Прибор применяемый для измерения сопротивления изоляции - ELSTROIKOMPLEKT.RU

Прибор применяемый для измерения сопротивления изоляции

Как проводить измерения мегаомметром

Для оценки работоспособности кабеля, проводки необходимо измерить сопротивление изоляции. Для этого существует специальный прибор — мегаомметр. Он подает в измеряемую цепь высокое напряжение, измеряет протекающий по ней ток, и выдает результаты на экран или шкалу. Как пользоваться мегаомметром и рассмотрим в этой статье.

Устройство и принцип действия

Мегаомметр — устройство для проверки сопротивления изоляции. Есть два типа приборов — электронные и стрелочные. Независимо от типа, любой мегаомметр состоит из:

  • Источника постоянного напряжения.
  • Измерителя тока.
  • Цифрового экрана или шкалы измерения.
  • Щупов, посредством которых напряжение от прибора передается на измеряемый объект.

Так выглядит стрелочный мегаомметр (слева) и электронный (справа)

В стрелочных приборах напряжение вырабатывается встроенной в корпус динамомашиной. Она приводится в действие измерителем — он крутит ручку прибора с определенной частотой (2 оборота в секунду). Электронные модели берут питание от сети, но могут работать и от батареек.

Работа мегаомметра основана на законе Ома: I=U/R. Прибор измеряет ток, который протекает между двумя подключенными объектами (две жилы кабеля, жила-земля и т.д.). Измерения производятся калиброванным напряжением, значение которого известно, зная ток и напряжение, можно найти сопротивление: R=U/I, что и делает прибор.

Примерная схема магаомметра

Перед проверкой щупы устанавливаются в соответствующие гнезда на приборе, после чего подключаются к объекту измерения. При тестировании в приборе генерируется высокое напряжение, которое при помощи щупов передается на проверяемый объект. Результаты измерений отображаются в мега омах (МОм) на шкале или экране.

Работа с мегаомметром

При испытаниях мегаомметр вырабатывает очень высокое напряжение — 500 В, 1000 В, 2500 В. В связи с этим проводить измерения необходимо очень осторожно. На предприятиях к работе в прибором допускаются лица, имеющие группу электробезопасности не ниже 3-й.

Перед тем как провести измерения мегаомметром, в тестируемые цепи отключают от электропитания. Если вы собираетесь проверить состояние проводки в доме или квартире, надо отключить рубильники на щитке или выкрутить пробки. После выключают все полупроводниковые приборы.

Если проверять будете розеточные группы, вынимаете вилки всех приборов, которые включены в них. Если проверяются осветительные цепи, выкручиваются лампочки. Они тестового напряжения не выдержат. При проверке изоляции двигателей они также полностью отключаются от питания. После этого к тестируемым цепям подключается заземление. Для этого к «земляной» шине крепится многожильный провод в оболочке сечением не менее 1,5 мм2. Это так называемое переносное заземление. Для более безопасной работы свободный конец с оголенным проводником крепят к сухому деревянному держаку. Но оголенный конец провода должен быть доступен — чтобы можно было им прикасаться к проводам и кабелям.

Требования по обеспечению безопасных условий работы

Даже если вы хотите в домашних условиях измерить сопротивление изоляции кабеля, перед тем как пользоваться мегаомметром стоит ознакомиться с требованиями по технике безопасности. Основных правил несколько:

  1. Держать щупы только за изолированную и ограниченную упорами часть.
  2. Перед подключением прибора отключить напряжение, убедиться в том, что поблизости нет людей (на протяжении всей измеряемой трассы, если речь идет о кабелях).

Как пользоваться мегаомметром: правила электробезопасности

  • Перед подключением щупов снять остаточное напряжение при помощи подсоединения переносного заземления. И отключать его после того как щупы установлены.
  • После каждого измерения снимать со щупов остаточное напряжение соединив их оголенные части вместе.
  • После измерения к измеренной жиле подключать переносное заземление, снимая остаточный заряд.
  • Работать в перчатках.
  • Правила не очень сложные, но от их выполнения зависит ваша безопасность.

    Как подключать щупы

    На приборе обычно есть три гнезда для подключения щупов. Они располагаются в верхней части приборов и подписаны:

    • Э — экран;
    • Л- линия;
    • З — земля;

    Также имеется три щупа, один из которых имеет с одной стороны два наконечника. Он используется когда необходимо исключить токи утечки и цепляется к экрану кабеля (если такой есть). На двойном отводе этого щупа есть буква «Э». Тот штекер, который идет от этого отвода и устанавливается в соответствующее гнездо. Второй его штекер устанавливается в гнездо «Л» — линия. В гнездо «земля» всегда подключается одинарный щуп.

    Щупы для мегаомметра

    На щупах есть упоры. При проведении измерений руками браться за них так, чтобы пальцы были до этих упоров. Это обязательное условие безопасной работы (про высокое напряжение помним).

    Если проверить надо только сопротивление изоляции без экрана, ставится два одинарных щупа — один в клемму «З», другой в клемму «Л». При помощи зажимов-крокодилов на концах подключаем щупы:

    • К тестируемым проводам, если надо проверить пробой между жилами в кабеле.
    • К жиле и «земле», если проверяем «пробой на землю».

    Есть буква «Э» — этот конец вставляется в гнездо с такой же буквой

    Других комбинаций нет. Проверяется чаще изоляция и ее пробой, работа с экраном встречается довольно редко, так как сами экранированные кабели в квартирах и частных домах используются редко. Собственно, пользоваться мегаомметром не особо сложно. Важно только не забывать о наличии высокого напряжения и необходимости снимать остаточный заряд после каждого измерения. Это делают прикасаясь проводом заземления к только что измеренному проводу. Для безопасности этот провод можно закрепить на сухом деревянном держаке.

    Процесс измерения

    Выставляем напряжение, которое будет выдавать мегаомметр. Оно выбирается не произвольно, а из таблицы. Есть мегаомметры, которые работают только с одним напряжением, есть работающие с несколькими. Вторые, понятное дело, удобнее, так как их можно использовать для тестирования различных устройств и цепей. Переключение тестового напряжения производится ручкой или кнопкой на лицевой панели прибора.

    Наименование элемента Напряжение мегаомметра Минимально допустимое сопротивление изоляции Примечания
    Электроизделия и аппараты с напряжением до 50 В 100 В Должно соответствовать паспортным, но не менее 0,5 МОм Во время измерений полупроводниковые приборы должны быть зашунтированы
    тоже, но напряжением от 50 В до 100 В 250 В
    тоже, но напряжением от 100 В до 380 В 500-1000 В
    свыше 380 В, но не больше 1000 В 1000-2500 В
    Распределительные устройства, щиты, токопроводы 1000-2500 В Не менее 1 МОм Измерять каждую секцию распределительного устройства
    Электропроводка, в том числе осветительная сеть 1000 В Не менее 0,5 МОм В опасных помещениях измерения проводятся раз в год, в друих — раз в 3 года
    Стационарные электроплиты 1000 В Не менее 1 МОм Измерение проводят на нагретой отключенной плите не реже 1 раза в год

    Перед тем как пользоваться мегаомметром, убеждаемся в отсутствии напряжения на линии — тестером или индикаторной отверткой. Затем, подготовив прибор (выставить напряжение и на стрелочных выставить шкалу измерения) и подключив щупы, снимаем заземление с проверяемого кабеля (если помните, оно подключается перед началом работ).

    Следующий этап — включаем в работу мегаомметр: на электронных нажимаем на кнопку Test, в стрелочных крутим ручку динамо-машины. В стрелочных крутим до тех пор, пока не зажжется на корпусе лампа — это значит необходимое напряжение в цепи создано. В цифровых в какой-то момент значение не экране стабилизируется. Цифры на экране — сопротивление изоляции. Если оно не меньше нормы (средние указаны в таблице, а точные есть в паспорте к изделию), значит все в норме.

    Как проводить измерения мегаомметром

    После того, как измерение окончено, перестаем крутить ручку мегаомметра или нажимаем на кнопку окончания измерения на электронной модели. После этого можно отсоединять щуп, снимать остаточное напряжение.

    Вкратце — это все правила пользования мегаомметром. Некоторые варианты измерений рассмотрим подробнее.

    Измерение сопротивления изоляции кабеля

    Часто требуется измерить сопротивление изоляции кабеля или провода. Если вы умеете пользоваться мегаомметром, при проверке одножильного кабеля это займет не более минуты, с многожильными придется возиться дольше. Точное время зависит от количества жил — придется проверять каждую.

    Тестовое напряжение выбираете в зависимости от того, в сети с каким напряжением будет работать провод. Если вы планируете его использовать для проводки на 250 или 380 В, можно выставить 1000 В (смотрите таблицу).

    Проверка трехжильного кабеля — можно не скручивать, а перемерять все пары

    Для проверки сопротивления изоляции одножильного кабеля, один щуп цепляем на жилу, второй — на броню, подаем напряжение. Если брони нет, второй щуп крепим к «земляной» клемме и тоже подаем тестовое напряжение. Смотрим на показания. Если стрелка показывает больше 0,5 МОм, все в норме, провод можно использовать. Если меньше — изоляция пробита и его применять нельзя.

    Можно проверить многожильный кабель. Тестирование проводится для каждой жилы отдельно. При этом все остальные проводники скручиваются в один жгут. Если при этом надо проверить еще и пробой на «землю», в общий жгут добавляется еще и провод, подключенный к соответствующей шине.

    Если у кабеля имеется экран, металлическая оболочка или броня, они тоже добавляется в жгут. При образовании жгута важно обеспечит хороший контакт.

    Примерно так же происходит измерение сопротивления изоляции розеточных групп. Из розеток выключают все приборы, отключают питание на щитке. Один щуп устанавливают на клемму заземления, второй — в одну из фаз. Тестовое напряжение — 1000 В (по таблице). Включаем, проверяем. Если измеренное сопротивление больше 0,5 МОм, проводка в норме. Повторяем со второй жилой.

    Если электропроводка старого образца — есть только фаза и ноль, тестирование проводят между двумя проводниками. Параметры аналогичны.

    Проверить сопротивление изоляции электродвигателя

    Для проведения измерений двигатель отключается от питания. Необходимо добраться до выводов обмотки. Асинхронные двигатели, работающие на напряжении до 1000 В тестируются напряжением 500 В.

    Для проверки их изоляции один щуп подключаем к корпусу двигателя, второй поочередно прикладываем к каждому из выводов. Также можно проверить целостность соединения обмоток между собой. Для этой проверки надо щупы устанавливать на пары обмоток.

    Измерение сопротивления изоляции мегаомметром

    Несмотря на то, что мегаомметр считается профессиональным измерительным прибором, в некоторых случаях он может быть востребован и в быту. Например, когда необходимо проверить состояние электрической проводки. Использование мультиметра для этой цели не позволит получить необходимые данные, максимум, он способен — зафиксировать проблему, но не определить ее масштаб. Именно поэтому измерение сопротивления изоляции мегаомметром остается наиболее эффективным способ испытаний, подробно об этом рассказано в нашей статье.

    Устройство и принцип работы мегаомметра

    Старение изоляции электропроводки, как и любой электрической цепи, невозможно определить мультиметром. Собственно, даже при номинальном напряжении 0,4 кВ на силовом кабеле, ток утечки через микротрещины в изоляционном слое будет не настолько большой, чтобы его можно было зафиксировать штатными средствами. Не говоря уже про измерения сопротивления неповрежденной изоляции жил кабеля.

    В таких случаях применяют специальные приборы – мегаомметры, измеряющие сопротивления изоляции между обмотками двигателя, жилами кабеля, и т.д. Принцип работы заключается в том, что на объект подается определенный уровень напряжения и измеряется номинальный ток. На основании этих двух величин производится расчет сопротивления согласно закону Ома для участка цепи ( I = U/R и R=U/I ).

    Характерно, что в мегаомметрах для тестирования используется постоянный ток. Это связано с емкостным сопротивлением измеряемых объектов, которое будет пропускать переменный ток и тем самым вносить неточности в измерения.

    Конструктивно модели мегаомметров принято разделять на два вида:

    • Аналоговые (электромеханические) — мегаомметры старого образца. Аналоговый мегаомметр
    • Цифровые (электронные) – современные измерительные устройства. Электронный мегаомметр

    Рассмотрим их особенности.

    Электромеханический мегаомметр

    Рассмотрим упрощенную электрическую схему мегаомметра и его основные элементы

    Упрощенная схема электромеханического мегаомметра

    Обозначения:

    1. Ручной генератор постоянного тока, в качестве такового используется динамо-машина. Как правило, для получения заданного напряжения скорость вращения рукояти ручного генератора должна бить около двух оборотов в течение секунды.
    2. Аналоговый амперметр.
    3. Шкала амперметра, отградуированная под показания сопротивления, измеряемого в килоомах (кОм) и мегаомах (МОм). В основу калибровки положен закон Ома.
    4. Сопротивления.
    5. Переключатель измерений кОм/Мом.
    6. Зажимы (выходные клеммы) для подключения измерительных проводов. Где «З» – земля, «Л» – линия, «Э» – экран. Последний используется, когда необходимо проверить сопротивление относительно экрана кабеля.

    Основное преимущество такой конструкции заключается в его автономности, благодаря использованию динамо-машины прибор не нуждается во внутреннем или внешнем источнике питания. К сожалению, у такого конструктивного исполнения имеется много слабых мест, а именно:

    • Чтобы отобразить точные данные для аналоговых приборов важно минимизировать фактор механического воздействия, то есть мегаомметр должен оставаться неподвижным. А этого трудно добиться, вращая ручку генератора.
    • На отображаемые данные влияет равномерность вращения динамо-машины.
    • Часто в процессе измерения приходится задействовать усилия двух человек. Причем один из них выполняет сугубо физическую работу, — вращает ручку генератора.
    • Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.

    Заметим, что в более поздних аналоговых мегаомметрах производители отказались от использования динамо-машины, заменив ее возможностью работы от встроенного или внешнего источника питания. Это позволило избавиться от характерных недостатков, помимо этого у таких устройств существенно увеличились функциональные возможности, в частности, расширился диапазон калибровки напряжения.

    Современная аналоговая модель мегаомметра Ф4102

    Что касается принципа работы, то он в аналоговых моделях остался неизменным и заключается в особой градации шкалы.

    Электронный мегаомметр

    Основное отличие цифровых мегаомметров заключается в применении современной микропроцессорной базы, что позволяет существенно расширить функциональность приборов. Для получения измерений достаточно задать исходные параметры, после чего выбрать режим диагностики. Результат будет выведен на информационное табло. Поскольку микропроцессор производит расчеты исходя из оперативных данных, то класс точности таких устройств существенно выше, чем у аналоговых мегаомметрах.

    Отдельно следует упомянуть о компактности цифровых мегомметров и их многофункциональности, например, проверка устройств защитного отключения, замеры сопротивления заземления, петель фаза/ноль и т.д. Благодаря этому при помощи одного устройства можно провести комплексные испытания и все необходимые измерения.

    Как правильно пользоваться мегаомметром?

    Для проведения испытаний важно правильно выставить диапазоны измерений и уровень тестового напряжения. Проще всего это сделать, воспользовавшись специальными таблицами, где указываются параметры для различных тестируемых объектов. Пример такой таблицы приведен ниже.

    Таблица 1. Соответствие уровня напряжения допустимому значению сопротивления изоляции.

    Испытуемый объект Уровень напряжения (В) Минимальное сопротивление изоляции (МОм)
    Проверка электропроводки 1000,0 0,5>
    Бытовая электроплита 1000,0 1,0>
    РУ, Электрические щиты, линии электропередач 1000,0-2500,0 1,0>
    Электрооборудование с питанием до 50,0 вольт 100,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
    Электрооборудование с номинальным напряжением до 100,0 вольт 250,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
    Электрооборудование с питанием до 380,0 вольт 500,0-1000,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
    Оборудование до 1000,0 В 2500,0 0,5 или более в зависимости от параметров, указанных техническом паспорте

    Перейдем к методике измерений.

    Пошаговая инструкция измерения сопротивления изоляции мегаомметром

    Несмотря на то, что пользоваться мегаомметром несложно, при испытаниях электроустановок необходимо придерживаться правил и определенного алгоритма действий. Для поиска дефектов изоляции генерируется высокий уровень напряжения, которое может представлять опасность для жизни человека. Требования ТБ при проведении испытаний будут рассмотрены отдельно, а пока речь пойдет о подготовительном этапе.

    Подготовка к испытаниям

    Перед началом тестирования электрической цепи, необходимо обесточить ее и снять подключенную нагрузку. Например, при проверке изоляции домашней проводки в квартирном щитке необходимо отключить все АВ, УЗО и диффавтоматы. Штепсельные соединения следует разомкнуть, то есть отключить электроприборы от розеток. Если проводится испытания линий освещения, то из всех осветительных приборов следует удалить источники света (лампы).

    Следующее действие подготовительного этапа – установка переносного заземления. С его помощью убираются остаточные заряды в тестируемой цепи. Организовать переносное заземление несложно, для этого нам понадобиться многожильный проводник (обязательно медный), сечение которого не менее 2,0 мм 2 . Оба конца провода освобождаются от изоляции, потом один из них подключают на шину заземления электрощитка, а второй крепится к изоляционной штанге, за неимением последней можно использовать сухую деревянную палку.

    Медный провод должен быть прикреплен к палке таким образом, что бы им можно было прикоснуться к токоведущим линиям измеряемой цепи.

    Подключение прибора к испытуемой линии

    Аналоговые и цифровые мегаомметры комплектуются 3-мя щупами, два обычные, подключаемые к гнездам «З» и «Л», и один с двумя наконечниками, для контакта «Э». Он применяется при испытании экранированных кабельных линий, которые в быту, практически, не используются.

    Для тестирования однофазной бытовой проводки производим подключение одинарных щупов к соответствующим гнездам («земля» и «линия»). В зависимости от режима испытания зажимы-крокодилы присоединяем к тестируемым проводам:

    • Каждый провод в кабеле тестируется относительно остальных жил, которые соединены вместе. Тестируемый провод подключается к гнезду «Л», остальные, соединенные вместе жилы к гнезду «З». Подобная схема подключения приведена на рисунке. Подключение мегаомметра

    Если показатели отвечают норме, то на этом можно закончить испытания, в противном случае тестирование продолжается.

    • Каждый из проводов проверяется относительно земли.
    • Осуществляется проверка каждого провода относительно других жил.

    Алгоритм испытаний

    Рассмотрев все основные этапы можно перейти, непосредственно, к порядку действий:

    1. Подготовительный этап (полностью описан выше).
    2. Установка переносного заземления для снятия электрического заряда.
    3. На мегаомметре задается уровень напряжения, для бытовой проводки – 1000,0 вольт.
    4. В зависимости от ожидаемого результата выбирается диапазон измерения сопротивления.
    5. Проверка обесточенности тестируемого объекта, сделать это можно при помощи индикатора напряжения или мультиметра.
    6. Производится подключение специальных щупов-крокодилов измерительных проводов к линии.
    7. Отключение переносного заземления с тестируемого объекта.
    8. Осуществляется подача высокого напряжения. В электронных мегаомметрах для этого достаточно нажать кнопку «Тест», если используется аналоговый прибор, следует вращать ручку динамо-машинки с заданной скоростью.
    9. Считываем показания прибора. При необходимости данные заносятся в протокол измерений.
    10. Снимаем остаточное напряжение при помощи переносного заземления.
    11. Производим отключение измерительных щупов.

    Чтобы измерить состояние других токоведущих проводников, описанная выше процедура повторяется, пока не будут проверены все элементы объекта, то есть речь идет об окончании замеров при испытании электрооборудования.

    По итогам испытаний принимается решение о возможности эксплуатации электроустановки.

    Правила безопасности при работе с мегаомметром

    При испытаниях электрооборудования к работе с мегаомметром должен допускаться электротехнический персонал, у которого группа электробезопасности не ниже третьей. Даже если измерения производятся в быту, тем, кто намерен использовать мегаомметр следует ознакомиться с основными требованиями ТБ:

    • При тестировании следует использовать диэлектрические перчатки, к сожалению, данное требование часто игнорируется, что приводит к частым травмам.
    • Перед проведением испытаний, необходимо убрать посторонних лиц с тестируемого объекта, а также вывесить соответствующие предупреждающие плакаты.
    • При подключении щупов необходимо касаться их изолированных участков (рукоятей).
    • После каждого из измерений, следует не забывать подключать переносное заземление, прежде чем отключать контрольные кабели.
    • Измерения должны проводиться только при сухой изоляции, если ее влажность превышает допустимые пределы, испытания переносятся.

    Подборка видео по теме




    Измерение сопротивления изоляции. Методы и приборы

    Мегаомметр – измерительный прибор для профессионального использования. Но в определенных ситуациях он может применяться и в бытовых условиях.

    Прежде всего это касается случаев необходимости проверки состояния электрической проводки в квартире, частном доме.

    Применение в таких случаях мультиметра является неоправданным. Это связанно с тем, что это приспособление позволяет обнаружить наличие проблемы, но не оценить ее масштабы. В этом плане мегаомметр считается более эффективным.

    Что это такое мегаомметр

    Мегаомметр – прибор, что позволяет определять большие уровни сопротивления напряжения в сети. Основная особенность данного устройства касается того, что в процессе исследования в цепь поддается относительно высокие напряжения.

    Существует 2 чаще всего использующихся вида мегаомметров, такие как:

    1. Индукторный. В таких приборах для получения испытательных высоких напряжений используется встроенный электромеханический генератор, который именуется индуктором. В нем применяется постоянное напряжение. Работает данное устройство посредством ручного управления от рукоятки.

    1. Безындукторный. В таких приборах источником постоянного высокого испытательного напряжения является электронный инвектор, оборудованный выпрямителем. Его питание происходит благодаря встроенным в корпус аккумуляторов. Вместо них могут быть применены сменные гальванические элементы.

    Индикаторы в индукторных и безындукторных мегаомметров тоже отличаются. В первом случае производители данных устройств используют стрелочные логометры, во втором – магнитоэлектрические приборы или же жидкокристаллические дисплеи.

    Принцип работы прибора (мегаомметр)

    Действие мегаомметров основано на определении силы тока и напряжения. В итоге прибор выдает соотношение этих 2 величин на том или ином отрывке. Зависимо от специфики конструкции, показателей мощности само напряжение может разительно меняться.

    В комплекс сустройством включаются измерительные щупы. Они имеют достаточно простую конструкцию. В нее входят провода и наконечники. Один из них предназначен для подсоединения к гнезду устройства, другой же имеет вид «крокодила», использующегося для прочного крепления.

    Перед использованием необходимо зафиксировать щупы в соответствующих гнездах устройства. После этого «крокодилами» следует подключить приспособление к измеряемому участку цепи. Вслед за этим происходит выработка высокого напряжения, что поступает на исследуемый объект.

    Как подключить мегаомметр

    Для получения корректных данных сопротивления, во время подключения необходимо соблюдать определенные правила. Прежде всего нужно акцентировать внимание на том, что на корпусе устройства присутствует 3 гнезда, которые обозначены определенными буквами, такими как:

    • Э – экран;
    • Л – линия;
    • З – земля.

    Как правило, каждый мегаомметр имеет в комплекте 3 щупа. К первому подсоединяются два наконечника. Используется только, когда имеется необходимость исключить токовую утечку. Присоединяется данный щуп к экрану, если таковой имеется. Остальные же щупы должны быть соединены с теми гнездами, которые соответствуют маркировкам данных приспособлений.

    Когда надо померить только сопротивление изоляции без учета экрана, следует подключить лишь два щупа. Их надо подсоединять в гнезда З и Л. Другие их стороны должны быть подсоединены к объекту посредством «крокодилов». Это происходит следующим образом:

    • при тестировании на пробой между кабелями «крокодилы» крепятся к исследуемым проводам;
    • для определения пробоев на «землю» «крокодилы» прикрепляются к «земле» и жиле, что есть токоведущей.

    Чаще проверка проводится на выявление пробоя. Это обусловлено тем, что тестирование экранизированной оболочки в обычных квартирах не проводится.

    Как мегаомметром измерить сопротивление кабельных линий до 1 кВ

    Мегаомметры используются для опредения сопротивления кабелей до и выше 1 кВ. Одножильные провода проверить при помощи такого прибора довольно легко – в сравнении с многожильными. Чем их больше, тем более масштабной будет исследование. Это обусловлено тем, что все линии надо проверять в отдельности от остальных.

    При выборе контрольного напряжения следует основываться на эксплуатационном напряжении. Если кабель функционирует при 380 или же 220 В, тестовые показатели необходимо выставить на показатель 1000 В.

    Когда необходимо проверить одножильный кабель, один щуп нужно прикрепить к жиле, оставшийся – на экран. В тех случаях, когда экран отсутствует, второй щуп стоит прикрепить к «земле». После этого следует подать напряжение от прибора.

    Если в итоге будет получено не меньше чем 500 кОм, можно делать вывод о том, что линия исправна. В ситуациях, когда сопротивление оказывается меньшим, проводник нужно перестать использовать. Подобный результат тестирование говорит о том, что изоляция кабеля повреждена.

    Если происходит проверка линии с несколькими жилами, их нужно исследовать отдельно друг от друга. Во время этого остальные кабели могут быть связаны между собой жгутом. В тех ситуациях, когда требуется проверка пробоя на «землю», к незадействованным жилам прикрепляется линия заземления. Когда берется броня или экран, они тоже должны быть подкреплены к этому пучку. В нем следует обеспечить высокую плотность соприкосновения кабелей.

    Отдельно стоит разобраться исследовании сопротивления изоляционного слоя в розетках. Для этого предварительно из них нужно отключить приборы. Дополнительно нужно убрать питание посредством распределительного щитка.

    Один щуп должен быть подсоединен на «землю», другой – на фазу. Напряжение на устройстве ставится на показатель в 1000 В. Далее проводится проверка. Если будет получен результат боле 500 кОм (0,5 мОм), то изоляция полностью исправна. Таким же образом нужно в итоге проверить все фазы.

    Измерение сопротивления обмоток машин (электродвигателей) и аппаратов

    Для того чтобы замерить сопротивления обмоток в различных аппаратах при помощи мегаомметра, необходимо следовать следующему алгоритму действий:

    1. Обесточивание двигателя. Это необходимо для повышения безопасности проведения работ.
    2. Открытие крышки двигателя со всеми выводами использующихся обмоток.
    3. Установка напряжения для тестирования. Если двигатель эксплуатируется при напряжении до 1000 В, для проверки достаточно установить показатель в 500 В.
    4. Прикрепление одного щупа на корпус моторного отсека, другого – к имеющимся на устройстве к одному из выходов.

    Также дополнительно необходимо убедиться в правильности соединения обмоток. Это можно сделать посредством подключения щупов парами.

    Замер сопротивления обмоток трансформатора

    Любой замер сопротивления обмоток трансформатора должен производиться между ними и корпусом («землей»), а также непосредственно между собой. Во втором случае остальные обмотки должны быть отсоединены и заземлены на корпус.

    Процесс тестирования может быть начат только в том случае, если напряжение прибора будет не менее 2500 В. Максимальный показатель исследования не должен быть ниже 10000 мОм.

    На трансформаторах, у которых предельное напряжение составляет 10 кВ и ниже, разрешается использование мегаомметров с напряжением на 1000 В, когда их максимум исследования не ниже 1000 мОм.

    Прежде чем начать тестирование обмотки, ее следует заземлить на время более 2 минут. Если сопротивление не нормируется, необходимо его сравнивать с заводскими параметрами или же с данными, полученными в ходе прежних тестирований.

    Также стоит обратить внимание на коэффициент абсорбции. Он тоже может не нормироваться. При этом он обязательно учитывается при рассмотрении результатов исследования. Если температура окружающей среды находится в диапазоне от +10 до +30 градусов Цельсия, он может быть для не увлажненных трансформаторов следующим:

    • менее 10000 кВА и напряжением 35 кВ и ниже: 1,3;
    • 110 кВ и выше: 1,5-2.

    Если трансформатор является увлажненным или же на нем присутствуют локальные повреждения, абсорбционный процент должен быть близок к 1.

    Процесс измерения – это ответственная работа, которая позволяет следить за состояние оборудования. Подобные меры способны предотвратить или же минимизировать неблагоприятные последствия повреждения кабельного хозяйства, сумев уберечь при этом электрические приборы от выхода из строя.

    Измерение сопротивления изоляции

    Периодичность измерения сопротивления изоляции

    На объектах коммерческой недвижимости и в жилом фонде признаки отнесения помещений к особо опасным можно встретить в электрощитовых, котельных, бойлерных, ИТП, на чердаках и техэтажах, в подвалах и техподполье и т.д. На производственных объектах факторы повышенной опасности встречаются чаще, а их комбинации разнообразнее.

    Теоретически, ответственный за электрохозяйство должен провести классификацию всех помещений по степени опасности поражения электрическим током в соответствии с требованиями ПУЭ, пп.1.1.-1.1.13. Перечень всех обследованных помещений должен совпадать с экспликацией планов БТИ и/или проектной документацией. Сделать это можно самостоятельно или привлечь инженеров электроизмерительной лаборатории. Результатом такой работы будет отчет об определении степени опасности поражения электротоком. Затем приказом по организации определяются сроки проведения отдельных видов электроизмерений для всех помещений в соответствии со степенью опасности поражения током и с учетом других факторов и требований НТД. На основании приказа нужно внести соответствующие записи в график планово-предупредительных ремонтов.

    Кстати, о требованиях НТД: условия периодичности замера сопротивления изоляции и других испытаний содержатся не только в ПУЭ и ПТЭЭП, но также и иных нормативных документах. Так, например, в организациях общественного питания измерения нужно проводить ежегодно в помещениях без повышенной опасности, и каждые полгода во всех остальных помещениях (ПОТ РМ-011-2000, п. 5.6). Аналогичные требования установлены для предприятий химической чистки и стирки, медицинских и образовательных учреждений. Подробный анализ требований НД по периодичности приведен в нашей таблице, ссылку на которую вы найдете в конце статьи.

    Проверка сопротивления изоляции мегомметром

    Мегаомметр — прибор для измерения больших сопротивлений. Именно В состав мегомметра входит генератор, который создаёт повышенное испытательное напряжение 250, 500, 1000 или 2500 вольт. Повышенное напряжение прикладывается к паре жил при снятой нагрузке, в результате чего, через диэлектрик начинает проходить ток утечки. Прибор определяет сопротивление изоляции на основании измеренного тока и известного значения напряжения. Если изоляция в отличном состоянии, то ток утечки через диэлектрик не пойдет. Сопротивление при этом будет стремиться к бесконечности и, как правило, превышать верхнюю границу диапазона измерений мегомметра. Когда изоляция изношена, между жилами появляются токопроводящие «мостики», по которым идет утечка. В обычных условиях эти утечки пренебрежимо малы и незаметны, но под воздействием повышенного напряжения ток утечки усиливается, становясь током КЗ, а сопротивление изоляции при этом стремится к нулю.

    При измерении сопротивления изоляции проверяемая кабельная линия должна быть отключена от электроустановки с обеих сторон: и со стороны источника питания, и со стороны потребителя. Обычно, отключения и прерывание электроснабжения создает массу неудобств при проведении электроизмерений на действующем объекте. Проводить работы нужно в нерабочие часы, либо согласовывать временные отключения электроэнергии в рабочие часы. К счастью, измерение сопротивления изоляции каждой кабельной линии занимает немного времени, а линии отключают по очереди, а не все одновременно. Когда отключение в рабочие часы невозможно, работы переносят на утренние, вечерние, ночные часы или выходные дни.

    Значение сопротивления измеряется попарно для всех жил кабеля:

    • для двужильного кабеля — одно измерение;
    • для трехжильного кабеля — три измерения;
    • для четырёхжильного кабеля — шесть измерений;
    • для пятижильного кабеля — десять измерений.

    Измеренные значения по каждому кабелю фиксируются инженерами электролаборатории на бумаге или в память измерительного прибора. В дальнейшем эти данные будут занесены в таблицу результатов измерений в протоколе измерения сопротивления изоляции. Если сопротивление ниже минимально допустимых значений, эта информация отражается в заключении к протоколу и дефектной ведомости технического отчета. Такую кабельную линию нужно ремонтировать или менять.

    Минимально допустимое сопротивление изоляции

    Причины снижения сопротивления и факторы износа изоляции

    Если при протяжке кабелей монтажники не повредили изоляцию, то, при вводе объекта в эксплуатацию, значения сопротивления будут измеряться сотнями или даже тысячами мегаоммов. Со временем изоляция изнашивается, а ее сопротивление естественным образом снижается. У старых кабелей, исчерпавших свой ресурс службы, счет идет на единицы или десятые доли мегаоммов.

    Заводы-изготовители указывают срок эксплуатации своих изделий, и для современных кабелей с ПВХ-изоляцией он составляет 30-40 лет при нормальных условиях. На практике, срок службы уменьшается из-за ряда факторов, ускоряющих старение изоляции.

    Постепенно, старея и разрушаясь, изоляция кабеля теряет диэлектрические свойства. Появляются микроскопические трещины, заполняемые воздухом или, что хуже, жидкостью. Образуются проводящие «мостики» по которым движутся электроны, создавая ток утечки. Со временем ток утечки усиливается, перерастая в ток КЗ. Этот процесс растягивается на годы и протекает медленно, поэтому изменения незаметны, до тех пор, пока изоляцию не пробьет и не возникнет электрическая дуга.

    Вот факторы, влияющие на состояние изоляции:

    • Повышенная температура. Для любого кабеля производитель указывает, при какой температуре гарантирована нормальная эксплуатация в течение заявленного срока службы изделия. Как правило, это диапазон от -50 °С до +50 °С, однако некоторые исследования показывают, что при температуре в помещении свыше 35 °С срок службы изоляции кабеля начинает сокращаться.
    • Повышенная влажность. Влажность ускоряет возникновение проводящих «мостиков» внутри изоляции, снижает диэлектрические свойства и повышает риск возникновения короткого замыкания. Помещения с влажностью близкой к 100% считаются особо опасными, и сопротивление изоляции в таких помещениях измеряют не реже 1 раза в год.
    • Химически активные или органические среды. Агрессивные пары, газы, жидкости, отложения или плесень также приводят к преждевременному старению изоляционных материалов.
    • Перегрузка линии. Если по жилам кабеля постоянно идет ток, превышающий номинальное значение, то нагрев жилы будет пагубно сказываться и на изоляции, вплоть до её оплавления и растрескивания.
    • Вибрация. Постоянное воздействие механических колебаний будет дополнительным фактором разрушения изоляции.
    • Токопроводящая пыль. Скапливаясь в местах разделки кабеля и зачистки жил, она способствует появлению токов утечки и, в связке с повышенной влажностью, увеличивает вероятность возникновению замыкания.

    Выводы о необходимости проверки изоляции

    Регулярное проведение измерений сопротивления изоляции дает возможность диагностировать развитие дефектов и вести профилактику до появления короткого замыкания. Проводить измерения следует не реже, чем 1 раз в 3 года, а в некоторых помещениях— ежегодно или даже раз в полгода. Следует заранее озаботиться организационными вопросами, связанными с отключениями: оповестить жителей дома или сотрудников организации о предстоящих перерывах в электроснабжении, предоставить доступ специалистам электролаборатории во все необходимые помещения.

    Результаты измерений будут оформлены в виде соответствующего протокола в составе технического отчета об испытаниях электроустановки.

    Мегаомметры и измерители сопротивления изоляции

    Электрический аналоговый или как его еще называют стрелочный мегаомметр (мегомметр) — это электроизмерительный прибор для измерения сопротивлений в миллионы Ом. Основные сферы его применения мегаомметров — это измерение сопротивления емкостей, трансформаторов и катушек индуктивностей, но благодаря способности к измерению очень больших сопротивлений он может быть использован и для определения сопротивления диэлектриков. Большинство приборов измеряют сопротивление с помощью постоянного тока, но бывают модификации мегомметров, которые могут проводить измерения и переменным током. Мегаоометры бывают 2 типов: — аналоговые ( или стрелочные ) — цифровые

    Аналоговый мегаомметр

    В простых аналоговых приборах применяются стрелочные измерительные устройства и генератор с механическим приводом. Диапазон тестового напряжения мегаомметров – от 10 В до 10 кВ. Если вы хотите выбрать мегаомметр самостоятельно, то на сайте Компании Мир Приборов просто кликнув по названию прибора вы увидите все его технические характеристики. При необходимости специалисты нашей компании всегда готовы помочь вам выбрать прибор, который максимально будет соответствовать вашим требованиям.

    Строение прибора

    Мегаомметр — устройство для проверки сопротивления изоляции. Есть два типа приборов — электронные и стрелочные. Независимо от типа, любой мегаомметр состоит из: Источника постоянного напряжения. Измерителя тока. Цифрового экрана или шкалы измерения. Щупов, посредством которых напряжение от прибора передается на измеряемый объект. В стрелочных приборах напряжение вырабатывается встроенной в корпус динамомашиной. Она приводится в действие измерителем — он крутит ручку прибора с определенной частотой (2 оборота в секунду). Электронные модели берут питание от сети, но могут работать и от батареек. Работа мегаомметра основана на законе Ома: I=U/R. Прибор измеряет ток, который протекает между двумя подключенными объектами (две жилы кабеля, жила-земля и т.д.). Измерения производятся калиброванным напряжением, значение которого известно, зная ток и напряжение, можно найти сопротивление: R=U/I, что и делает прибор.

    Как работать мегаомметром?

    При испытаниях мегаомметр вырабатывает очень высокое напряжение — 500 В, 1000 В, 2500 В. В связи с этим проводить измерения необходимо очень осторожно. На предприятиях к работе в прибором допускаются лица,

    имеющие группу электробезопасности не ниже 3-й. Перед тем как провести измерения мегаомметром, в тестируемые цепи отключают от электропитания. Если вы собираетесь проверить состояние проводки в доме или квартире, надо отключить рубильники на щитке или выкрутить пробки. После выключают все полупроводниковые приборы. Если

    проверять будете розеточные группы, вынимаете вилки всех приборов, которые включены в них. Если проверяются осветительные цепи, выкручиваются лампочки. Они тестового напряжения не выдержат. При проверке изоляции двигателей они также полностью отключаются от питания. После этого к тестируемым цепям подключается заземление. Для этого к «земляной» шине крепится многожильный провод в оболочке сечением не менее 1,5 мм2. Это так называемое переносное заземление. Для более безопасной работы свободный конец с оголенным проводником крепят к сухому деревянному держаку. Но оголенный конец провода должен быть доступен — чтобы можно было им прикасаться к проводам и кабелям. Перед проверкой щупы устанавливаются в соответствующие гнезда на приборе, после чего подключаются к объекту измерения. При тестировании в приборе генерируется высокое напряжение, которое при помощи щупов передается на проверяемый объект. Результаты измерений отображаются в мега омах (МОм) на шкале или экране.

    Требования безопасности при работе с измерителем сопротивления изолиции

    Даже если вы хотите в домашних условиях измерить сопротивление изоляции кабеля, перед тем как пользоваться мегаомметром стоит ознакомиться с требованиями по технике безопасности. Основных правил несколько: Держать щупы только за изолированную и ограниченную упорами часть. Перед подключением прибора отключить напряжение, убедиться в том, что поблизости нет людей (на протяжении всей измеряемой трассы, если речь идет о кабелях). Перед подключением щупов снять остаточное напряжение при помощи подсоединения переносного заземления. И отключать его после того как щупы установлены. После каждого измерения снимать со щупов остаточное напряжение соединив их оголенные части вместе. После измерения к измеренной жиле подключать переносное заземление, снимая остаточный заряд. Работать в перчатках.

    Как правильно проводить измерения мегаомметром?

    Выставляем напряжение, которое будет выдавать мегаомметр. Оно выбирается не произвольно, а из таблицы. Есть мегаомметры, которые работают только с одним напряжением, есть работающие с несколькими. Вторые, понятное дело, удобнее, так как их можно использовать для тестирования различных устройств и цепей. Переключение тестового напряжения производится ручкой или кнопкой на лицевой панели прибора.

    Наименование элемента

    Напряжение мегаомметра

    Минимально допустимое сопротивление изоляции

    Электроизделия и аппараты с напряжением до 50 В

    Должно соответствовать паспортным, но не менее 0,5 МОм

    Во время измерений полупроводниковые приборы должны быть зашунтированы

    тоже, но напряжением от 50 В до 100 В

    тоже, но напряжением от 100 В до 380 В

    свыше 380 В, но не больше 1000 В

    Распределительные устройства, щиты, токопроводы

    Измерять каждую секцию распределительного устройства

    Электропроводка, в том числе осветительная сеть

    Не менее 0,5 МОм

    В опасных помещениях измерения проводятся раз в год, в друих — раз в 3 года

    Измерение проводят на нагретой отключенной плите не реже 1 раза в год

    Как проверить сопротивления изоляции кабеля?

    Часто требуется измерить сопротивление изоляции кабеля или провода. Если вы умеете пользоваться мегаомметром, при проверке одножильного кабеля это займет не более минуты, с многожильными придется возиться дольше. Точное время зависит от количества жил — придется проверять каждую. Тестовое напряжение выбираете в зависимости от того, в сети с каким напряжением будет работать провод. Если вы планируете его использовать для проводки на 250 или 380 В, можно выставить 1000 В. Для проверки сопротивления изоляции одножильного кабеля, один щуп цепляем на жилу, второй — на броню, подаем напряжение. Если брони нет, второй щуп крепим к «земляной» клемме и тоже подаем тестовое напряжение. Если показания больше 0,5 МОм, все в норме, провод можно использовать. Если меньше — изоляция пробита и его применять нельзя. Если необходимо проверить многожильный кабель, тестирование проводится для каждой жилы отдельно. При этом все остальные проводники скручиваются в один жгут. Если при этом надо проверить еще и пробой на «землю», в общий жгут добавляется еще и провод, подключенный к соответствующей шине. Если жил много, перед тем как пользоваться мегаомметром, жилы зачищают от изоляции и скручивают в жгут Если у кабеля имеется экран, металлическая оболочка или броня, они тоже добавляется в жгут. При образовании жгута важно обеспечит хороший контакт. Примерно так же происходит измерение сопротивления изоляции розеточных групп. Из розеток выключают все приборы, отключают питание на щитке. Один щуп устанавливают на клемму заземления, второй — в одну из фаз. Тестовое напряжение — 1000 В (по таблице). Включаем, проверяем. Если измеренное сопротивление больше 0,5 МОм, проводка в норме. Повторяем со второй жилой. Если электропроводка старого образца — есть только фаза и ноль, тестирование проводят между двумя проводниками. Параметры аналогичны.

    Особенности измерителей сопротивления

    Измерительный прибор мегаомметр состоит из двух основных частей – источника тока и измерительного блока. Для определения значения сопротивления изоляции прибор генерирует ток высокого напряжения с помощью батареи или генератора. Современный мегаомметр – это мегаомметр цифровой, являющийся сложным электронным прибором, позволяющим, кроме измерения сопротивления изоляции, автоматически определять степень ее увлажненности, рассчитывать коэффициент поляризации. Высокотехнологичные комплектующие, оперативность получения данных, стильный дизайн делают мегаомметр электронный удобным и безопасным в эксплуатации, что, несомненно, оценит каждый электрик-профессионал.

    Как выбрать и купить мегаомметр?

    В каталоге интернет-магазина нашей компании вы сможете выбрать и купить аналоговые, стрелочные или цифровые измерители сопротивления изоляции по низким ценам с поверкой и доставкой.
    Прежде чем купить мегаомметр, предлагаем ознакомиться на сайте нашей компании с техническими парамтерами этих приборов. Подробные характеристики Вы сможете найти в нашем каталоге. На любой мегаомметр цена будет зависеть от количества функциональных возможностей, диапазона измеряемых сопротивлений, а также от фирмы-изготовителя. Отдельно стоит обратить внимание на наличие свидетельства об утверждении типа средств измерений, ведь от этого будет зависеть — ,возможно, ли будет сделать его поверку или придется ограничиться калибровкой прибора.
    В каталоге товаров интернет-магазина нашей компании Вы можете приобрести мегаомметры (измерители сопротивления изоляции) с поверкой и доставкой, по низким ценам. Широкий выбор.

    Интернет-магазин контрольно-измерительных приборов и освещения » Мир приборов «

    Ознакомьтесь с нашим ассортиментом в каталоге

    Решения для жизни и работы!

    Представленная информация на сайте носит справочный характер и не является публичной офертой.
    Технические параметры (спецификация) и комплект поставки товара могут быть изменены производителем без предварительного уведомления.

    г. Санкт-Петербург , Комендантский пр., д. 4 к. 2,
    стр. А, офис 0В2 , 197227
    График работы с 9:30 до 19:00

    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: