Каким прибором измеряется индуктивность? - ELSTROIKOMPLEKT.RU

Каким прибором измеряется индуктивность?

LC-метр

Прибор LC-метр образуется от сокращенных названий измеряемых единиц. Как вы помните, в электронике индуктивность обозначается буквой L, а емкость буквой C. Вот отсюда и пошло название прибора. Или иными словами, LC-метр – это прибор для измерения значений индуктивности и емкости.

Описание LC-метра

На фото он выглядит примерно вот так:

LC-метр на вид напоминает мультиметр. Он также имеет два щупа для измерения значений катушки индуктивности и емкости. Выводы конденсаторов можно пихать либо в отверстия для конденсаторов, там где написано Cx, а можно и напрямую к щупам. Проще и быстрее все-таки подсоединять к щупам. Индуктивность и емкость измеряются очень просто, выставляем предел измерения, покрутив крутилку, и смотрим обозначение на дисплее LC-метра. Как говорится, даже маленький ребенок без труда освоит эту “игрушку”.

Как измерить емкость LC-метром

Вот у нас четыре испытуемых конденсатора. Трое из них – неполярные, а один – полярный (черный с серой полосой)

Давайте разберемся с обозначениями на конденсаторе. 0,022 мкФ – это его емкость, то есть 0,022 микрофарад. Далее +-5% – это его погрешность. То есть измеряемое значение может быть на плюс или минус 5% больше или меньше. Если больше или меньше 5 % – значит конденсатор у нас плохой, и его желательно не использовать. Пять процентов от 0,022 – это 0,001. Следовательно, конденсатор можно считать вполне рабочим, если его измеряемая емкость будет находится в диапазоне от 0,021 до 0,023. У нас значение 0,025. Если даже учесть погрешность измерения прибора – это не есть хорошо. Выкидываем его куда подальше. Ах да, обратите внимание на вольты, которые пишутся после процентов. Там написано 200 Вольт – это значит, что он рассчитан на напряжение до 200 Вольт. Если у него в схеме будет на выводах напряжение больше 200 Вольт, то он, скорее всего, выйдет из строя.

Если, например, на конденсаторе указано 220 В, то это – максимальное значение напряжения. С учётом того, что в сетях переменного тока указываются действующие значения, то такой конденсатор не подойдёт для применения при напряжении сети 220 В, так как максимальное значение напряжения в этой сети = 220 В х 1,4 (то есть корень из 2) = 310 В. Конденсатор надо выбрать такой, чтобы он был рассчитан на напряжение намного превышающее 310 Вольт.

Следующий советский конденсатор

0,47 микрофарад. Погрешность +-10 %. Это значит 0,047 в ту и другую сторону. Его можно считать нормальным в диапазоне 0,423-0,517микроФарад. На LC-метре 0,489 – следовательно, он вполне работоспособный.

Следующий импортный конденсатор

На нем написано ,22 – это значит 0,22 микрофарад. 160 – это предел напряжения. Вполне нормальный конденсатор.

И следующий электролитический или, как его называют радиолюбители, электролит. 2,2 микрофарада на 50 Вольт.

Как измерить индуктивность LC-метром

Давайте замеряем индуктивность катушки индуктивности. Берем катушку и цепляемся к ее выводам. 0,029 миллигенри или 29 микрогенри.

Таким же образом можно проверить другие катушки индуктивности.

Где купить LC-метр

В настоящее время прогресс дошел до того, что можно купить универсальный R/L/C/Transistor-metr, который умеет замерять почти все параметры радиоэлектронных компонентов

Ну для эстетов все таки есть нормальные LC-метры, которые в один клик можно приобрести с Китая в интернет-магазине Алиэкспресс ;-)

Вот страничка на LC-метры.

Вывод

Катушки индуктивности и конденсаторы – незаменимая вещь в электронике и электротехнике. Очень важно знать их параметры, потому как малейшее отклонение параметра от значения написанного на них может сильно изменить работу схемы, особенно это касается приемопередающей аппаратуры. Измеряйте, измеряйте и еще раз измеряйте!

Измерение индуктивности и емкости с помощью мультиметра и компьютера

Сегодня на рынке много сравнительно дешевых цифровых мультиметров измеряющих сопротивления в широких пределах и емкости конденсаторов до 20 мкФ и более. Однако приборы, измеряющие индуктивности сравнительно дороги, да и нужны они не каждый день.

Электрику-ремонтнику довольно частот приходится измерять индуктивность катушек реле, обмоток трансформаторов и т. п. для определения их исправности. При этом самостоятельное изготовление прибора или приставки для измерения индуктивности затрудняется том, что для него требуется источника питания и частотомер для настройки генератора. Надо отметить, что в таких приборах (приставках) предлагаемых в различных источниках стабильность частоты и амплитуды генератора не высока. Отсюда и точность измерений также не высока.

Предлагается предельно простой прибор на базе компьютера и цифрового вольтметра позволяющий измерять индуктивности от 10 мкГн до 1 Гн и емкости от 10 пФ до 1 мкФ с достаточно высокой точностью, которая определяется точностью вольтметра.

Как известно, импеданс индуктивности описывается формулой:

Перепишем формулу следующим образом:

ZL = kL где k = 2πf коэффициент пропорцио­нальности.

Для упрощения процесса измерения, рассчитаем f таким образом чтобы k равнялся ровно 100000:

f = к/2π = 100000/6,2831853 = 15915,4943 Гц.

Как видим, для k = 10000 необходима частота 1591,5 Гц, а для k = 1000 — 159,15 Гц.

Принцип работы измерителя индуктивностей показан на рис.1, а на рис.2 — измерителя емкости. В обоих случаях компьютер (точнее его зву­ковая карта) выступает в качестве генератора высокостабильного по частоте и напряжению тестового сигнала, а мультиметр — в качестве вольтметра переменного тока.

Если сопротивление источника сигнала превышает сопротивление нагрузки в 10 раз и более можно считать что данный источник сигнала является источником тока. Для выполнения этого условия, комплексное сопротивление измеряемой индуктивности не должно превышать 1/10 резистора R1.

Выходное напряжение генератора должно быть равно 1 В (действующее значение), при этом напряжение на измеряемой индуктивности не должно превышать 100 мВ.

Милливольтметр U2 используется на пределе 100 мВ. В качестве источника сигнала используется звуковая карта компьютера (ноутбука). При этом, в качестве тестовых сигналов используются wav-файлы записанные с помощью аудиоредактора (например, GoldWav) с уровнем 0 дБ. Выходное напряжение звуковой карты как правило несколько больше 1 В. Требуемое напряжение выставляют регулятором громкости. Если оно все же меньше 1 В (что может быть в некоторых ноутбуках), то придется использовать поправочный коэффициент, что вносит некоторые неудобства при измерениях. Предположим выходное напряжение звуковой карты равно 0,91 В. В этом случае поправочный коэффициент равен k = 1/0,91 = 1,1.

Упрощенный вариант прибора показан на рис.З, на котором включенный как вольтметр цифровой мультиметр с автоматическим переключением диапазонов показан как стрелочный прибор.

Пределы измерения с помощью этого прибора сведены в таблицу.

Для оперативного переключения резисторов можно использовать переключатель на 3 положения. Пределы измерения можно расширить если дополнительно использовать резисторы 100 кОм и 1 МОм.

При показаниях вольтметра меньше 10 мВ и больше 100 мВ для повышения точности измерений следует перейти на другой диапазон. Это может быть сделано двумя способами: изменением частоты и переключением номинала резистора.

Если при измерении индуктивности напряжение на проверяемой индуктивности больше 100 мВ, то необходимо увеличить резистор или снизить частоту сигнала и наоборот при напряжении менее 10 мВ.

Читайте также  КПД электронагревательных приборов

Если при измерении емкости показания прибора больше 100 мВ, то необходимо уменьшить резистор или повысить частоту и наоборот при напряжении менее 10 мВ.

Частота тест сигнала, Гц Диапазон измерения индуктивностей и емкостей при сопротивлении резистора R1
100 10к
15915 10…100 мкГн 0,1…1 мГн 1…10 мГн
1…10 нф 100…1000 пф 10…100 пф
1591,5 0,1…1 мГн 1…10 мГн 10…100 мГн
10…100 нФ 1…10 нф 10…1000пФ
159,15 1…10 мГн 10…100 мГн 0,1…1 Гн
0,1…1 мкФ 10…100 нф 1…10 нф

Конструкция упрощенного измерителя

Для его изготовления понадобится кабель с разъемом minijack, например, от вышедших из строя телефонов плеера. Если требуется измеритель индуктивности в пределах 0,1… 100 мГн то можно обойтись всего одним резистором 1 кОм и тремя файлами указанных выше сигналов.

На рис.4 показан такой измеритель с двумя резисторами типа СМД номиналами 1 кОм и 10 кОм, при этом пределы измерения расширяются на порядок.

Автор: Александр Петров, г. Могилев

Как измерить емкость и индуктивность

Приборы непосредственной оценки и сравнения

К измерительным приборам непосредственной оценки значения измеряемой емкости относятся микрофарадметры , действие которых базируется на зависимости тока или напряжения в цепи переменного тока от значения включенной в нее измеряемой емкости. Значение емкости определяют по шкале стрелочного измерителя.

Более широко для измерения параметров конденсаторов и индуктивностей применяют уравновешенные мосты переменного тока , позволяющие получить малую погрешность измерения (до 1 %). Питание моста осуществляется от генераторов, работающих на фиксированной частоте 400—1000 Гц. В качестве индикаторов применяют выпрямительные или электронные милливольтметры, а также осциллографические индикаторы.

Измерение производят балансированием моста в результате попеременной подстройки двух его плеч. Отсчет показаний берется по лимбам рукояток тех плеч, которыми сбалансирован мост.

В качестве примера рассмотрим измерительные мосты, являющиеся основой измерителя индуктивности ЕЗ-3 (рис. 1) и измерителя емкости Е8-3 (рис. 2).

Рис. 1. Схема моста для измерения индуктивности

Рис. 2. Схема моста для измерения емкости с малыми (а) и большими (б) потерями

При балансе моста (рис. 1) индуктивность катушки и ее добротность определяют по формулам Lx = R1R2C2; Qx = wR1C1.

При балансе мостов (рис. 2) измеряемая емкость и сопротивление потерь определяют по формулам

Измерение емкости и индуктивности методом амперметра-вольметра

Для измерения малых емкостей (не более 0,01 — 0,05 мкФ) и высокочастотных катушек индуктивности в диапазоне их рабочих частот широко используют резонансные методы Резонансная схема обычно включает в себя генератор высокой частоты, индуктивно или через емкость связанный с измерительным LС-контуром. В качестве индикаторов резонанса применяют чувствительные высокочастотные приборы, реагирующие на ток или напряжение.

Методом амперметра-вольтметра измеряют сравнительно большие емкости и индуктивности при питании измерительной схемы от источника низкой частоты 50 — 1000 Гц.

Для измерения можно воспользоваться схемами рис. 3.

Рисунок 3. Схемы измерения больших (а) и малых (б) сопротивлений переменному току

По показаниям приборов полное сопротивление

из этих выражений можно определить

Когда можно пренебречь активными потерями в конденсаторе или катушке индуктивности, используют схему рис. 4. В этом случае

Рис. 4. Схемы измерения больших (а) и малых (б) сопротивлений методом амперметра — вольтметра

Измерение взаимной индуктивности двух катушек

Измерение взаимной индуктивности двух катушек можно произвести по методу амперметра-вольтметра (рис. 5) и методу последовательно соединенных катушек.

Рис. 5. Измерение взаимной индуктивности по методу амперметра-вольтметра

Значение взаимной индуктивности при измерении по методу амперметра-вольтметра

Измерение индуктивности может быть произведено одним из описанных ранее методов.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Высокоточный измеритель индуктивности и емкости

Это очень точный измеритель индуктивности/емкости на базе микроконтроллера PIC16F628A. Идея реализована на примере точного измерителя индуктивности/емкости .Конструкция устройства немного отличается от аналогичных устройств, найденных в сети Интернет. Целью моего не легкого труда было предоставить простое решение, которое легко собрать с первой попытки. Большинство конструкций данного типа устройств работает не так, как описано в документации, или на них просто недостаточно справочной информации. Наиболее трудной частью проекта было запрограммировать весь математический код с плавающей запятой в память программ размером 2k микроконтроллера 16F628A.

Обычно измеритель индуктивности/емкости представляет собой измеритель частоты, имеющий в составе генератор колебаний, который генерирует колебания и измеряет величины L или C, после чего вычисляется конечный результат. Погрешность частоты составляет 1Гц. Для получения более подробной информации по измерению частоты с помощью синхронизирующих устройств, обратитесь к моей статье о цифровом частотомере.

Теоретические сведения: Внимательно посмотрите на схему; я не использовал язычковое реле, поскольку не нашел его на местном рынке радиокомпонентов. Поэтому я решил сначала использовать полевой МОП-транзистор вместо язычкового реле. Но наилучший результат я получил с помощью обычного NPN-транзистора, такого как BC547. Если вы не доверяете транзисторам, тогда вы сможете добавить язычковое реле самостоятельно. Я использовал внутренний компаратор контроллера для генератора и подсоединил его к источнику внешней синхронизации таймера Timer1 для вычисления частоты. Благодаря этому не понадобилось использовать внешний операционный усилитель Lm311. Реле RL1 использовалось для выбора режима измерения L и C. Измеритель работает на базе четырех основных уравнений, которые представлены ниже:

Для обеих неизвестных величин L и C, обычно применяется равенство 1 и 2. Средние значения F1 мы получаем с помощью LC колебательного контура, затем подсоединяем Ccal параллельно колебательному контуру и получаем величину F2.
Сразу после этого,

  1. Для емкости требуется F3 (уравнение 3), оставляя Cx параллельно колебательному контуру, затем вычисляется Cx из уравнения 4
  2. Для индуктивности требуется F3 (уравнение 7), оставляя Lx последовательно колебательному контуру, и c затем вычисляется Lx из уравнения 8

Следовательно, как для индуктивности, так и для емкости, уравнения 1, 2, и уравнения 5, 6 одинаковы.
После получения приблизительных значений индуктивности или емкости, программа автоматически приведет значения к техническим единицам, которые отобразит на жидкокристаллическом дисплее разрешением 16×2.
Если вам тяжело осилить все математические вычисления, тогда лучше оставить их на время и перейти к аппаратным средствам. Для начала выполните процесс калибровки, который разъяснен в следующей главе.

Конструкция:
Точность измерения зависит от состояния ваших компонентов. Два конденсатора, емкостью 33пФ в генераторе должны быть танталовыми (для низкой серии сопротивлений/индуктивностей). Используйте C4, C5 (Ccal) полистирольного типа, поскольку зеленые конденсаторы имеют слишком большое отклонение величины. Избегайте использования керамических конденсаторов. Некоторые из них имеют большие затухания.

  1. Сначала проверьте, чтобы все компоненты отлично подходили на свои места в плате.
  2. Запрограммируйте микросхему (16F628A) с помощью Hex файла, указанного ниже на данной странице. Если у вас нет программатора / загрузчика, тогда обратитесь к моей схеме PicKit-2 клона. Его очень легко собрать самостоятельно.
  3. Сначала подайте питание на схему без микросхемы, затем проверьте напряжение на выводе 5, 14 колодки ИС с помощью вольтметра. Если напряжение равно 5В, тогда все отлично.
  4. Поместите микросхему в колодку ИС и подайте питание. Если на жидкокристаллическом дисплее будет повышенная контрастность, тогда увеличьте значение резистора R11 на несколько килоом.
Читайте также  Прибор для измерения электрического заряда

Калибровка:

  1. Закоротите два тестовых проводника и подайте питание на схему. При этом выполнится автоматическая калибровка. Устройство перейдет в режим по умолчанию – режим индуктивности. Дайте несколько минут на «разогрев», затем нажмите кнопку «zero» (нуль) для выполнения форсированной повторной калибровки. Теперь на дисплее должно отображаться значение ind = 0.00 uH (мкГн)
  2. Теперь разомкните два тестовых проводника и подсоедините заранее известную индуктивность, например 10 мкГн или 100 мкГн. Измеритель индуктивности/емкости должен считать приблизительно аналогичное значение (допускается погрешность до +/- 10%).
  3. После этого необходимо настроить измеритель для отображения результата с погрешностью около +/- 1%. Чтобы выполнить это, проверьте что в схеме установлены 4 джампера Jp1

Jp4. Джамперы Jp1 и Jp2 предназначены для увеличения (+) и уменьшения (–) значений. Для увеличения значения сначала установите Jp1 и выполните шаги 1,2, для уменьшения значения установите Jp2 и выполните шаги 1,2.

  • Если на дисплее отображаются необходимые значения, тогда снимите джамперы. После этого микросхема запомнит калибровку, пока вы не заходите снова внести изменения.
  • Если у вас все еще не получается получить требуемое значение, установите джампер Jp3, чтобы увидеть величину F1. На дисплее отобразится значение около 503292 с индуктивностью 100мкГн и емкостью 1нФ. Или установите джампер Jp4, чтобы посмотреть значение F2. Если на дисплее ничего не появится, то это означает, что ваш генератор неправильно работает. Еще раз проверьте вашу плату.
  • Способы измерения индуктивности Текст научной статьи по специальности « Электротехника, электронная техника, информационные технологии»

    Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Лушин Е.В., Долгов А.Н.

    В статье рассмотрена причина появления индуктивности проводника. Отмечены полезные и паразитные стороны ее влияния на работу электрических цепей. Изучены основные способы измерения индуктивности с выявлением достоинства и недостатков. Обоснован выбор резонансного способа измерения индуктивности для построения измерительного прибора.

    Похожие темы научных работ по электротехнике, электронной технике, информационным технологиям , автор научной работы — Лушин Е.В., Долгов А.Н.

    METHODS FOR MEASURING INDUCTANCE

    The article describes the cause of the inductance of the conductor. Marked useful and spurious by its effect on the electrical circuits. We study the main ways to measure inductance , identifying the advantages and disadvantages. The choice of the method of measuring the resonant inductance for constructing instrument.

    Текст научной работы на тему «Способы измерения индуктивности»

    магистрант, кафедра «Авиационные приборы

    Арзамасский политехнический институт (филиал) ФГБОУ ВПО «Нижегородский государственный технический университет им. Р.Е. Алексеева»

    канд. тех. наук, доцент, кафедра «Авиационные приборы и устройства», Арзамасский политехнический институт (филиал) ФГБОУ ВПО «Нижегородский государственный технический университет им. Р.Е. Алексеева»

    СПОСОБЫ ИЗМЕРЕНИЯ ИНДУКТИВНОСТИ

    Аннотация. В статье рассмотрена причина появления индуктивности проводника. Отмечены полезные и паразитные стороны ее влияния на работу электрических цепей. Изучены основные способы измерения индуктивности с выявлением достоинства и недостатков. Обоснован выбор резонансного способа измерения индуктивности для построения измерительного прибора.

    Ключевые слова: индуктивность, катушка индуктивности, измерение индуктивности, реактивное сопротивление.

    E.V. Lushin, Nizhni Novgorod State Technical University (Arzamas Branch)

    A.N. Dolgov, Nizhni Novgorod State Technical University (Arzamas Branch)

    METHODS FOR MEASURING INDUCTANCE

    Abstract. The article describes the cause of the inductance of the conductor. Marked useful and spurious by its effect on the electrical circuits. We study the main ways to measure inductance, identifying the advantages and disadvantages. The choice of the method of measuring the resonant inductance for constructing instrument.

    Keywords: inductance, inductor, measurement of inductance, reactance

    Природа возникновения индуктивности основана на взаимодействии тока и магнитного потока проводника. Согласно закону Фарадея известно, что при изменении магнитного потока Ф проводника, находящегося в магнитном поле, в проводнике возникает ЭДС, определяемая по формуле:

    Из этого следует, что подключение проводника к источнику постоянного напряжения будет вызывать в нем протекание постоянного тока I, не мгновенно установившегося значения, обусловленного тем, что в проводнике индуцируется ЭДС, препятствующая нарастающего тока. Ток перестает нарастать только, тогда когда магнитный поток перестанет изменяться. Если к проводнику подключить источник переменного напряжения, то ток и магнитный поток будут изменяться непрерывно и, наводимая в проводнике, ЭДС будет препятствовать протеканию переменного тока, что эквивалентно увеличению сопротивления проводника. При увеличении частоты измерения напряжения, приложенного к проводнику, величина наводимой ЭДС будет увеличиваться, следовательно, будет возрастать сопротивление проводника переменному току. Это сопротивление XL не связано с потерями энергии, поэтому является чисто реактивным. При приложении к проводнику переменного тока, наводимая ЭДС будет равна

    e, =-L— = -mLI cosmt. (2)

    Она пропорциональна частоте со, а коэффициентом пропорциональности является индуктивность L. Следовательно, индуктивность характеризует способность проводника оказывать сопротивление переменному току. Величина этого сопротивления равна:

    Если проводник намотан на каркас, то образуется катушка индуктивности. В этом случае магнитный поток концентрируется, и величина индуктивности возрастает. Следует отметить, что индуктивность всегда положительна, а ее величина зависит только от геометрических размеров контура и магнитных свойств среды (сердечника).

    Как было отмечено ранее, индуктивность определяет свойство проводника оказывать сопротивление переменному току, т.е. определение величины индуктивности проводника позволяет оценить его работу в электрической цепи, в которой он включен. Индуктивность может быть, как и необходимым параметром, задающим режимы работы электронных схем таких, как частотные фильтры, колебательные кон-

    туры генераторов, индуктивные датчики, так и паразитным параметром, повышающим шумы, время быстродействия и тому подобные. Так, например, подключающие провода или контактные дорожки печатных плат должны обладать минимальным активным сопротивлением, не зависящим от частоты тока, однако они обладают индуктивной составляющей (хотя и незначительной), которая привносит в работу этих элементов искажения и потери энергии. Индуктивность как параметр, определяющий частотные характеристики измерительных каналов, может оказывать существенное влияние на измерительный сигнал датчиков, и даже полностью исказить его. Для улучшения качества работы электроники необходимо учитывать величину индуктивности тех или иных электронных узлов или деталей. Хотя индуктивность и возможно рассчитать в процессе проектирования по известным формулам с достаточно высокой точностью, все равно будут возникать неучтенные конструктивные и технологические факторы, оказывающие влияние на ее величину. Здесь незаменимым способом оценки индуктивности является ее непосредственное измерение с применением специальных методик и приборов [1].

    Измерить индуктивность возможно тремя способами: 1) Вольтметра-Амперметра; 2) мостовой; 3) резонансный.

    Очень важно перед измерением индуктивности катушки убедиться в отсутствии в ней обрыва и наличия короткозамкнутых витков. Для этого существуют свои специальные методики.

    1. Сравнительно большие индуктивности порядка от 1 до 1000 Гн возможно измерять методом вольтметра — амперметра. Сущность этого метода заключается в том, что на катушку заданное переменное напряжение частотой f = 50:1000 Гц. Одновременно при этом замеряют полный ток (/), а полное напряжение (0) посредством подключенных к катушке амперметра и вольтметра (рис. 1). Затем по закону Ома рассчитываются полное сопротивление [1]:

    Известно, что полное сопротивление катушки можно рассчитать по формуле:

    Как было сказано ранее данный метод применим для достаточно больших индуктивностей, что подразумевает собой существенное превышение реактивной составляющей над активной, с учетом малых активных потерь. Из этого следует, что Х,>>И, поэтому активную составляющую (И) полного сопротивления (7) можно отбросить, тогда будем иметь

    7 * X, — а1. — 2ж, . (6)

    Приравниваем формулы (4) и (6) получим

    Рисунок 1 — Схема измерения индуктивности методом вольтметра-амперметра

    Достоинство этого метода являются относительная простота и дешевизна при приемлемой точности для больших индуктивностей. Недостатком является то, что точность данного метода существенно зависит от величины соотношения активной и индуктивной составляющей сопротивления катушки.

    Как было отмечено выше, данный способ применяется для индуктивностей большой величины (до 1000 Гн). С целью уменьшения габаритов, катушки изготавливаются с сердечниками. Наличие сердечника приводит к нелинейной зависимости магнитного потока от тока катушки. Отсюда следует, что измерение индуктивности катушек с сердечником по методу вольтметра-амперметра следует проводить в условиях близких к рабочему режиму. С учетом подмагничивание сердечника постоянной составляющей тока протекающего через катушку. Измерительная схема (рис. 2) будет иметь вид:

    Рисунок 2 — Схема измерения индуктивности катушек с сердечником по методу вольтметра-амперметра

    Режим работы катушки 1-х задается установкой постоянного тока подмагничивания. Этот ток устанавливается реостатом И2 и контролируется по миллиамперметру постоянного тока /1. Для исключения взаимного влияния измерительных цепей постоянного и переменного тока друг на друга применяются разделительный конденсатор С и дроссель Др. Приборы измеряющие А1 и VI в данной схеме не должны реагировать, на постоянные составляющие тока и напряжения (/ ) и (0). Для вольтметра VI этого легко добиться включив с ним последовательно разделительную емкость Ср в несколько микрофарад. Достоинством данной схемы является возможность учета режима работы при наличии постоянного тока подмагничивания сердечника и его влияния на величину индуктивности.

    Рисунок 3 — Схема мостового метода

    2. Рассмотренный выше метод измерения индуктивности основывается на допущении, что активные потери энергии в ней малы. Это условие сохраняет свою справедливость при высоких частотах тока протекающего через катушку. Однако при низкочастотных режимах работы катушки, от нескольких единиц до десятков и сотен Герц, или большом активном сопротивлении провода реактивная составляющая становится соизмеримой с активной, которую отбрасывать уже нельзя и необходимо учитывать. Осуществить такие измерения позволяет «мостовой метод».

    Мост для измерения индуктивности включает в себя два плеча чисто активного сопротивления, плечо, с исследуемой индуктивностью сопротивления которого в целом является комплексным, и плечо с реактивным элементом (конденсатор) (рис. 3).

    Уравновешивание моста (то есть сведение показаний индикатора нуля (ИН) к нулю) осуществляется переменным конденсатором С2 (И2 шунтирующий резистор, служит для компенсации сопротивления потерь Их, исследуемой катушки, которая создает фазовый сдвиг).

    Мост будет уравновешен при выполнении следующих условий [1]:

    Учтем, что сопротивления плеч и чисто активные, поэтому будет иметь нулевые фазы в них ф1=фз=0, отсюда следует, что фх=-ф2 и тангенсы фазовых углов будут равны tgфx=-tgф2. В плече 12 активная (^2) и реактивная составляющие (С2) параллельны, по этому при отрицательном значении угла ф можно записать, что,:

    tgф2 = R2 X, = И22жЮ2. (10)

    В плече реактивная и активная составляющая последовательны это значит, что тангенс фазы будет равен:

    Согласно условиям равенства фаз будем иметь

    Решая совместную систему (9) и уравнение (12) будем иметь соотношения для вычисления активной и реактивной составляющей исследуемой катушки:

    Следует отметить, что С2 и R2 могут быть оснащены шкалами для непосредственного указания значений Rх и ,х. Установки осуществляются с помощью С2 и R2 и не зависят друг от друга, что позволяет быстро уравновешивать мост. Для измерения параметров катушек со стальными сердечниками, измеряемый мост добавляется схема с источником постоянного тока с регулировкой и контролем постоянного тока подмагничивания (аналогично схеме в первом методе). Достоинствами мостовой схемы являются ее более высокая чувствительность к малым значениям индуктивностей. Мостовой метод обладает более высокой степенью точности. К недостаткам такого метода можно отнести малую скорость измерения (мост надо балансировать) и сложность автоматики для такой балансировки.

    3. Резонансный метод позволяет осуществлять измерение индуктивности катушек работающих на высокочастотных диапазонах колебаний. В данном методе исследуемая индуктивность 1.x является частью резонансного контура, образованного подключением ее к образцовой емкости Со. Колебания ^ в контуре ,хСо возбуждаются внешним генератором высокой частоты (ВЧ) (рис. 4). Генератор ВЧ подключается к контуру ,хСо через разделительный конденсатор С1 (емкость 2-10 пФ).

    II СО — ■ г 0 01 4= Ьк Надоели баннеры? Вы всегда можете отключить рекламу.

    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: