Каким прибором измеряется сопротивление изоляции? - ELSTROIKOMPLEKT.RU

Каким прибором измеряется сопротивление изоляции?

Измерение сопротивления изоляции. Методы и приборы

Мегаомметр – измерительный прибор для профессионального использования. Но в определенных ситуациях он может применяться и в бытовых условиях.

Прежде всего это касается случаев необходимости проверки состояния электрической проводки в квартире, частном доме.

Применение в таких случаях мультиметра является неоправданным. Это связанно с тем, что это приспособление позволяет обнаружить наличие проблемы, но не оценить ее масштабы. В этом плане мегаомметр считается более эффективным.

Что это такое мегаомметр

Мегаомметр – прибор, что позволяет определять большие уровни сопротивления напряжения в сети. Основная особенность данного устройства касается того, что в процессе исследования в цепь поддается относительно высокие напряжения.

Существует 2 чаще всего использующихся вида мегаомметров, такие как:

  1. Индукторный. В таких приборах для получения испытательных высоких напряжений используется встроенный электромеханический генератор, который именуется индуктором. В нем применяется постоянное напряжение. Работает данное устройство посредством ручного управления от рукоятки.

  1. Безындукторный. В таких приборах источником постоянного высокого испытательного напряжения является электронный инвектор, оборудованный выпрямителем. Его питание происходит благодаря встроенным в корпус аккумуляторов. Вместо них могут быть применены сменные гальванические элементы.

Индикаторы в индукторных и безындукторных мегаомметров тоже отличаются. В первом случае производители данных устройств используют стрелочные логометры, во втором – магнитоэлектрические приборы или же жидкокристаллические дисплеи.

Принцип работы прибора (мегаомметр)

Действие мегаомметров основано на определении силы тока и напряжения. В итоге прибор выдает соотношение этих 2 величин на том или ином отрывке. Зависимо от специфики конструкции, показателей мощности само напряжение может разительно меняться.

В комплекс сустройством включаются измерительные щупы. Они имеют достаточно простую конструкцию. В нее входят провода и наконечники. Один из них предназначен для подсоединения к гнезду устройства, другой же имеет вид «крокодила», использующегося для прочного крепления.

Перед использованием необходимо зафиксировать щупы в соответствующих гнездах устройства. После этого «крокодилами» следует подключить приспособление к измеряемому участку цепи. Вслед за этим происходит выработка высокого напряжения, что поступает на исследуемый объект.

Как подключить мегаомметр

Для получения корректных данных сопротивления, во время подключения необходимо соблюдать определенные правила. Прежде всего нужно акцентировать внимание на том, что на корпусе устройства присутствует 3 гнезда, которые обозначены определенными буквами, такими как:

  • Э – экран;
  • Л – линия;
  • З – земля.

Как правило, каждый мегаомметр имеет в комплекте 3 щупа. К первому подсоединяются два наконечника. Используется только, когда имеется необходимость исключить токовую утечку. Присоединяется данный щуп к экрану, если таковой имеется. Остальные же щупы должны быть соединены с теми гнездами, которые соответствуют маркировкам данных приспособлений.

Когда надо померить только сопротивление изоляции без учета экрана, следует подключить лишь два щупа. Их надо подсоединять в гнезда З и Л. Другие их стороны должны быть подсоединены к объекту посредством «крокодилов». Это происходит следующим образом:

  • при тестировании на пробой между кабелями «крокодилы» крепятся к исследуемым проводам;
  • для определения пробоев на «землю» «крокодилы» прикрепляются к «земле» и жиле, что есть токоведущей.

Чаще проверка проводится на выявление пробоя. Это обусловлено тем, что тестирование экранизированной оболочки в обычных квартирах не проводится.

Как мегаомметром измерить сопротивление кабельных линий до 1 кВ

Мегаомметры используются для опредения сопротивления кабелей до и выше 1 кВ. Одножильные провода проверить при помощи такого прибора довольно легко – в сравнении с многожильными. Чем их больше, тем более масштабной будет исследование. Это обусловлено тем, что все линии надо проверять в отдельности от остальных.

При выборе контрольного напряжения следует основываться на эксплуатационном напряжении. Если кабель функционирует при 380 или же 220 В, тестовые показатели необходимо выставить на показатель 1000 В.

Когда необходимо проверить одножильный кабель, один щуп нужно прикрепить к жиле, оставшийся – на экран. В тех случаях, когда экран отсутствует, второй щуп стоит прикрепить к «земле». После этого следует подать напряжение от прибора.

Если в итоге будет получено не меньше чем 500 кОм, можно делать вывод о том, что линия исправна. В ситуациях, когда сопротивление оказывается меньшим, проводник нужно перестать использовать. Подобный результат тестирование говорит о том, что изоляция кабеля повреждена.

Если происходит проверка линии с несколькими жилами, их нужно исследовать отдельно друг от друга. Во время этого остальные кабели могут быть связаны между собой жгутом. В тех ситуациях, когда требуется проверка пробоя на «землю», к незадействованным жилам прикрепляется линия заземления. Когда берется броня или экран, они тоже должны быть подкреплены к этому пучку. В нем следует обеспечить высокую плотность соприкосновения кабелей.

Отдельно стоит разобраться исследовании сопротивления изоляционного слоя в розетках. Для этого предварительно из них нужно отключить приборы. Дополнительно нужно убрать питание посредством распределительного щитка.

Один щуп должен быть подсоединен на «землю», другой – на фазу. Напряжение на устройстве ставится на показатель в 1000 В. Далее проводится проверка. Если будет получен результат боле 500 кОм (0,5 мОм), то изоляция полностью исправна. Таким же образом нужно в итоге проверить все фазы.

Измерение сопротивления обмоток машин (электродвигателей) и аппаратов

Для того чтобы замерить сопротивления обмоток в различных аппаратах при помощи мегаомметра, необходимо следовать следующему алгоритму действий:

  1. Обесточивание двигателя. Это необходимо для повышения безопасности проведения работ.
  2. Открытие крышки двигателя со всеми выводами использующихся обмоток.
  3. Установка напряжения для тестирования. Если двигатель эксплуатируется при напряжении до 1000 В, для проверки достаточно установить показатель в 500 В.
  4. Прикрепление одного щупа на корпус моторного отсека, другого – к имеющимся на устройстве к одному из выходов.

Также дополнительно необходимо убедиться в правильности соединения обмоток. Это можно сделать посредством подключения щупов парами.

Замер сопротивления обмоток трансформатора

Любой замер сопротивления обмоток трансформатора должен производиться между ними и корпусом («землей»), а также непосредственно между собой. Во втором случае остальные обмотки должны быть отсоединены и заземлены на корпус.

Процесс тестирования может быть начат только в том случае, если напряжение прибора будет не менее 2500 В. Максимальный показатель исследования не должен быть ниже 10000 мОм.

На трансформаторах, у которых предельное напряжение составляет 10 кВ и ниже, разрешается использование мегаомметров с напряжением на 1000 В, когда их максимум исследования не ниже 1000 мОм.

Прежде чем начать тестирование обмотки, ее следует заземлить на время более 2 минут. Если сопротивление не нормируется, необходимо его сравнивать с заводскими параметрами или же с данными, полученными в ходе прежних тестирований.

Также стоит обратить внимание на коэффициент абсорбции. Он тоже может не нормироваться. При этом он обязательно учитывается при рассмотрении результатов исследования. Если температура окружающей среды находится в диапазоне от +10 до +30 градусов Цельсия, он может быть для не увлажненных трансформаторов следующим:

  • менее 10000 кВА и напряжением 35 кВ и ниже: 1,3;
  • 110 кВ и выше: 1,5-2.

Если трансформатор является увлажненным или же на нем присутствуют локальные повреждения, абсорбционный процент должен быть близок к 1.

Процесс измерения – это ответственная работа, которая позволяет следить за состояние оборудования. Подобные меры способны предотвратить или же минимизировать неблагоприятные последствия повреждения кабельного хозяйства, сумев уберечь при этом электрические приборы от выхода из строя.

Читайте также  Осветительные приборы для производственных помещений

Измерение сопротивления изоляции

Периодичность измерения сопротивления изоляции

На объектах коммерческой недвижимости и в жилом фонде признаки отнесения помещений к особо опасным можно встретить в электрощитовых, котельных, бойлерных, ИТП, на чердаках и техэтажах, в подвалах и техподполье и т.д. На производственных объектах факторы повышенной опасности встречаются чаще, а их комбинации разнообразнее.

Теоретически, ответственный за электрохозяйство должен провести классификацию всех помещений по степени опасности поражения электрическим током в соответствии с требованиями ПУЭ, пп.1.1.-1.1.13. Перечень всех обследованных помещений должен совпадать с экспликацией планов БТИ и/или проектной документацией. Сделать это можно самостоятельно или привлечь инженеров электроизмерительной лаборатории. Результатом такой работы будет отчет об определении степени опасности поражения электротоком. Затем приказом по организации определяются сроки проведения отдельных видов электроизмерений для всех помещений в соответствии со степенью опасности поражения током и с учетом других факторов и требований НТД. На основании приказа нужно внести соответствующие записи в график планово-предупредительных ремонтов.

Кстати, о требованиях НТД: условия периодичности замера сопротивления изоляции и других испытаний содержатся не только в ПУЭ и ПТЭЭП, но также и иных нормативных документах. Так, например, в организациях общественного питания измерения нужно проводить ежегодно в помещениях без повышенной опасности, и каждые полгода во всех остальных помещениях (ПОТ РМ-011-2000, п. 5.6). Аналогичные требования установлены для предприятий химической чистки и стирки, медицинских и образовательных учреждений. Подробный анализ требований НД по периодичности приведен в нашей таблице, ссылку на которую вы найдете в конце статьи.

Проверка сопротивления изоляции мегомметром

Мегаомметр — прибор для измерения больших сопротивлений. Именно В состав мегомметра входит генератор, который создаёт повышенное испытательное напряжение 250, 500, 1000 или 2500 вольт. Повышенное напряжение прикладывается к паре жил при снятой нагрузке, в результате чего, через диэлектрик начинает проходить ток утечки. Прибор определяет сопротивление изоляции на основании измеренного тока и известного значения напряжения. Если изоляция в отличном состоянии, то ток утечки через диэлектрик не пойдет. Сопротивление при этом будет стремиться к бесконечности и, как правило, превышать верхнюю границу диапазона измерений мегомметра. Когда изоляция изношена, между жилами появляются токопроводящие «мостики», по которым идет утечка. В обычных условиях эти утечки пренебрежимо малы и незаметны, но под воздействием повышенного напряжения ток утечки усиливается, становясь током КЗ, а сопротивление изоляции при этом стремится к нулю.

При измерении сопротивления изоляции проверяемая кабельная линия должна быть отключена от электроустановки с обеих сторон: и со стороны источника питания, и со стороны потребителя. Обычно, отключения и прерывание электроснабжения создает массу неудобств при проведении электроизмерений на действующем объекте. Проводить работы нужно в нерабочие часы, либо согласовывать временные отключения электроэнергии в рабочие часы. К счастью, измерение сопротивления изоляции каждой кабельной линии занимает немного времени, а линии отключают по очереди, а не все одновременно. Когда отключение в рабочие часы невозможно, работы переносят на утренние, вечерние, ночные часы или выходные дни.

Значение сопротивления измеряется попарно для всех жил кабеля:

  • для двужильного кабеля — одно измерение;
  • для трехжильного кабеля — три измерения;
  • для четырёхжильного кабеля — шесть измерений;
  • для пятижильного кабеля — десять измерений.

Измеренные значения по каждому кабелю фиксируются инженерами электролаборатории на бумаге или в память измерительного прибора. В дальнейшем эти данные будут занесены в таблицу результатов измерений в протоколе измерения сопротивления изоляции. Если сопротивление ниже минимально допустимых значений, эта информация отражается в заключении к протоколу и дефектной ведомости технического отчета. Такую кабельную линию нужно ремонтировать или менять.

Минимально допустимое сопротивление изоляции

Причины снижения сопротивления и факторы износа изоляции

Если при протяжке кабелей монтажники не повредили изоляцию, то, при вводе объекта в эксплуатацию, значения сопротивления будут измеряться сотнями или даже тысячами мегаоммов. Со временем изоляция изнашивается, а ее сопротивление естественным образом снижается. У старых кабелей, исчерпавших свой ресурс службы, счет идет на единицы или десятые доли мегаоммов.

Заводы-изготовители указывают срок эксплуатации своих изделий, и для современных кабелей с ПВХ-изоляцией он составляет 30-40 лет при нормальных условиях. На практике, срок службы уменьшается из-за ряда факторов, ускоряющих старение изоляции.

Постепенно, старея и разрушаясь, изоляция кабеля теряет диэлектрические свойства. Появляются микроскопические трещины, заполняемые воздухом или, что хуже, жидкостью. Образуются проводящие «мостики» по которым движутся электроны, создавая ток утечки. Со временем ток утечки усиливается, перерастая в ток КЗ. Этот процесс растягивается на годы и протекает медленно, поэтому изменения незаметны, до тех пор, пока изоляцию не пробьет и не возникнет электрическая дуга.

Вот факторы, влияющие на состояние изоляции:

  • Повышенная температура. Для любого кабеля производитель указывает, при какой температуре гарантирована нормальная эксплуатация в течение заявленного срока службы изделия. Как правило, это диапазон от -50 °С до +50 °С, однако некоторые исследования показывают, что при температуре в помещении свыше 35 °С срок службы изоляции кабеля начинает сокращаться.
  • Повышенная влажность. Влажность ускоряет возникновение проводящих «мостиков» внутри изоляции, снижает диэлектрические свойства и повышает риск возникновения короткого замыкания. Помещения с влажностью близкой к 100% считаются особо опасными, и сопротивление изоляции в таких помещениях измеряют не реже 1 раза в год.
  • Химически активные или органические среды. Агрессивные пары, газы, жидкости, отложения или плесень также приводят к преждевременному старению изоляционных материалов.
  • Перегрузка линии. Если по жилам кабеля постоянно идет ток, превышающий номинальное значение, то нагрев жилы будет пагубно сказываться и на изоляции, вплоть до её оплавления и растрескивания.
  • Вибрация. Постоянное воздействие механических колебаний будет дополнительным фактором разрушения изоляции.
  • Токопроводящая пыль. Скапливаясь в местах разделки кабеля и зачистки жил, она способствует появлению токов утечки и, в связке с повышенной влажностью, увеличивает вероятность возникновению замыкания.

Выводы о необходимости проверки изоляции

Регулярное проведение измерений сопротивления изоляции дает возможность диагностировать развитие дефектов и вести профилактику до появления короткого замыкания. Проводить измерения следует не реже, чем 1 раз в 3 года, а в некоторых помещениях— ежегодно или даже раз в полгода. Следует заранее озаботиться организационными вопросами, связанными с отключениями: оповестить жителей дома или сотрудников организации о предстоящих перерывах в электроснабжении, предоставить доступ специалистам электролаборатории во все необходимые помещения.

Результаты измерений будут оформлены в виде соответствующего протокола в составе технического отчета об испытаниях электроустановки.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: