Достоинства и недостатки приборов электродинамической системы - ELSTROIKOMPLEKT.RU

Достоинства и недостатки приборов электродинамической системы

15. Электромагнитные приборы, принцип действия, достоинства, недостатки, область применения

Электроизмерительные приборы — класс устройств, применяемых для измерения различных электрических величин.

Принцип работы приборов этой системы основан на взаимодействии магнитного поля, создаваемого катушкой со стальным сердечником, помещенным в поле этой катушки. Электромагнитный измерительный механизм выполняют с плоской или круглой катушкой.

Достоинством приборов электромагнитной системы являются простота и надежность конструкции, невысокая стоимость, стойкость к перегрузкам и пригодность для измерений в цепях переменного и постоянного тока.

К недостаткам относятся невысокая точность, малая чувствительность, неравномерность шкалы и зависимость показаний от внешних магнитных полей и частоты переменного тока.

Электромагнитные приборы используют, главным образом, для измерения тока и напряжения в промышленных установках переменного тока.

16. Электродинамические измерительные приборы, принцип действия, достоинства, недостатки, область применения

Принцип действия электродинамических приборов основан на взаимодействии магнитных полей двух катушек одной, неподвижно закрепленной, и другой, сидящей на оси и могущей поворачиваться.

Достоинствами электродинамических приборов являются пригодность для измерения постоянного и переменного тока, равномерность шкалы у ваттметров и относительно высокая точность по сравнению с другими приборами, предназначенными для измерений в цепях переменного тока.

К недостаткам относится сильное влияние внешних магнитных полей на точность измерений, чувствительность к перегрузкам и относительно высокая стоимость.

Электродинамические приборы применяют обычно в качестве точных лабораторных приборов, а также в качестве ваттметров и счетчиков электрической энергии в цепях постоянного тока.

17.Ферродинамические измерительные приборы, принцип действия, достоинства, недостатки, область применения

Работа ферродинамических приборов основана на том же принципе, что и приборов электродинамической системы. Для усиления магнитного поля в ферродинамическом измерительном механизме применен магнитопровод из ферромагнитного материала.

Ферродинамические приборы используют в качестве щитовых амперметров, ваттметров и вольтметров, работающих в условиях тряски и вибраций (например, на э. п. с. переменного тока). Кроме того, их применяют в качестве самопишущих приборов, так как они имеют значительный вращающий момент, преодолевающий трение в записывающих устройствах.

Достоинства: незначительное влияние внешних магнитных полей, большой вращающий момент, прочная конструкция, устойчивость к вибрациям и ударам, небольшая потребляемая мощность.

Недостатки: дополнительные погрешности вследствие влияния гистерезиса и вихревых токов, зависимость показаний от частоты, невысокая точность щитовых приборов – обычно 1,5; 2,0.

18 Электростатические измерительные приборы, принцип действия, достоинства, недостатки, область применения

Принцип действия: основой электростатических приборов является электростатический измерительный механизм с отсчетным устройством.

Они применяются, главным образом, для измерения напряжений переменного и постоянного тока. Находят применение также электрометры — электростатические приборы специальной конструкции, требующие вспомогательных источников питания. Электрометры обладают повышенной чувствительностью к напряжению.

Достоинствами электростатических приборов являются:

малое собственное потребление мощности, что объясняется малыми токами утечки и малыми диэлектрическими потерями в изоляции, малой емкостью измерительного механизма, большой диапазон измеряемых напряжений, возможность измерений на постоянном и на переменном токе, независимость показаний от частоты в широком диапазоне и формы измеряемого напряжения, независимость показаний от внешних магнитных полей.

К недостаткам электростатических приборов можно отнести:

малую чувствительность по напряжению, влияние внешних электростатических полей, что требует экранирование измерительного механизма, неравномерную шкалу (при соответствующем выборе формы подвижных и неподвижных электродов можно получить практически равномерную шкалу на участке от 15-25 % до 100 % от ее номинального значения).

Электродинамические приборы

Состав узла для создания вращающего момента. Взаимодействие магнитных полей неподвижной и подвижной катушек. Достоинства и недостатки приборов электродинамической системы. Принцип действия амперметра, ферродинамического и термоэлектрического прибора.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 20.02.2014
Размер файла 30,7 K
  • посмотреть текст работы
  • скачать работу можно здесь
  • полная информация о работе
  • весь список подобных работ

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Электродинамические приборы

Узел для создания вращающего момента состоит из неподвижной катушки, внутри которой помещена подвижная.

Принцип действия заключается во взаимодействии магнитных полей неподвижной и подвижной катушек, по которым протекают измеряемые токи. магнитное электродинамический прибор амперметр

Неподвижная катушка разделена на две половины, по которым протекает ток I1. Подвижная катушка расположена внутри неподвижной, и по ней протекает ток I2, который подводится через спиральные противодействующие пружины или растяжки. Успокоение обычно воздушное.

Энергия, запасенная в обеих катушках,

где M1,2 — взаимная индуктивность между катушками.

Формула вращающего момента

и уравнение отклонения указателя

Если через катушки пропустить переменные синусоидальные токи и , то подвижная часть прибора будет реагировать на среднее значение вращающего момента

где I1 и I2 — действующие значения тока;

— фазовый сдвиг между ними.

Значит уравнение (15) для переменного тока примет вид:

Из формул ясно, что показания приборов электродинамической системы пропорциональны произведению токов, протекающих по катушкам; градуировка шкалы на постоянном токе справедлива и для переменных токов.

К достоинствам этих приборов относятся:

— возможность перемножать измеряемые величины, т.е. измерять мощность;

— малая погрешность, так как в механизме нет железа.

— значительное потребление мощности;

— влияние температуры, частоты и внешнего магнитного поля.

Выпускаются амперметры электродинамической системы для применения в цепях постоянного и переменного тока с частотами 50, 400, 1000, 2000, 3000 Гц.

Для измерения силы тока обе катушки соединяют параллельно или последовательно. При этом один и тот же ток протекает по обеим катушкам.

Уравнение (15) будет иметь вид:

где SI — чувствительность по току.

При параллельном соединении катушек пределы измерения тока будут больше чем при последовательном.

Щитовые амперметры непосредственного включения выпускают с пределами измерений от 1 до 200 А. Расширение пределов (до 6кА) осуществляется при помощи измерительных трансформаторов тока.

Ферродинамические приборы.

Ферродинамические приборы являются разновидностью электродинамических с тем отличием, что неподвижные катушки заключены в сердечники из ферромагнитного материала.

Такая конструкция обеспечивает значительное увеличение вращающего момента и хорошую защиту от внешних магнитных полей.

Однако это приводит к увеличению погрешности прибора.

Термоэлектрические приборы.

Приборы с термопреобразованием предназначены для работы в цепях переменного тока в диапазоне низких и высоких частот.

Термоэлектрический прибор состоит из термоэлектрического преобразователя и магнитоэлектрического амперметра.

Преобразователь представляет собой нагреватель (1), по которому протекает измеряемый ток I, и связанную с ним термопару. Во время измерения температура места соединения нагревателя и термопары приобретают значение Т1, а свободные концы термопары имеют температуру окружающего пространства T2.

Разность температур вызывает термо-ЭДС

где а — коэффициент пропорциональности, зависящий от материала термопары и ее конструкции.

В установившемся состоянии вследствие тепловой инерции температура нагревателя T1 постоянна и определяется рассеиваемой на нем мощностью.

Запишем такое выражение

где k — коэффициент теплоотдачи.

Из этих выражений для термо-ЭДС запишем

где — коэффициент пропорциональности;

Rн — сопротивление нагревателя;

I 2 -квадратичное значение измеряемого тока.

Нагреватель включают последовательно в разрыв измеряемой цепи, а возникающую термо-ЭДС измеряют микроамперметром, работающим как милливольтметр.

Шкалу прибора градуируют в среднеквадратических значениях измеряемого тока.

Термоэлектрические преобразователи разделяются на контактные, бесконтактные и вакуумные.

В контактном преобразователе имеется гальваническая связь между нагревателем и термопарой, т.е. между входной и выходной цепями, что не всегда допустимо.

В бесконтактном преобразователе нагреватель отделен от термопары стеклянной или керамической бусинкой, так что между ними существует только незначительная емкостная связь. Чувствительность бесконтактного преобразователя ниже, чем у контактного. И у вакуумного термопреобразователя ниже, чем у контактного.

В вакуумном термопреобразователе нагреватель и термопара помещены в стеклянный баллончик.

Нагреватель представляет собой тонкую проволочку из манганина или нихрома. Термопара состоит из разнородных материалов и сплавов, устойчивых при высоких температурах. Термоэлектрические приборы получили широкое распространение в качестве амперметров и миллиамперметров.

Максимальное значение измеряемого тока определяется сечением нагревателя и составляет от единиц миллиампер до десятков ампер. При необходимости измерения токов больших значений применяют трансформаторы тока.

Максимальная частота измеряемого тока зависит от сечения нагревателя и его длины и при минимальных размерах достигает сотен мегагерц.

К достоинствам термоэлектрических приборов следует отнести

— независимость показаний от формы кривой измеряемого тока.

Выпрямительные приборы.

Для измерения переменного тока в цепях повышенной частоты широко применяют выпрямительные приборы, состоящие из выпрямительного преобразователя и магнитоэлектрического амперметра.

В качестве выпрямительных элементов используются полупроводниковые (германиевые или кремниевые) диоды, выпрямляющее действие которых определяется коэффициентом выпрямления

где Iпр и Iоб — прямой и обратный токи; Rпр и Rоб — прямое и обратное сопротивление диода.

Коэффициент выпрямления зависит от частоты и значения преобразуемой электрической величины и от температуры окружающей среды.

С повышением частоты часть тока ответвляется через внутреннюю емкость диода и коэффициент выпрямления уменьшается.

Выпрямительные приборы работают по схемам одно- или двухполупериодного выпрямления.

Ток в течение положительного полупериода проходит по измерительной ветви (открыт диод Д1 и витки катушки миллиамперметра), в течение отрицательного полупериода — по защитной ветви (диод Д2 и резистор R). Обе ветви идентичны, сопротивление резистора R равно сопротивлению катушки миллиамперметра Ra .

Через диод Д1 проходит пульсирующий ток i а показания миллиамперметра пропорционально постоянной составляющей тока или среднему значению Iср.

Если измеряемый ток синусоидальной формы, то

В схеме с двухполупериодного выпрямления измеряемый ток в течение положительного полупериода проходит по цепи Д1 — миллиамперметр — Д3 , а в течение отрицательного — Д2 — миллиамперметр — Д4.

Показание миллиамперметра пропорционально средневыпрямленному значению переменного тока.

Для синусоидального тока

магнитный электродинамический амперметр

Шкалу выпрямительного прибора всегда градуируют в среднеквадратических значениях тока синусоидальной формы.

а — угол отклонения стрелки

Главными источниками погрешностей выпрямительных приборов являются:

— погрешность градуировки миллиамперметра;

— изменение температуры окружающей среды;

— выход частоты за пределы рабочего диапазона;

— отклонение формы кривой измеряемого тока от синусоидальной.

В многопредельных амперметрах набор таких шунтов помещают внутри корпуса и переключают наружным ручным переключателем.

Выпрямительный вольтметр состоит из миллиамперметра и добавочного резистора Rд. Добавочные резисторы располагаются внутри корпуса многопредельного вольтметра и переключают их при изменении предела измерения.

Выпрямительные приборы получили широкое распространение в качестве комбинированных измерителей постоянного и переменного тока и напряжения. Снабженные источником постоянного напряжения, они могут использоваться для измерения электрического сопротивления.

Размещено на Allbest.ru

Подобные документы

Электродинамические измерительные приборы и их применение. Электродинамический преобразователь. Взаимодействие магнитных полей токов. Амперметры, ваттметры, фазометры на основе электродинамических преобразователей. Электромагнитные измерительные приборы.

реферат [101,8 K], добавлен 12.11.2008

Исследование конструкции амперметра на растяжках. Расчет силы Лоренца, электромагнитного момента спирали, угла скручивания растяжки. Выражение значения полярного момента инерции. Определение параметров подвижной системы электроизмерительного прибора.

практическая работа [68,6 K], добавлен 26.06.2015

Методы амперметра и вольтметра, ваттметра и баллистического гальванометра при измерении емкости. Формулы определения шунтов и добавочных резисторов. Устройство и работа измерительного механизма электродинамической системы, ее достоинства и недостатки.

контрольная работа [586,3 K], добавлен 05.11.2010

Особая точность электродинамических приборов, их разновидности и применение для определения тока и напряжения в цепях переменного и постоянного тока. Принцип действия ваттметра, устройство магнитоэлектрического логометра, их распространение и применение.

реферат [511,9 K], добавлен 25.11.2010

Исследование истории развития электрических измерительных приборов. Анализ принципа действия магнитоэлектрических, индукционных, стрелочных и электродинамических измерительных приборов. Характеристика устройства для создания противодействующего момента.

курсовая работа [1,1 M], добавлен 24.06.2012

Электродинамические приборы

Устройство и принцип действия электродинамического ИМ

Принцип действия электродинамического измерительного механизма основан на взаимодействии магнитных полей двух систем проводников с током.

На рис. 4.9 схематически показано устройство электродинамического измерительного механизма, который состоит из подвижной 1 и неподвижной 2 катушек (рамок), стрелки 3, жестко прикрепленной к подвижной катушке, и шкалы 4, вдоль которой перемещается указатель стрелки.

Риc. 4.10. Устройство электродинамического измерительного механизма

Применяют круглые или прямоугольные катушки. Обычно неподвижная катушка состоит из двух одинаковых частей, разделенных воздушным зазором. Вращающий момент создается при взаимодействии магнитного поля, создаваемого током I1, проходящим по катушке 1, и магнитным полем, создаваемым током, проходящим через катушки возбуждения 2. Электромагнитная энергия We двух контуров с токами

где L1, L2 — индуктивность подвижной и неподвижной катушек; M1,2 — взаимная индуктивность катушек 1 и 2.

Так как индуктивность катушек не зависит от угла поворота, поэтому вращающий момент, действующий на подвижную катушку 1

При механическом создании противодействующего момента угол отклонения подвижной может быть определен по формуле:

При включении электродинамического механизма в цепь переменного тока угол отклонения:

где I1 и I2 — действующие значения токов; y — угол сдвига фаз между векторами токов I1 и I2 .

В электродинамических логометрических измерительных механизмах противодействующий момент создается электрическим способом. Подвижная часть такого механизма состоит из двух жестко закрепленных между собой под определенным углом g катушек. Угол отклонения a зависит от отношения токов I1/I2.

Области применения, достоинства и недостатки

Приборы электродинамической системы могут применяться как в цепях постоянного, так и в цепях переменного тока. Шкала приборов неравномерная. Характер шкалы зависит от формы катушек и их взаимного расположения. Изменяя множитель dM1,2/da, можно улучшить шкалу так, что в начале шкалы будет иметь место неравномерность, а далее шкала будет практически равномерной. Электродинамические ваттметры имеют практически равномерную шкалу, амперметры и вольтметры — равномерную шкалу, начиная с 15-20 % ее номинального значения.

Электродинамические приборы применяют в качестве: ваттметров постоянного тока и однофазных, трехфазных, малокосинусных ваттметров переменного тока, амперметров и вольтметров переменного и постоянного токов. Электродинамические логометрические измерительные механизмы применяются в фазометрах, частотомерах, фарадомерах. Выпускаются комбинированные приборы — ампервольтваттметры.

Электродинамические амперметры выполняются по двум схемам, показанным на рис. 4.11 а и 4.11 б.

Рис. 4.11. Схемы включения катушек электродинамического механизма

Последовательное соединение катушек (рис. 4.11 а) используется в амперметрах, предназначенных для измерения малых токов (до 0,5 А). Так как y = 0 и I1 = I2 = I, уравнение преобразования амперметра сводится к виду

В параллельной схеме (рис. 4.11 б), которая используется при больших токах (до 10 А), подбором индуктивностей L1, L2 и резистора R в цепях катушек задаются токи I1 = k1I; I2 = k2I и разность фаз y =0. Уравнение преобразования амперметра будет иметь вид:

Для выполнения электродинамического вольтметра последовательно с катушками, соединенными по схеме (рис. 4.11 а), включается добавочный резистор RД, как показано на рис. 4.11 в. Уравнение преобразования вольтметра имеет вид:

где R = RД + RV — общее сопротивление цепи.

Наиболее важной группой электродинамических приборов являются ваттметры. На рис. 4.11 г представлена простейшая схема однопредельного электродинамического ваттметра.

Учитывая, что I1 = IН и I2 = U/(R2 + RД), уравнение преобразования электродинамического ваттметра постоянного тока может быть записано в виде

На переменном токе уравнение преобразования:

где j — угол сдвига фаз между приложенным напряжением U и током IH в нагрузке RН; R2 – сопротивление параллельной катушки; Ра — активная мощность нагрузки.

Из выражений (4.18), (4.19) видно, что шкала ваттметров равномерная.

Основными достоинствами электродинамических приборов являются:

— возможность использования в цепях как постоянного, так и переменного токов;

— возможность градуировки на постоянном токе;

— высокая стабильность показаний во времени;

— высокий класс точности (например, выпускаются электродинамические амперметры и миллиамперметры, вольтметры, однофазные ваттметры класса точности 0,05, частотомеры — класса 0,5).

Высокая точность приборов обусловлена отсутствием в них, в отличие от других электромеханических приборов, ферромагнитных элементов.

В качестве недостатков таких приборов можно отметить следующие:

— влияние внешних магнитных полей и механических воздействий;

— большую мощность потребления.

По чувствительности электродинамические приборы уступают магнитоэлектрическим. Однако применение растяжек и светового указателя позволяют уменьшить собственное потребление мощности (имеются миллиамперметры с током полного отклонения 1 мА).

Погрешности электродинамических приборов

Погрешностями электродинамических приборов являются: температурная и частотная погрешности; погрешность из-за влияния внешних магнитных полей и др.

Температурная погрешность gt возникает вследствие изменения сопротивления обмоток рамок (катушек) и изменения упругих свойств растяжек или пружинок при изменении температуры. Для компенсации температурной погрешности применяют специальные схемы, например, последовательно-параллельная схема, подобная схеме, приведенной на рис 4.4, позволяет снизить температурную погрешность многопредельного электродинамического ваттметра до gt £ 0,1 %

Частотная погрешность обусловлена зависимостью полного сопротивления катушек от частоты, изменением фазовых соотношений электродинамического прибора, взаимной индуктивностью катушек. Для уменьшения частотной погрешности в параллельную цепь последовательно с обмоткой рамки может быть включен конденсатор С @ L /R1 (L и R1 — индуктивность и сопротивление подвижной катушки).

Погрешность от влияния внешних магнитных полей уменьшается с помощью магнитных экранов.

Реферат: Электродинамические приборы

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО

ПРОВЕЦИОНАЛЬНОГО ОБРАЗОВАНИЯ «СЕВЕРО-ВОСТОЧНЫЙ

ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ имени М.К.АММОСОВА»

ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (Ф) в. г. МИРНОМ

Кафедра «Электроснабжения и электромеханики»

На тему: Электродинамические приборы

Выполнил: ст. гр ЭС -07 Васильев С.С.

Проверил: преподаватель Иванова Е.В

Электродинамический измерительный прибор

М3-52 измеритель мощности

Электродинамические приборы — наиболее точные электроизмерительные приборы, применяемые для определения действующих значений тока и напряжения в цепях переменного и постоянного тока. При последовательном соединении обмоток катушек угол поворота стрелки пропорционален квадрату измеряемой величины. Такое включение обмоток применяется в Э. п. для измерения напряжения и силы тока (Вольтметры и Амперметры).

Электродинамические измерительные механизмы используют также для измерения мощности (Ваттметры). При этом через неподвижную катушку пропускают ток, пропорциональный току, а через подвижную — ток, пропорциональный напряжению в измеряемой цепи. Показания прибора пропорциональны активному или реактивному значению электрической мощности. В случае исполнения электродинамических механизмов в виде Логометров их применяют как частотомеры, фазометры и фарадометры. Э. п. изготовляют главным образом переносными приборами высокой точности — классов 0,1; 0,2; 0,5. Разновидность Э. п. — ферродинамический прибор, котором для усиления магнитного поля неподвижной катушки применяют магнитопровод из ферромагнитного материала. Такие приборы предназначаются для работы в условиях вибрации, тряски и ударов. Класс точности ферродинамических приборов 1,5 и 2,5.

Электродинамический измерительный прибор

Измерительный прибор, принцип действия которого основан на механическом взаимодействии двух проводников при протекании по ним электрического тока. Э. п. состоит из измерительного преобразователя (См. Измерительный преобразователь), преобразующего измеряемую величину в переменный или постоянный ток, и измерительного механизма электродинамической системы (рис.). Наиболее распространены Э. п. с подвижной катушкой, внутри которой на оси со стрелкой расположена подвижная катушка. Вращающий момент на оси возникает в результате взаимодействия токов в обмотках катушек 1 и 2 и пропорционален произведению действующих значений этих токов. Уравновешивающий момент создаёт пружина, с которой связана ось. При равенстве моментов стрелка останавливается.

Э. п. — наиболее точные электроизмерительные приборы, применяемые для определения действующих значений тока и напряжения в цепях переменного и постоянного тока. При последовательном соединении обмоток катушек угол поворота стрелки пропорционален квадрату измеряемой величины. Такое включение обмоток применяется в Э. п. для измерения напряжения и силы тока (Вольтметры и Амперметры). Электродинамические измерительные механизмы используют также для измерения мощности (Ваттметры). При этом через неподвижную катушку пропускают ток, пропорциональный току, а через подвижную — ток, пропорциональный напряжению в измеряемой цепи. Показания прибора пропорциональны активному или реактивному значению электрической мощности. В случае исполнения электродинамических механизмов в виде Логометров их применяют как частотомеры, фазометры и фарадометры. Э. п. изготовляют главным образом переносными приборами высокой точности — классов 0,1; 0,2; 0,5. Разновидность Э. п. — ферродинамический прибор, котором для усиления магнитного поля неподвижной катушки применяют магнитопровод из ферромагнитного материала. Такие приборы предназначаются для работы в условиях вибрации, тряски и ударов. Класс точности ферродинамических приборов 1,5 и 2,5.

Электродинамический измерительный прибор: 1 и 2 — неподвижная и подвижная катушки; 3 — ось; 4 — пружина; 5 — стрелка; 6 — шкала.

Электродинамический прибор

Основными частями электродинамического прибора (рис. 81) являются: неподвижная катушка 2 и подвижная катушка 1, расположенная на оси 6, к которой прикреплена стрелка 5.

Ось связана с алюминиевым крылом воздушного успокоителя 4, помещающегося в камере 3. Ток к подвижной катушке подводится через спиральные пружины 7, создающие противодействующий момент. С нижней пружиной соединен корректор 8.

Работа приборов электродинамической системы основана на взаимодействии токов в двух обмотках. Сила этого взаимодействия поворачивает подвижную обмотку вместе с осью и стрелкой. Угол поворота зависит от силы тока, протекающего по обмоткам, и силы противодействия спиральных пружин.

Электродинамические приборы можно применять в цепях постоянного и переменного тока. Это объясняется тем, что изменение направления переменного тока происходит одновременно в обеих катушках, вследствие чего направление силы взаимодействия между ними остается неизменным.

Электродинамические приборы употребляют для измерения силы тока, напряжения и мощности.

К преимуществам приборов этой системы наряду с возможностью использования их в цепях постоянного и переменного тока относится высокая точность. Недостатками их являются: влияние внешних магнитных полей на результаты измерения, большое собственное потребление мощности, относительно малая устойчивость к перегрузкам, малая чувствительность и высокая стоимость. Разновидностью приборов электродинамической системы являются широко распространенные, главным образом в качестве щитовых ваттметров, ферродинамические приборы (рис. 82), действие которых основано на том же принципе.

Однако в отличие от приборов электродинамической системы у ферродинамических приборов неподвижные обмотки помещаются на стальном сердечнике, который усиливает магнитное поле и вращающий момент прибора, а также уменьшает влияние внешних магнитных полей на его показания. Катушки электродинамических приборов соединяются между собой в зависимости от их назначения. В амперметрах катушки в большинстве случаев соединяют параллельно, в вольтметрах — последовательно, а в ваттметрах одна катушка включается в цепь последовательно, как амперметр, а другая — параллельно нагрузке, как вольтметр.

М3-52 измеритель мощности

При помощи приборов М3-52 можно с высокой точностью измерять мощность синусоидальных сигналов и среднее значение мощности импульсно-модулированных СВЧ сигналов в коаксиальных и волноводных трактах.

Каждый ваттметр состоит из измерительного блока Я2М-66 и выносного приемного преобразователя СВЧ мощности. Измерительный блок с цифровой индикацией обладает высокой точностью измерений и малым дрейфом нуля. Имеет выход на самописец и ЦПМ.

Принцип действия ваттметров основан на преобразовании СВЧ мощности в тепловой вид энергии и измерении образуемой на выходе приемного преобразователя термоЭДС.

Особенностью ваттметров является то, что при работе в течение длительного времени нет необходимости в перекалибровке. Управление работой ваттметров может осуществляться вручную, полуавтоматически и дистанционно.

Ваттметр (от ватт и . метр ), прибор для измерения мощности электрического тока в ваттах. Наиболее распространены электродинамические В. (см. Электродинамический прибор ), механизм которых (рис .) состоит из неподвижной катушки 1, включенной последовательно с нагрузкой Н (цепь тока), и подвижной катушки 2, включенной через большое добавочное сопротивление R параллельно нагрузке (цепь напряжения). Работа В. такого типа основана на взаимодействии магнитных полей подвижной и неподвижной катушек при прохождении по ним электрического тока. При этом вращающий момент, вызывающий отклонение подвижной части прибора и соединённой с ней стрелки (указателя), при постоянном токе пропорционален произведению силы тока на напряжение, а при переменном токе — также косинусу угла сдвига фаз между током и напряжением. Применяются также ферродинамические В., реже индукционные, термоэлектрические и электростатические.

Логометр (от греч. lógos — слово, здесь — отношение и . метр

Механизм приборов для измерения отношения сил двух электрических токов. Принцип действия Л. основан на том, что направленные встречно вращающие моменты, возникающие вследствие воздействия на подвижную часть Л. величин, входящих в измеряемое отношение, уравновешиваются при отклонении подвижной части на некоторый угол. Например, подвижную часть магнитоэлектрического Л. образуют две скрепленные под углом рамки, токи к которым подводятся через безмоментные спирали (рис. ,а). Находясь в поле постоянного магнита, рамки стремятся повернуться в направлении действия большего момента, и подвижная часть отклоняется до тех пор, пока моменты не уравновесятся. Л. широко применяются в различных схемах для измерения электрических величин: ёмкости, индуктивности, сопротивления. Например, при использовании Л. в Омметре(рис. , б) угол α, на который отклоняется подвижная часть Л., зависит только от отношения сил токов I1 и I2 ,

т. e. при постоянных r и r1 отклонение подвижной части пропорционально измеряемому сопротивлению; шкала Л. градуируется непосредственно в омах (ом). Широко распространены также Л. электродинамических и ферродинамических систем.

Устройство магнитоэлектрического логометра (а) и схема омметра с магнитоэлектрическим логометром (б): M1 , M2 — вращающие моменты; l1 , I2 — токи в цепях омметра; U — источник питания; r — сопротивление рамок логометра; r1 — омическое сопротивление; rx — измеряемое сопротивление; 1, 2 — рамки логометра; 3 — сердечник; 4 — постоянный магнит.

Электродинамические приборы употребляют для измерения силы тока, напряжения и мощности. К преимуществам приборов этой системы наряду с возможностью использования их в цепях постоянного и переменного тока относится высокая точность. Недостатками их являются: влияние внешних магнитных полей на результаты измерения, большое собственное потребление мощности, относительно малая устойчивость к перегрузкам, малая чувствительность и высокая стоимость. Разновидностью приборов электродинамической системы являются широко распространенные, главным образом в качестве щитовых ваттметров, ферродинамические приборы действие которых основано на том же принципе.

Список литературы

1. Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

2. Шкурин Г. П., Справочник по электроизмерительным и радиоизмерительным приборам, 3 изд., т. 1, М., 1960.

Приборы электродинамической системы

Приборы электродинамической системы (обозначаются знаком ) предназначены для измерения силы тока, напряжения и мощности в цепях переменного и постоянного тока.

Принцип действия приборов электродинамической системы основан на взаимодействии катушек, по которым протекает ток: неподвижной 1 и подвижной 2 (рис. 3).

Подвижная катушка укреплена на оси и расположена внутри неподвижной катушки. На оси , помимо подвижной катушки, укреплены указательная стрелка 3 и спиральные пружинки и , через которые подводится ток к обмотке катушки 2. Эти же пружинки создают противодействующий момент , пропорциональный углу закручивания :

.

Ток подвижной катушки взаимодействует с магнитным потоком неподвижной катушки. При постоянном токе сила , действующая на проводники подвижной катушки, пропорциональна току и магнитному потоку . Поскольку поток пропорционален току неподвижной катушки, вращающий момент, действующий на подвижную катушку, пропорционален произведению токов катушек:

,

где и — коэффициенты пропорциональности.

Рисунок 3. Устройство электроизмерительного прибора электродинамической системы.

При равенстве моментов подвижная катушка поворачивается на угол и стрелка указывает на шкале числовое значение измеряемой электрической величины:

.

При (катушки соединены последовательно) , следовательно, шкала прибора неравномерная. Для успокоения подвижной части прибора используют воздушные демпферы.

При перемене направления тока в обеих катушках направление вращающего момента не меняется. Отсюда следует, что приборы данной системы пригодны для измерений как на постоянном, так и на переменном токе.

В электроизмерительной практике для измерения потребляемой в цепи мощности применяется электродинамический ваттметр. Он состоит из двух катушек: неподвижной, с небольшим числом витков толстой проволоки, включенной последовательно с тем участком цепи, в котором требуется измерить потребляемую мощность, и подвижной, содержащей большое число витков тонкой проволоки и закрепленной на оси внутри неподвижной катушки. Подвижная катушка включается в цепь подобно вольтметру, т.е. параллельно нагрузке потребителю , и для увеличения ее сопротивления последовательно с ней вводится добавочное сопротивление (рис. 4).

Рисунок 4. Схема прибора электродинамической системы для измерения мощности.

Пусть ток в первой катушке , во второй . По закону Ома напряжение на зажимах нагрузки равно:

,

.

Подставив значение в выражение для угла отклонения стрелки , получим

,

где , а .

Таким образом, отклонение подвижной части пропорционально мощности, выделяемой на нагрузке, и поэтому шкалу прибора можно проградуировать в ваттах. Ваттметр этой системы имеет равномерную шкалу.

Достоинствами приборов электродинамической системы являются: возможность измерения как на постоянном, так и на переменном токе, хорошая точность. К недостаткам приборов этой системы относятся: неравномерность шкалы у амперметров и вольтметров, чувствительность к внешним магнитным полям, большая чувствительность к перегрузкам. Электродинамические амперметры и вольтметры применяются главным образом в качестве контрольных приборов для измерений в цепях переменного тока.

Приборы тепловой системы

Приборы тепловой системы (обозначаются знаком ) предназначены для измерения силы тока и напряжения в цепях переменного и постоянного тока.

Принцип действия приборов тепловой системы основан на изменении длины проводника, по которому протекает ток, вследствие его нагревания. Устройство прибора тепловой системы схематично показано на рис. 5. Измеряемый ток проходит по тонкой проволочке 1-2, концы которой закреплены. Эта проволочка диаметром около 0,1 мм изготавливается из сплава платины с иридием или серебром. К ней примерно посередине припаяна металлическая нить 3-4, которая оттягивается тонкой шелковой нитью 4-5, перекинутой через блок 6. Конец этой нити прикреплен к стальной пружине 7, которая и производит натяжение нити. К блоку 6 прикреплена стрелка 8, перемещающаяся над шкалой 9. При прохождении тока по проволоке 1-2 происходит ее нагревание, в результате чего она удлиняется, натяжение нитей 3-4 и 4-5 несколько ослабевает и пружина отходит влево, что вызывает отклонение стрелки.

Рисунок 5. Устройство электроизмерительного прибора тепловой системы.

Так как количество теплоты, выделяемой в проволочке, пропорционально квадрату силы тока и не зависит от направления тока, то приборы тепловой системы пригодны для измерения как на постоянном, так и на переменном токе; шкала прибора неравномерная.

Для установки стрелки на нуль один из зажимов (корректор), к которым прикреплена нить, делается подвижным, в виде рычага 10, способного вращаться вокруг оси. Ввинчивая или вывинчивая микрометрический винт 11, можно усилить или ослабить натяжение нити и тем самым привести стрелку прибора на нулевое деление шкалы.

Достоинствами приборов тепловой системы являются: возможность измерений как на постоянном, так и на переменном токе; независимость показаний от частоты и формы переменного сигнала, что позволяет применять их для измерения высокочастотных токов; нечувствительность к внешним магнитным полям. К недостаткам приборов данной системы относятся: неравномерность шкалы; наличие тепловой инерции, в связи с которой необходимо выжидать некоторое время, пока указатель прибора окончательно установится; зависимость показаний от температуры окружающей среды.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: