. Значит, для него выражение будет выглядеть

А для остальных

Так решаются задачи методом контурных токов. Надеемся что вам пригодится данный материал, удачи!

Расчет электрических цепей

Для вычисления рабочих параметров радиотехнических устройств и отдельных схем применяют специальные методики. После изучения соответствующих технологий результат можно узнать быстро, без сложных практических экспериментов. Корректный расчет электрических цепей пригодится на стадии проектирования и для выполнения ремонтных работ.

Категории элементов и устройств электрической цепи

Для условного изображения определенной цепи применяют специальную схему. Кроме отдельных физических компонентов, она содержит сведения о направлении (силе) токов, уровнях напряжения и другую информацию. Качественная модель показывает реальные процессы с высокой точностью.

Компоненты электрической цепи:

  • источник постоянного или переменного тока (Е) – аккумулятор или генератор, соответственно;
  • пассивные элементы (R) – резисторы;
  • компоненты с индуктивными (L) и емкостными (С) характеристиками;
  • соединительные провода.

На рисунке обозначены:

  • ветви – участки цепи с одним током;
  • узлы – точки соединения нескольких ветвей;
  • контур – замкнутый путь прохождения тока.

При решении практических задач выясняют, как узнать силу тока в отдельных ветвях. Полученные значения используют для анализа электрических параметров. В частности, можно определять падение напряжения на резисторе, мощность потребления подключенной нагрузки. При расчете цепей переменного тока приходится учитывать переходные энергетические процессы, влияние частоты.

Метод расчета по законам Ома и Кирхгофа

До изучения технологий вычислений необходимо уточнить особенности типовых элементов при подключении к разным источникам питания. При постоянном токе сопротивлением индуктивности можно пренебречь. Конденсатор эквивалентен разрыву цепи. Также следует учитывать следующие различия разных видов соединений резисторов:

  • последовательное – увеличивает общее сопротивление;
  • параллельное – распределяет токи по нескольким ветвям, что улучшает проводимость.

Закон Ома для участка цепи

Типовая аккумуляторная батарея легкового автомобиля вырабатывает напряжение U = 12 V. Бортовой или внешний амперметр покажет соответствующее значение при измерении. Соединение клемм проводом недопустимо, так как это провоцирует короткое замыкание. Если жила тонкая (

К сведению. Результат показанного расчета пригодится для поиска подходящего резистора. Следует делать запас в сторону увеличения. По стандарту серийных изделий подойдет элемент с паспортной номинальной мощностью 5 Вт.

На практике приходится решать более сложные задачи. Так, при значительной длине линии нужно учесть влияние соединительных ветвей цепи. Через стальной проводник ток будет протекать хуже, по сравнению с медным аналогом. Следовательно, надо в расчете учитывать удельное сопротивление материала. Короткий провод можно исключить из расчета. Однако в нагрузке может быть два элемента. В любом случае общий показатель эквивалентен определенному сопротивлению цепи. При последовательном соединении Rэкв = R1 + R2 +…+ Rn. Данный метод пригоден, если применяется постоянный ток.

Закон Ома для полной цепи

Для вычисления такой схемы следует добавить внутреннее сопротивление (Rвн) источника. Как найти ток, показывает следующая формула:

Вместо напряжения (U) при расчетах часто используют типовое обозначение электродвижущей силы (ЭДС) – E.

Первый закон Кирхгофа

По классической формулировке этого постулата алгебраическая сумма токов, которые входят и выходят из одного узла, равна нулю:

I1 + I2 + … + In = 0.

Это правило действительно для любой точки соединения ветвей электрической схемы. Следует подчеркнуть, что в данном случае не учитывают характеристики отдельных элементов (пассивные, реактивные). Можно не обращать внимания на полярность источников питания, включенных в отдельные контуры.

Чтобы исключить путаницу при работе с крупными схемами, предполагается следующее использование знаков отдельных токов:

  • входящие – положительные (+I);
  • выходящие – отрицательные (-I).

Второй закон Кирхгофа

Этим правилом установлено суммарное равенство источников тока (ЭДС), которые включены в рассматриваемый контур. Для наглядности можно посмотреть, как происходит распределение контрольных параметров при последовательном подключении двух резисторов (R1 = 50 Ом, R2 = 10 Ом) к аккумуляторной батарее (Uакб = 12 V). Для проверки измеряют разницу потенциалов на выводах пассивных элементов:

  • UR1 = 10 V;
  • UR1 = 2 V;
  • Uакб = 12 V = UR1 + UR2 = 10 + 2;
  • ток в цепи определяют по закону Ома: I = 12/(50+10) = 0,2 А;
  • при необходимости вычисляют мощность: P = I2 *R = 0,04 * (50+10) = 2,4 Вт.

Второе правило Кирхгофа действительно для любых комбинаций пассивных компонентов в отдельных ветвях. Его часто применяют для итоговой проверки. Чтобы уточнить корректность выполненных действий, складывают падения напряжений на отдельных элементах. Следует не забывать о том, что дополнительные источники ЭДС делают результат отличным от нуля.

Метод преобразования электрической цепи

Как определить силу тока в отдельных контурах сложных схем? Для решения практических задач не всегда нужно уточнение электрических параметров на каждом элементе. Чтобы упростить вычисления, используют специальные методики преобразования.

Расчет цепи с одним источником питания

Для последовательного соединения пользуются рассмотренным в примере суммированием электрических сопротивлений:

Rэкв = R1 + R2 + … + Rn.

Контурный ток – одинаковый в любой точке цепи. Проверять его можно в разрыве контрольного участка мультиметром. Однако на каждом отдельном элементе (при отличающихся номиналах) прибор покажет разное напряжение. По второму закону Кирхгофа можно уточнить результат вычислений:

E = Ur1 + Ur2 + Urn.

В этом варианте в полном соответствии с первым постулатом Кирхгофа токи разделяются и соединяются во входных и выходных узлах. Показанное на схеме направление выбрано с учетом полярности подключенного аккумулятора. По рассмотренным выше принципам сохраняется базовое определение равенства напряжений на отдельных компонентах схемы.

Читайте также  Как рассчитать мощность телевизора?

Как найти ток в отдельных ветвях, демонстрирует следующий пример. Для расчета приняты следующие исходные значения:

  • R1 = 10 Ом;
  • R2 = 20 Ом;
  • R3= 15 Ом;
  • U = 12 V.

По следующему алгоритму будут определяться характеристики цепи:

  • базовая формула для трех элементов:

Rобщ = R1*R2*R3/(R1*R2 + R2*R3 + R1*R3.

  • подставив данные, вычисляют Rобщ = 10 * 20 * 15 / (10*20 + 20*15 +10*15) = 3000 /(200+300+150) = 4,615 Ом;
  • I = 12/ 4,615 ≈ 2,6 А;
  • I1 = 12/ 10 = 1,2 А;
  • I2 = 12/20 = 0,6 А;
  • I3 = 12/15 = 0,8 А.

Как и в предыдущем примере, рекомендуется проверить результат вычислений. При параллельном соединении компонентов должно соблюдаться равенство токов на входе и суммарного значения:

I = 1,2 + 0,6 + 0,8 = 2,6 А.

Если применяется синусоидальный сигнал источника, вычисления усложняются. При включении в однофазную розетку 220V трансформатора придется учитывать потери (утечку) в режиме холостого хода. В этом случае существенное значение имеют индуктивные характеристики обмоток и коэффициент связи (трансформации). Электрическое сопротивление (ХL) зависит от следующих параметров:

  • частоты сигнала (f);
  • индуктивности (L).

Вычисляют ХL по формуле:

Чтобы находить сопротивление емкостной нагрузки, подойдет выражение:

Следует не забывать о том, что в цепях с реактивными компонентами сдвигаются фазы тока и напряжения.

Расчет разветвленной электрической цепи с несколькими источниками питания

Пользуясь рассмотренными принципами, вычисляют характеристики сложных схем. Ниже показано, как найти ток в цепи при наличии двух источников:

  • обозначают компоненты и базовые параметры во всех контурах;
  • составляют уравнения для отдельных узлов: a) I1-I2-I3=0, b) I2-I4+I5=0, c) I4-I5+I6=0;
  • в соответствии со вторым постулатом Кирхгофа, можно записать следующие выражения для контуров: I) E1=R1 (R01+R1)+I3*R3, II) 0=I2*R2+I4*R4+I6*R7+I3*R3, III) -E2=-I5*(R02+R5+R6)-I4*R4;
  • проверка: d) I3+I6-I1=0, внешний контур E1-E2=I1*(r01+R1)+I2*R2-I5*(R02+R5+R6)+I6*R7.

Дополнительные методы расчета цепей

В зависимости от сложности устройства (электрической схемы), выбирают оптимальную технологию вычислений.

Метод узлового напряжения

Основные принципы этого способа базируются на законе Ома и постулатах Кирхгофа. На первом этапе определяют потенциалы в каждом узле. Далее вычисляют токи в отдельных ветвях с учетом соответствующих электрических сопротивлений (отдельных компонентов или эквивалентных значений). Проверку делают по рассмотренным правилам.

Метод эквивалентного генератора

Эта технология подходит для быстрого расчета тока в одной или нескольких контрольных ветвях.

В данной методике общую цепь представляют в виде источника тока с определенным напряжением и внутренним сопротивлением. Далее выполняют вычисления по контрольной ветви с применением стандартного алгоритма.

Видео

Расчет разветвленной линейной электрической цепи постоянного тока с несколькими источниками электрической энергии

Для электрической цепи рис. 1, выполнить следующее:

  1. Составить уравнения для определения токов путем непосредственного применения законов Кирхгофа. Решать эту систему уравнений не следует.
  2. Определить токи в ветвях методом контурных токов.
  3. Построить потенциальную диаграмму для любого замкнутого контура, содержащего обе ЭДС.
  4. Определить режимы работы активных элементов и составить баланс мощностей.

Значения ЭДС источников и сопротивлений приемников:
E1 = 130 В, Е2 = 110 В, R1 = 4 Ом, R2 = 8 Ом, R3 = 21 Ом, R4 = 16 Ом, R5 = 19 Ом, R6 = 16 Ом.

Смотрите также
Пример решения схемы методом контурных токов № 1
Пример решения схемы методом контурных токов № 2
Пример решения схемы методом контурных токов № 3
Пример решения схемы методом контурных токов № 4
Пример решения схемы методом контурных токов № 5
Посмотреть видео «Метод контурных токов 2» (пример решения конкретной задачи)

1. Произвольно расставим направления токов в ветвях цепи, примем направления обхода контуров (против часовой стрелки), обозначим узлы.


Рис. 2

2. Для получения системы уравнений по законам Кирхгофа для расчета токов в ветвях цепи составим по 1-му закону Кирхгофа 3 уравнения (на 1 меньше числа узлов в цепи) для узлов 1,2,3:




По второму закону Кирхгофа составим m – (р – 1) уравнений (где m – кол-во ветвей, р – кол-во узлов ), т.е. 6 – (4 – 1) = 3 для контуров I11, I22, I33:



Токи и напряжения совпадающие с принятым направлением обхода с «+», несовпадающие с «-».
Т.е. полная система уравнений для нашей цепи, составленная по законам Кирхгофа:





3. Определим токи в ветвях методом контурных токов. Зададимся направлениями течения контурных токов в каждом контуре схемы и обозначим их I11, I22, I33 (см. рис. 2)

4. Определим собственные сопротивления трех контуров нашей цепи, а так же взаимное сопротивление контуров:

(Ом)
(Ом)
(Ом)
(Ом)
(Ом)
(Ом)

5. Составим систему уравнений для двух контуров нашей цепи:

Подставим числовые значения и решим.

(А)
(А)
(А)

Определим фактические токи в ветвях цепи:
(А) направление совпадает с выбранным
(А) направление совпадает с выбранным
(А) направление совпадает с выбранным
(А) направление тока потивоположно выбранному
(А) направление совпадает с выбранным
(А) направление совпадает с выбранным

6. Проверим баланс мощностей:

(ВА)
Небольшая разница в полученных результатах является результатом погрешности при округлении числовых значений токов и сопротивлений.

7. Построим потенциальную диаграмму контура изображенного на рис. 3. В качестве начальной точки примем узел 1.

Рис.3

Для построения потенциальной диаграммы определим падения напряжения на каждом сопротивлении, входящем в выбранный контур.
(В)
(В)
(В)
(В)
Потенциал увеличивается если обход осуществляется против направления тока, и понижается если направление обхода совпадает с направлением тока. На участке с ЭДС потенциал изменяется на величину ЭДС. Потенциал повышается в том случае, когда переход от одной точки к другой осуществляется по направлению ЭДС и понижается когда переход осуществляется против направления ЭДС.

Рис. 4. Потенциальная диаграмма. ЗАКАЗАТЬ РАБОТУ!

Задачи на правило Кирхгофа с решением

Мы уже писали про закон Ома, а также параллельное и последовательное соединение проводников. Но это были цветочки. Сегодня разберемся с задачами посложнее: посмотрим, как решаются задачи на правила Кирхгофа.

Не забывайте подписаться на наш телеграм-канал: там вас ждут актуальные новости сферы образования, полезные лайфхаки и скидки для студентов.

Задачи на правило Кирхгофа с решением

Как решать задачи по правилу Кирхгофа? Прежде, чем приступать к решению задач, обязательно изучите теорию. Также мы подготовили для вас универсальную памятку по решению физических задач.

Задача №1 на эквивалентные преобразования соединений проводников.

Условие

Преобразуйте схему с помощью эквивалентных преобразований.

Решение

Кроме основных формул для последовательного и параллельного соединения проводников, существуют формулы для преобразования звезды резисторов в эквивалентный треугольник и наоборот. Треугольник резисторов R2 R3 R4 можно преобразовать в эквивалентную звезду RB RB RD по формулам:

Преобразованная схема будет выглядеть следующим образом:

Ответ: см. выше.

Правила Кирхгофа применяются для сложных цепей(например, для цепей с несколькими источниками питания), когда эквивалентные преобразования не приносят результата.

Задача №2 на первое правило (закон) Кирхгофа

Условие

Необходимо составить уравнения по первому закону Кирхгофа для следующей цепи:

Решение

В данной цепи 4 узла. По первому закону составляем 3 уравнения (на 1 уравнение меньше, чем количества узлов):

Ответ: см. выше.

Для решения задач на правила Кирхгофа необходимо уметь решать системы линейных уравнений. Для решения сложных систем удобно использовать специальные программы: MathCad, MatLab и т.д.

Читайте также  Как рассчитать делитель напряжения на резисторах?

Далее для наглядности рассмотрим задачу с более простой схемой.

Задача №3 на правила Кирхгофа

Условие

Два источника питания E1=2В и E2=1В соединены по схеме, показанной на рисунке. Сопротивление R=5 Ом. Внутреннее сопротивление источников одинаково и равно r1=r2=1 Ом. Определить силу тока, который проходит через сопротивление.

Решение

По первому закону Кирхгофа сумма токов, сходящихся в узле, равна нулю (токи обозначим произвольно):

Выберем направление обхода верхнего контура против часовой стрелки. По второму закону Кирхгофа, сумма падений напряжений в контуре равна сумме ЭДС:

Запишем то же самое для второго контура, обходя его по часовой стрелке:

Объединим уравнения с неизвестными токами в систему:

Чтобы решить систему, выразим силу тока I1 из второго уравнения, а силу тока I2 – из третьего:

Первое уравнение теперь можно записать в виде:

Выражая искомый ток и подставляя значения из условия, получаем:

Ответ: 1,5 А.

Задача №4 на правила Кирхгофа

Условие

Дана схема электрической цепи. Необходимо:

  • обозначить сопротивления, над каждой ветвью указать свой ток и источники ЭДС;
  • указать на схеме направления токов и ЭДС;
  • составить уравнения по первому и второму закону Кирхгофа.

Решение

Приведем схему, обозначив сопротивления, ЭДС и токи:

В схеме 7 токов и 4 узла. Необходимо составить 4 – 1 = 3 уравнения по первому закону Кирхгофа и 7 – 3 = 4 уравнения по второму закону Кирхгофа.

Первый закон Кирхгофа:

Второй закон Кирхгофа (выбранные контуры К1, К2, К3, К4 указаны на рисунке):

Ответ: см. выше.

Задача №5 на правила Кирхнофа

Условие

Определить все токи в ветвях, составив систему уравнений по законам Кирхгофа.

Параметры цепи: E1 = 40 В, E2 = 50 В, E3 = 60 В, R01 = 0,1 Ом, R02 = 0,3 Ом, R03 = 0,2 Ом, R1 = 4,4 Ом, R2 = 4,7 Ом, R3 = 4,6 Ом, R4 = 5,2 Ом, R5 = 7,6 Ом.

Решение

Направления токов в ветвях цепи и направления обхода контуров указаны на схеме. Цепь содержит 3 узла и 3 независимых контура. Таким образом, для расчета токов в ветвях необходимо составить два уравнения по первому закону Кирхгофа и три по второму:

Подставим числовые значения и решим систему уравнений:

Ответ: I1=10,68 А; I2=8,388 А; I3=7,192 А; I4=4,9 А; I5=2,292 А.

Вопросы на правила Кирхгофа

Вопрос 1. Сформулируйте первый закон Кирхгофа.

Ответ. Первый закон Кирхгофа связан с сохранением заряда и формулируется следующим образом:

Для любого узла электрической цепи алгебраическая сумма токов ветвей, подключенных к данному узлу, равна нулю.

Первое правило Кирхгофа является следствием закона сохранения электрического заряда, согласно которому ни в какой точке заряды не могут безгранично накапливаться: количество электричества, притекающее к данной точке за определенный промежуток времени, должно быть равно количеству электричества, оттекающему от неё.

Вопрос 2. Как следует выбирать направления токов в ветвях электрической цепи?

Ответ. Направления токов во всех ветвях электрической цепи задаются произвольно до составления уравнений. Токи, входящие в узел, принято считать положительными, а выходящие из узла – отрицательными.

Вопрос 3. Как формулируется второй закон Кирхгофа?

Ответ. Второй закон Кирхгофа связан с законом сохранения энергии и формулируется следующим образом:

Алгебраическая сумма всех ЭДС контура электрической цепи равна алгебраической сумме напряжений и алгебраической сумме падений напряжений на всех его участках.

Вопрос 4. Что следует учитывать при составлении уравнений второго закона Кирхгофа для цепи и ее конкретного контура.

Ответ. Перед составлением уравнений второго закона Кирхгофа для цепи необходимо произвольно выбрать направления токов во всех ветвях цепи и определить направление обхода контура.

При составлении уравнения для конкретного контура учитываются:

  • токи, входящие в узлы принимаются положительными;
  • ЭДС источников принимаются положительными, если
  • направления их действия (стрелка) совпадает с выбранным направлением обхода (независимо от направления тока в них);
  • падения напряжений в ветвях (IkRk) принимаются положительными, если положительное направление тока совпадает с выбранным направлением обхода;
  • напряжения Uk, включенные в контур, принимаются положительными, если эти напряжения создают ток, направленный также как и направление обхода (направление напряжения, определяемое стрелкой, совпадает с направлением обхода).

Вопрос 5. Что такое эквивалентные преобразования последовательного и параллельного соединения пассивных элементов?

Ответ. Задачей эквивалентного преобразования последовательного и параллельного соединения пассивных элементов, является последовательное упрощение исходной схемы и нахождение эквивалентного сопротивления схемы.

Нужна помощь в решении задач и других студенческих заданий? Профессиональный сервис помощи учащимся окажет оперативную помощь с выполнением любой работы.

  • Контрольная работа от 1 дня / от 120 р. Узнать стоимость
  • Дипломная работа от 7 дней / от 9540 р. Узнать стоимость
  • Курсовая работа 5 дней / от 2160 р. Узнать стоимость
  • Реферат от 1 дня / от 840 р. Узнать стоимость

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: