Провод для светодиодной ленты 12 вольт - ELSTROIKOMPLEKT.RU

Провод для светодиодной ленты 12 вольт

Кабели для светодиодных лент

Расскажу об одном важном моменте, а именно про то, как считать сечение кабеля, необходимого для подключения светодиодной ленты.

В начале важная мысль, которая, я надеюсь, всем известна: сечение кабеля зависит от проходящего по нему тока.

Не напряжения и не мощности, а тока. Который в амперах. Можно легко найти таблицы, которые сообщают нам, какой предельный ток можно пускать по кабелям различного сечения:

  • Кабель сечением 0.5 мм2 — 6 ампер
  • Кабель сечением 0.75 мм2 — 10 ампер
  • Кабель сечением 1 мм2 — 14 ампер
  • Кабель сечением 1.5 мм2 — 15 ампер
  • Кабель сечением 2 мм2 — 19 ампер
  • Кабель сечением 2.5 мм2 — 21 ампер

Исходя из этого на силовые нагрузки напряжением 220 вольт на кабель сечением 1,5 мм2 ставится автомат 10А, а на кабель сечением 2,5 мм2 ставится автомат 16А. Запас учитывается потому что автомат при номинальном и бОльшем токе сработает не сразу, а чуть погодя. А нам хотелось бы, чтобы по кабелю не шёл максимально допустимый ток. К тому же, кабель, на котором написано 2.5, может в реальности быть не 2.5, а меньше.

Поскольку мы говорим о светодиодной ленте, то напряжение у нас не переменное, а постоянное (ленту с питанием 220 вольт не берём в расчёт), и очень важно понимать, что сечение кабеля мы выбираем не по максимальному току, который может выдержать кабель, а по падению напряжения в кабеле.

Падение напряжения в кабеле

У кабеля есть, как у любой резистивной нагрузки, сопротивление. То есть, когда ток проходит по нему, часть электроэнергии превращается в нагрев самого кабеля. Ток, в замкнутой цепи согласно законам физики, всегда постоянен, а напряжения уменьшается. То количество вольт, на которое уменьшается напряжение при прохождении нагрузки, называется падением напряжения.

Как можно посчитать падение напряжения в кабеле? Вспомнив физику.

У кабеля есть некое значение его удельного сопротивления. Это количество ом на миллиметр квадратный сечения кабеля на метр длины. Чем больше, длина, тем больше сопротивление. Чем больше сечение, тем меньше сопротивление. Измеряется в Омах, можно понятнее представить как Ом*мм2/м, так оно чаще всего и обнаруживается в интернете. Мы возьмём за некое усреднённое значение сопротивление силового кабеля 0,018 Ом*мм2/м. Для более точных расчётов можно подставить сопротивление конкретного кабеля.

Полное сопротивление кабеля равно удельное сопротивление * длина / сечение *2

Умножаем на два потому, что относительно источника напряжения надо считать длину жилы до нагрузки и обратно. Либо можно брать длину кабеля сразу с учётом этого.

U = I * R, поэтому падение напряжения равно сопротивлению кабеля * ток.

Напряжение, которое приходит на нагрузку, равно напряжению питания источника минус падение напряжения.

Это важный момент! Падение напряжения зависит от тока. Иногда спрашивают: какое может быть расстояние до датчика движения? Оно может быть большое, потому что ток потребления датчика движения очень маленький. Для Colt Quad PI это 12 миллиампер. То есть, если используем кабель сечением 0,22мм, то для падения напряжения на 1 вольт нужен кабель длиной 500 метров.

Второй вывод выходит из первого: падение тем меньше, чем больше напряжение. Почему для передачи электроэнергии на большие расстояния используются высоковольтные линии? Потому что если передавать 220/380 вольт, то напряжение быстро упадёт. Надо использовать очень толстый кабель, но дешевле ставить трансформаторные подстанции.

Допустимое напряжение светодиодной ленты

Я провёл эксперимент: подключил 24-вольтовую ленту к источнику напряжения и стал понижать напряжение. Фотографиями не передать изменение яркости свечения, надо вживую смотреть и сравнивать. Вывод такой: при 22 вольтах лента горит тусклее, но только немного тусклее. Скажем так, допустимо. При 21 вольте лента горит ещё тусклее. При 20 вольтах ещё немного тусклее.

Можем считать так: уменьшение напряжения питания ленты на 10% чуть (до 21,6 вольта) снижает яркость свечения, но ещё допустимо. Больше — нежелательно. Лучше принимать за допустимое падение напряжения 6-8%.

Далее считаем по формулам, представленным выше.

Лента бывает разной мощности и разного напряжения. Полагаю, не надо пояснять, что нам всегда выгоднее использовать ленту бОльшего напряжения. Больше напряжения — меньше ток. Меньше ток — меньше нежелательное падение напряжения. Сама распространённая лента имеет напряжение 24 вольта. 12 вольт или ниже не смотрим, кроме случаев совсем короткого кабеля до ленты и наличия свободного 12-вольтового блока питания.

Представим, что у нас лента имеет мощность 9,6 ватта на метр (самый частый вариант), длина 10 метров. Напряжение 24 вольта. Расстояние до ленты от блока питания 20 метров. Какого сечения брать кабель?

Сначала считаем ток. Это 4 ампера (мощность на метр * длина / напряжение). Я сделал табличку в Excel, в которую забил все формулы для простого расчёта падения напряжения в процентах.

Вот эта табличка для всех желающих: home-matic.ru/voltagedrop.xlsx

У меня получилось, что при сечении 1,5 мм2 падение напряжения составит 1,92 вольта или 8%. При длине кабеля 25 метров — 10%. При сечении кабеля 0,75 длина может быть не больше 10 метров. Это максимальные значения, если вы хотите, чтобы лента горела не «немного тусклее обычного», а достаточно ярко, то надо увеличивать сечение. С учётом того, что кабели зачастую продаются меньшего сечения, чем заявлено, стоит взять сечение на шаг больше.

Другой способ — повышать напряжение источника питания. На некоторых блоках питания есть регулировочный винтик (обычно с маркировкой ADJ, «подстройка»), который позволяет повысить напряжение до 27 вольт. При кручении винтика желательно измерять напряжение на ленте, чтобы оно стало ровно 24 вольта, не больше. Не стоит увлекаться этим способом, чрезмерный нагрев кабеля нежелателен.

Ещё существует лента на 36 вольт и 48 вольт. Она не очень распространена, но её использование поможет уменьшить падение напряжения в абсолютном значении и в процентах относительно номинала.

Кабель можно использовать 2-жильный, но если лента будет в алюминиевом профиле или на подложке, то нужна ещё жила заземления.

Размещение блоков питания

Этот вопрос всегда является камнем преткновения между дизайнером и электриком. Электрик спрашивает дизайнера, куда класть блоки питания, а дизайнер говорит, что это не его дизайнерское дело блоки питания класть: вы электрик, вы и кладите. Не будешь же ему про падение напряжения объяснять. На самом деле, я считаю, что хороший дизайнер не должен устраняться от технических моментов, а должен в них вникать и расти над своими не вникающими коллегами, как и электрик, вникающий в вопросы дизайна. Но это тема отдельных размышлений.

Идеально, конечно, размещение блока питания где-то у начала ленты. Часто блок можно положить за бортик двухуровневого потолка, выпускаются очень тонкие модели. Важно заранее подвести питающий кабель не в одну точку потолка, а в несколько, чтобы мощности блока питания хватало на питание подключенной к нему ленты. Кабель от щита до блока питания имеет сечение 1.5, так как напряжение в нём 230 вольт и ток, соответственно, небольшой.

Важно, чтобы блок был обслуживаемым и проветриваемым. Можно предположить, что 5% мощности подключенной ленты пойдут на нагрев блока питания. Для 200Вт это 10 Вт тепла. Нужно также быть готовым к тому, что контакты блока могут оплавиться, что в блоке может взорваться конденсатор, что блок может начать сильно греться. Что он может не пережить короткое замыкание в ленте. В хорошем блоке такого не случится, но надо быть готовым и не класть блок в пожароопасное место (не заклеивать бумагой, чтобы скрыть его в нише потолка).

Можно разместить где-то в мебели один блок питания, от него несколько выводов на ленты. Вот размещение блока питания в шкафу, от него три кабеля сечением 1,5 каждый на свой кусок ленты.

Всегда блок питания ленты должен быть обслуживаемым. Он может, как любая техника, сгореть.

У меня были пара объектов, на которых блоки питания ленты по решению заказчика были замурованы в стенах. Взяли самые дорогие (Meanwell) блоки питания с защитой IP67, мощность выбрана с запасом, трижды проверили, что они работают, и зашили потолком. Уже по меньшей мере три года работают. В общем, вероятность неисправности достаточно низкая, но если что-то случится, придётся расшивать потолок.

Вот фото размещения блоков питания в щите. Блоки питания Chinfa 24 вольта. У каждого есть подстроечный резистор, может давать до 29 вольт.

Рядом с каждым блоком реле для его включения и автомат. Здесь один блок — одна лента.

Выводы

  1. Надо заранее думать, где будут размещены блоки питания лент и посчитать их мощность и ток
  2. Если блоки питания в щите, то надо не лениться и по формулам посчитать падение напряжения в кабеле и предусмотреть кабель соответствующего сечения. Можно разделить ленту на несколько участков и протянуть от блока несколько кабелей, по каждому пойдёт меньший ток.
  3. Если блоки питания не в щите, то надо предусмотреть место для них. Место должно быть обслуживаемое, проветриваемое, не пожароопасное.
  4. Блоки питания выбираем хорошие. Чтобы держал короткое замыкание. Лучший вариант в металлическом кожухе IP67, но это дороже всего. Можно брать блоки на DIN рейку, они обычно качественные. Хорошо если с подстройкой выходного напряжения.
  5. Время от времени надо не забывать подкручивать все контакты блоков питания. Собственно, это надо делать на всех элементах щита, а то из-за плохого контакта может начать греться клемма.

180,552 просмотров всего, 408 просмотров сегодня

Подбор сечения кабеля для подключения светодиодной ленты

Правильно выбранное сечение кабеля поможет избежать заметные потери яркости светодиодной ленты (СДЛ). Поэтому данному расчету следует выделить особое внимание.

Требования к величине сечения кабеля при подключении LED-ленты с напряжением 12, 24 В гораздо выше, чем для сетей на 220 В. Это связано с тем, что падение напряжения (потери мощности) в проводах при протекании одного и того же тока в единицы вольт при напряжении 220 В незначительно, а для 12 В — существенно.

Читайте также  Как подобрать кабель для электропроводки?

Пример расчёта сечения кабеля

Например, подключаем светодиодную ленту суммарной мощностью P = 60 Вт, постоянное напряжение 12 В, длина медных проводов от блока питания (БП) до ленты L = 6 м. Ток I = P/U = 60/12 = 5 А. Если выбрать сечение жилы провода по таблице 1, которая составлена для переменного напряжения 220 В, то сечение провода будет S = 0,5 мм².

Таблица 1. Для подбора сечения кабеля для медного кабеля при напряжении 220 и 380 В.

Теперь подсчитаем потери напряжения на двухжильном кабеле по формуле (1):

Uk = ((ρ × 2 × L) / S) × I, (1)

где ρ — удельное сопротивление провода [Ом·мм 2 /м], для медного провода оно равно 0,0175. В результате расчета получим потери напряжения на кабеле Uk = 2,1 В. То есть до ленты «дойдет» всего 9,9 В (рис. 2) вместо 12 В. Таким образом, сечение 0,5 мм² нам явно не подходит.

Для расчета кабеля есть специальные таблицы, в которых кабель подбирается исходя из падения напряжения. Но для практических расчетов мы используем упрощенные формулы (2) и (3):

S = 0,5×I, если длина двухжильных проводов менее 10 м; (2)

S = 0,75×I, если длина двухжильных проводов от 10 м до 30 м. (3)

То есть для нашего случая сечение кабеля должно быть S = 0,5 × 5 = 2,5 мм². Разница в пять раз между тем, что мы подсчитали, и между тем, что неправильно выбирают по привычке по таблице 1. Теперь подсчитаем потери напряжения в нашем кабеле с сечением 2,5 мм²: Uk = 0,42 В, что вполне приемлемо, поскольку непосредственно на светодиодной ленте будет 11,58. Блок питания обычно имеют подстроечный резистор (рис. 3), который позволяет отрегулировать напряжение до 12,42 В. Тогда на светодиодной ленте будут положенные 12 В. На БП производители обычно выставляют напряжение 12,5 В, по всей видимости, уже предполагая, что будут какие-то разумные потери.

Рис. 3. Подстрочный резистор у блока питания.

Обращаем внимание, что сечения кабеля можно уменьшить в 2 раза если использовать светодиодную ленту с напряжением питания 24 В. Так, для нашего примера, если бы мы использовали ленту на 24В той же мощности 60 Вт, ток был бы 2,5 А, тогда по формуле (2) требуемое сечение кабеля 1,25 мм². Для систем с большой мощностью рекомендуем использовать светодиодные ленты на 24 В.

Заключительные рекомендации

Используйте вышеуказанные формулы (2) и (3) для расчета сечения кабеля, поскольку из-за неправильного выбора сечения можно потерять заметную часть светового потока. Проверяйте напряжение на концах кабеля перед подключением ленты. Лучше использовать кабель хорошего качества, соответствующий ГОСТу. Некоторые производители могут использовать медь с большим числом примесей, тогда удельное сопротивление ρ будет больше и, соответственно, потери напряжения будут еще больше, чем теоретически рассчитано выше.

По материалам статьи «Как выбирать светодиодные ленты для создания декоративной подсветки интерьера» N1, 2017 led-e.ru

Автор статьи Сергеев П. А. сотрудник компании СветоЯр.

Как рассчитать и выбрать блок питания для светодиодной ленты 12В

Светодиодная лента позволяет организовать подсветку и освещение. При использовании моделей с питанием 220В для подключения нужен небольшой адаптер с диодным мостом внутри. А вот для подключения низковольтных светодиодных лент на 12В или 24В вам понадобится блок питания. А для многоцветных моделей еще и контроллер. О том, как выбрать и рассчитать блок питания для светодиодной ленты по току и мощности мы и поговорим в этой статье.

Виды

Всё сказанное далее справедливо как для распространенной светодиодной ленты на 12В, так и для моделей с напряжением питания 5В или на 24 вольта.

Прежде чем перейти к расчету мощности блока питания для светодиодной ленты, нужно определиться с тем, где он будет установлен, от этого зависит на какой вариант обратить внимание.

По способу охлаждения различают два вида блоков питания:

С активным охлаждением;

С пассивным охлаждением.

Активное охлаждение состоит из радиаторов и вентилятора (кулер, аналогичный тем что устанавливаются в компьютерах). Преимущества этой системы состоит в том, что радиаторы на силовых элементах используются меньших размеров, а значит блок питания будет меньше и легче, чем блок питания с пассивным охлаждением той же мощности.

Однако хорошие массогабаритные показатели блоков питания с активным охлаждением перекрываются существенным недостатком – кулер со временем начинает работать всё громче и громче, из-за механического износа. Поэтому использовать их в жилых помещениях не рекомендуется, поскольку гул во время работы может доставлять дискомфорт пользователю.

Блоки питания с активным охлаждением обычно имеют большую мощность – от 100 ватт и более, в связи с чем отлично подходят для подключения подсветки в больших помещениях, общественных местах или для подключения светодиодной инсталляции большой длины, например, для уличной подсветки (фасада, рекламных щитов и пр.) от одного источника.

Пассивные блоки питания производятся в широком диапазоне мощностей, но наибольшее распространение получили модели мощностью до 100-150 ватт. Их преимущество состоит в том, что они бесшумны в работе. Поэтому их можно не задумываясь устанавливать в спальне или другом жилом помещении. Размеры таких устройств обычно больше чем у активных блоков питания.

На рынке можно встретить изделия отличающиеся классом пылевлагозащищенности (класс IPxx), например, IP22, IP44, IP67. Я же предпочитаю разделить их на два вида:

Герметичные (IP65 и выше) или так называемые «уличные» блоки питания для LED-лент. Их корпус часто напоминает блок питания от ноутбука (черные пластиковый брусок), а герметичные блоки питания высокой мощности выполняются в металлическом кожухе с заглушками по торцам.

Не герметичные. Это те которые выполняются в пластиковом не герметичном корпусе или в металлическом корпусе с перфорацией через которую осуществляется конвекция воздуха при охлаждении элементов.

Когда вы определились где будете устанавливать блок, какой класс защиты нужен и в каком диапазоне мощностей продаются эти блоки можно перейти к расчету схемы питания светодиодной ленты.

Как рассчитать блок питания

Для начала ознакомьтесь с таблицей мощности типовой светодиодной продукции.

Здесь указан тип светодиодов и значение мощности для разного количества штук на погонный метр, а также типовые значения светового потока.

По ней вы можете посчитать общую мощность светодиодной ленты в вашей установке. Допустим вы купили отрезок длинной 4 метра со светодиодами SMD 5050 60 шт/м. Мощность 1 метра ленты 14.4 Ватта. Расчет блока питания по мощности производится так:

1. Определяем сколько всего потребляет нагрузка:

14.4Вт/м*4 м=57,6 Ватт

2. Блок питания должен быть на 20-40% мощнее чем подключаемая к нему нагрузка. Запас выбирают исходя из условий его эксплуатации – если он будет хорошо вентилироваться, то достаточно и 20%, если будет стоять в маленьком замкнутом пространстве, то и 40% может не хватить, особенно если рядом будет проходить, например, отопление. Допустим у нас первый случай (берём запас в 20%), то нужно покупать блок питания мощностью не менее:

Округляем до 70 Вт. Можно больше, но не меньше — выбираем ближайшую величину доступную в магазине. Ниже вы видите типовой ряд номинальных мощностей блоков питания с классом защиты IP20 из каталога оптовых поставщиков, кстати под буквой В – обозначен блок питания с активным охлаждением (кулером).

Но иногда случается так, что на этикетке блока питания указана не мощность, а максимальный выходной ток, тогда для расчета по току нужно мощность разделить на напряжение:

69,12 Вт /12 В= 5,76 А

То есть выходной ток должен быть (округлим) не меньше 6 ампер.

Схема подключения

Расчёт достаточно прост. Но есть некоторые особенности в подключении светодиодной ленты большой длинны, что особенно актуально при подсветке потолка по периметру комнаты. Рассмотрим несколько типовых схем подключения и правил, которые нужно учесть.

Главное правило – не подключать больше 5 метров ленты в одну линию. Светодиодные ленты продают в бухтах по 5 метров не просто так. Их токопроводящие дорожки рассчитаны на ток потребления именно этих 5 метров. Если к концу такого отрезка подключить следующие куски ленты, то будут просадки напряжения к концу линию, она будет греться и быстро выйдет из строя.

ОБЩАЯ ДЛИННА ВСЕХ ОТРЕЗКОВ СВЕТОДИОДНОЙ ЛЕНТЫ ПОДКЛЮЧЕННОЙ ДРУГ К ДРУГУ НЕ ДОЛЖНА ПРЕВЫШАТЬ 5 МЕТРОВ.

Если вам нужно подключить больше 5 метров, то есть два варианта:

1. Прокладывайте кабель от блока питания до каждого следующего отрезка.

2. Прокладывать кабель 220В и подключать их к новому блоку питания.

В первом случае нужно учесть, что сечение провода для линии 12В должно быть не меньше 0,75 мм², точно рассчитывается по току. К сведению, 5 метров светодиодной ленты SMD5050 60 шт/м потребляет 72Вт или 6А тока. Приведем несколько типовых схем подключения светодиодной ленты.

К одному блоку питания отрезка общей длины до 5 метров:

Нескольких лент к одному блоку питания общей длинной больше 5 метров:

Подключение подсветки большой протяженности к двум блокам питания:

Как вы можете убедиться, в выборе блока питания для светодиодной ленты нет ничего сложно. Нужно учесть 3 фактора:

2. Метраж ленты и конечная схема подключения и монтажа.

3. Ток потребляемый лентой.

Таким образом вы можете определить мощность и количество блоков питания, необходимых для организации подсветки или освещения.

Какой выбрать блок питания для светодиодной ленты 12в

Светодиоды постепенно вытесняют традиционные источники света: нити накаливания и газоразрядные (люминесцентные) трубки. До сих пор этот источник света для многих остается загадочным и не совсем понятным для рядового пользователя остается принцип действия маленького кристалла, способного заменить привычную лампочку, не требующую никаких дополнительных устройств, для включения в электрическую сеть.

Читайте также  Проводка для электроплиты и духового шкафа

В плане удобства пользования светодиоды ничем не уступают традиционным лампочкам. Единственным нюансом, без которого невозможно их использование при непосредственном подключении – они рассчитаны на гораздо более низкое напряжение, чет то, которое подается по проводам электросети – 220 вольт, к тому же, они могут работать только от источника постоянного тока, имеющего полярность «+» и «-».

Чтобы реализовать на практике преобразование переменного тока электросети в постоянный ток нужного напряжения существуют блоки питания, которые служат для подключения светодиодных приборов освещения, преимущественно – светодиодных лент (СЛ).

О том, как правильно подобрать трансформатор для светодиодной ленты 12 вольт, правильно рассчитать его мощность и с минимальным набором инструментов смонтировать работоспособный источник освещения расскажем в статье.

Принцип действия светодиодного блока питания

Блок питания светодиодной ленты (адаптер для светодиодной ленты) представляет собой электронное устройство. Для многих пользователей ассоциируется с понижающим трансформатор. Это не совсем так. Принцип работы трансформатора основан на преобразовании переменного тока в постоянный за счет прохождения через две проволочные катушки. Единственная функция трансформатора – понизить или повысить напряжение на выходе.

Блок питания СЛ принципиально отличается по устройству от трансформатора, хотя, выполняет схожие функции: понижение напряжения до приемлемых для работы светодиода значений и стабилизирует его, не позволяя светодиодам мерцать в процессе работы.

Принцип действия импульсного блока питания наглядно представлен на рисунке:

РИСУНОК 1

Устройство импульсного блока питания СЛ

В отличие от обычного трансформатора в импульсном блоке питания (RGB) преобразование переменного тока сети в постоянный происходит на первоначальном этапе. После этого постоянный ток 220 вольт поступает на электронное устройство – генератор импульсов. В отличие от бытовой частоты в сети, равной 50 Гц, генератор импульсов задает очень большую частоту: от 30 до 150 КГц (30 000 – 150 000 колебаний в секунду). За счет этого достигается практическая бесшумность работы устройства. Человеческое ухо не способно уловить шум, возникающий при работе прибора, в отличие от постоянно гудящего обычного трансформатора.

Ток высокой частоты поступает на миниатюрный трансформатор, имеющий привычный вид, только в десятки раз меньший по размерам. На трансформаторе происходит понижение напряжения до требуемых значений (чаще всего 12 или 24 вольта).

После снижения напряжения на трансформаторе, переменный ток 12 вольт поступает на электронную схему выпрямителя, где преобразуется в постоянный, имеющий полярность «+» и «-». Импульсный блок питания имеет очень высокий КПД, от 90 до 98%, по сравнению с традиционным, у которого КПД всего

Причины выхода из строя светодиодной ленты

Самой частой причиной выхода ленты из строя является попытка запитать светодиодную ленту не через адаптер для светодиодной ленты, а использовать для этого драйвер. Многие путают эти устройства и тем самым сами создают неприемлемые условия для работы СЛ. Отличие драйвера от блока питания заключается в том, что он стабилизирует на одном уровне не напряжение, а ток.

Каждый светодиод, не смотря на внешнее сходство и заданные параметры, является устройством уникальным в плане потребления тока. В светодиодной ленте один светодиод может потреблять ток в 2,0 А, другой в 2,7А, а третий – 1,7А при одинаковом напряжении.

Такая неравномерность приводит к тому, что светодиоды работают нестабильно. Одни светят ярче, другие тусклее, в результате такой несогласованности светодиоды, потребляющие больший ток быстро перегреваются и выходят из строя.

Никогда нельзя заменять блок питания СЛ драйвером.

Основные критерии выбора блока питания для светодиодной ленты 12в

Чтобы в огромном многообразии представленных в торговых сетях адаптеров для светодиодной ленты, подавляющее большинство которых – продукция «ноунейм» китайского производства, выбрать надежный блок, необходимо будет обратить внимание на ряд конструктивных особенностей.

Метод преобразования

В первую очередь, выбор блока питания для светодиодной ленты следует остановить на моделях, работающих по импульсной схеме преобразования напряжения. Китайские умельцы, экономя на деталях и материалах, часто выдают обычный трансформатор для светодиодных лент за импульсный источник питания. Во-первых, у них разный КПД. Как уже отмечалось, для импульсного – 90-98%, для обычного – не более 50%. Во-вторых, обычный трансформатор сильно нагревается во время работы, что недопустимо при совместном размещении СЛ и питающего устройства на одной dim-планке. В-третьих – во время работы такое устройство будет шуметь, создавая постоянный гул.

Охлаждение

Существует два типа охлаждения адаптеров для светодиодной ленты:

Пассивное – в нем охлаждение происходит за счет отдачи тепла, выделяемого при работе трансформатора на корпус устройства. Для маломощных устройств (до 60 Вт) корпус может быть выполнен из термостойкого полимера. Более эффективны блоки питания, имеющие перфорированный стальной или алюминиевый корпус с пластинами радиатора.

Активное – в таких блоках питания для светодиодов устанавливается вентилятор, поток воздуха от которого направлен на трансформатор. Используется в БП большой мощности – выше 500 Вт.

Выходное напряжение

Выходное напряжение блока питания светодиодной ленты должно соответствовать типу СЛ. Нельзя подключать ленту, рассчитанную на 12 вольт к БП выдающему 24 или 36 вольт. На заводской продукции параметры обязательно указываются на шильде, прикрепленной к корпусу устройства.

Расчет мощности блока питания для светодиодной ленты

Многие не знают, как рассчитать трансформатор светодиодной ленты? Правильно подобрать источник питания светодиодной ленты необходимой мощности можно путем не сложных расчетов, используя формулу:

  • P – общая мощность всех потребителей (рассчитывается в Ваттах (W);
  • P1, P2, Pn – значения мощности подключаемых СЛ;
  • К – коэффициент одновременности: сколько светодиодных лент будет одновременно подключено к одному блоку питания. Практически, используется значение 0,8. Для надежности можно использовать 1;
  • J – коэффициент запаса. Используется для создания резерва мощности, для защиты от перегрева. Обычно значение принимают равным 1,5 – 2.

Дополнительные функции

В чистом виде блок питания – функциональное и недорогое устройство, не всегда удобное в работе. Для того, чтобы повысить комфортность для потребителя, производители стремятся совместить в одном корпусе несколько устройств:

  • собственно блок питания;
  • диммер – устройство, позволяющее регулировать яркость свечения ленты;
  • блок дистанционного управления – с пультом, работающим на ИК-лучах.

Подключение светодиодной ленты

Подключение ленты осуществляется двумя способами:

  • методом пайки – необходим паяльник и припой;
  • с помощью коннекторов – зажимов с контактами, монтируемых на один конец ленты без пайки.

Полярность подключения

Подключение светодиодной ленты должно осуществляться с обязательным соблюдением полярности. Если перепутать «+» и «-» лента просто не будет светиться, поскольку не откроется p-n переход светодиодов. Для удобства пользователей, у маломощных блоков питания 12 В светодиодной ленты, провода выхода имеют разноцветную окраску: отрицательный провод – синий, положительный – красный. Могут быть вариации производителей. Если не корпусе нет дополнительной маркировки, лучше перепроверить полярность мультиметром.

Выбор схемы включения

Светодиодная лента всегда подключается с использованием параллельной схемы. Если от одного БП планируют питать 2 и более СЛ, то каждая из них должна подключаться к блоку питания непосредственно.

РИСУНОК 2

Схема параллельного подключения источников света

Место установки

Выбор места установки блока питания зависит от ряда факторов:

  • габаритов БП;
  • степени защиты от воздействия окружающей среды;
  • нагрева БП во время работы;
  • доступности для обслуживания.

Большинство блоков питания, рассчитанных на питание лент до 5 метров, имеют небольшие размеры. Это позволяет монтировать их на din-рейке, совместно со светодиодной лентой, или размещать в нишах, за декоративными полками мебели, в пространстве между черновым и натяжным потолком.

Мощные блоки питания размещают таким образом, чтобы обеспечить их оптимальное охлаждение. Их нельзя размещать в закрытых объемах небольшого размера. Особенно, блоки питания, оснащенные вентиляторами.

Незащищенные блоки питания IP 00 – IP 10 можно размещать только внутри закрытых, сухих помещений. При размещении во влажных помещениях, на открытом воздухе, в бассейнах или аквариумах следует руководствоваться рекомендациями, изложенными в таблице:

ТАБЛИЦА 1

Степени защиты электрооборудования

Выбор сечения провода

Выбор сечения провода для подключения блоков питания светодиодной ленты имеет существенное значение. Особенно, если блок питания и СЛ находятся на некотором расстоянии друг от друга. Это обусловлено возрастанием силы тока в зависимости от мощности подключенных СЛ и длины проводника. Вычислить силу тока не сложно. Для этого надо мощность СЛ ( в ваттах) разделить на напряжение питания (в вольтах). После расчета трансформатора для светодиодной ленты следует обратиться к табличным данным:

ТАБЛИЦА 2

Сечение провода в зависимости от длины проводника и силы тока

Подключение проводов и клемм

При подключении проводов и клемм, даже для 12 V блока питания светодиодов, чтобы избежать искрения и нагрева в месте соединения, концы проводов рекомендуется залудить оловом или использовать промышленные переходники и адаптеры. Нельзя использовать для подключения светодиодной ленты алюминиевые провода. Должны использоваться исключительно медные – одножильные или многожильные. Чтобы вычислить сечение многожильного провода можно воспользоваться формулой:

S = N*D 2 /1,27

D – диаметр металлической части провода, измеренный штангенциркулем;

N — число жил (проволочек).

Современные производители адаптеров для светодиодной ленты

Любое электрооборудование, рано или поздно, выходит из строя. Блок питания для светодиодных ламп не исключение. Большинство производителей СЛ заявляют о сроке эксплуатации от 30 000 до 100 000 часов. При таком длительном сроке, БП должен обеспечивать их работоспособность. Это условие может быть соблюдено только при покупке надежного оборудования.

Лидерами по надежности являются:

  1. Elektrostandard
  2. Feron
  3. Gauss
  4. Navigator
  5. Osram

Стоимость этих блоков питания LED ленты высока, в отличие от китайских «ноунеймов», но и надежность – на несколько порядков выше. Главное, они безопасны, в отличие от китайской продукции, в плане короткого замыкания и возгорания – основной причины пожаров.

9 схем подключения светодиодной ленты на 12 вольт

Кажущееся, на первый взгляд, простым подключение светодиодной ленты на 12 вольт к блоку питания (БП), на самом деле таковым не является. Чтобы собранная осветительная система была надёжной и долговечной, необходимо заранее учесть все нюансы, определить подходящий для себя способ монтажа и подключения и только после этого приступать к выполнению работ.

Читайте также  Металлическая гофра для проводки

Подключение светодиодной ленты напрямую к сети 220 В без блока питания

Подавляющая часть имеющихся в продаже светодиодных лент рассчитана на подключение к блоку питания постоянного тока напряжением 12 В. Реже встречаются светодиодные ленты с питанием 5 вольт либо 24 вольт и выше. Включать такие осветительные приборы напрямую в сеть переменного тока 220 В нельзя – не пройдёт и секунды, как все SMD светоизлучающие диоды и резисторы попросту перегорят.

Тем не менее существует один рабочий способ, позволяющий запитать низковольтную светодиодную ленту от сети 220 В. Для его реализации ленту на 12 В любого типа и цвета свечения разрезают на 24 равных отрезка. Затем их необходимо соединить между собой последовательно. Для этого с помощью короткого провода соединяют минусовой контакт первого отрезка с плюсовым контактом второго отрезка. Далее припаивают провод к минусу второго и плюсу третьего отрезка и так далее. В результате, вместо параллельного соединения, получится цепочка из последовательно включённых отрезков светодиодной ленты, способная выдержать напряжение 288 вольт. Для подключения получившейся конструкции к сети 220 В придётся выпрямить и сгладить напряжение с помощью диодного моста VD1 (Uобр=600 В, Iпр=10 А) и полярного конденсатора C1 на 10 мкФ – 400 В, на выходе которого получится примерно 280 В.

Несмотря на то что данная схема вполне работоспособна, у неё есть ряд недостатков:

  • на каждом из отрезков в местах пайки присутствует опасное для жизни высокое напряжение;
  • конструкция имеет низкую надёжность из-за огромного количества соединений;
  • низкая эргономичность готового изделия.

Чтобы не заниматься самостоятельной переделкой светодиодной ленты с 12 на 220 вольт, можно купить готовую ленту промышленного производства, рассчитанную на прямое подключение к однофазной бытовой сети переменного тока. Её конструктивное отличие состоит в том, что SMD светодиоды соединены последовательно в группы не по 3 шт., а по 60 шт., а диодный мост входит в комплект поставки. Подробную информацию о таких LED-лентах, линейках и модулях можно найти в отдельной статье о светодиодных лентах на 220 вольт.

Использование бестрансформаторной схемы

Желание сэкономить на покупке качественного источника питания для светодиодной ленты подталкивает некоторых радиолюбителей к использованию бестрансформаторного блока питания (БТБП). Простая схемотехника, недорогие компоненты и возможность быстрого изготовления своими руками – вот основные преимущества БТБП. Действительно их можно встретить фактически во всей электронной китайской продукции, работающей от сети 220 В (настенные часы, люстры с ПДУ, реле напряжения и т.д.) Но на самом деле схемы питания, в которых нет трансформатора, имеют два существенных недостатка:

  1. Отсутствие гальванической развязки, в результате чего потенциал высокого напряжения присутствует на всех участках электрической цепи. Другими словами, прикосновение к оголённым проводникам опасно для жизни и может вызвать сильный удар током.
  2. Низкая надёжность. Со временем конденсатор теряет ёмкость, напряжение на выходе снижается, и устройство перестаёт работать. Если же случится пробой конденсатора, то подключенная светодиодная лента полностью перегорит.

Простейший классический вариант бестрансформаторного блока питания показан на рисунке выше. Его главный элемент – гасящий конденсатор (С1), который снижает сетевое напряжение до нужного значения. Затем оно проходит через выпрямитель – диодный мост (VD1), стабилитрон (VD2) и сглаживающий фильтр (С2). Расчёт ёмкости гасящего конденсатора производят, исходя из заданного напряжения и тока в нагрузке. Ввиду перечисленных выше недостатков подключать светодиодную ленту через такой блок питания не рекомендуется.

Активное применение БТБП в китайской электронике обусловлено исключительно экономией средств.

Схема подключения светодиодной ленты через блок питания

Чтобы 12 вольтовая светодиодная лента стабильно работала на протяжении долгих лет, её необходимо подключать от импульсного блока питания с напряжением на выходе 12 В. Это самый правильный вариант – импульсные источник питания имеют малый вес и компактные размеры, высокий КПД и коэффициент стабилизации, а также безопасны в эксплуатации. К недостаткам можно причислить генерацию импульсных помех, отдаваемых обратно в сеть и сложность схемы, для ремонта которой нужны специальные навыки.

Принять правильное решение в пользу того или иного источника питания поможет статья о выборе блока питания для светодиодной ленты.

До 5 метров

Очень часто рядовых пользователей интересует вопрос о том, как подключить светодиодную ленту длиной до 5 метров? Тут все очень просто. Достаточно воспользоваться приведенной ниже схемой. Процедуру подключения выполняют в следующей последовательности:

  • с помощью коннектора или путём пайки к одному из концов ленты подключают 2 питающих провода сечением 1-1,5 мм 2 ;
  • свободные концы этих проводов зажимают в соответствующих клеммах блока питания (+V, -V), соблюдая полярность;
  • к клеммам L и N (220V AC) подключают сетевой провод.

Аналогичным образом выполняют параллельное подключение нескольких отрезков к одному блоку питания. Главное, чтобы мощность БП была больше суммарной мощности подключаемой светодиодной ленты минимум на 30%.

Чтобы яркость светодиодов была равномерной по всей длине LED-ленты, к отрезкам длиною больше 4 метров рекомендуется подводить провода с обоих концов. Это связано с падением напряжения на токоведущих печатных проводниках (дорожках), в результате чего к самым дальним светодиодам поступает напряжение меньше 12 В и их яркость падает. Плюс этого способа – равномерное свечение, а минус – затраты на дополнительные провода.

Свыше 5 метров

То, что длина светодиодной ленты в бобине ограничена 5 метрами – это не случайность, а вынужденная технологическая мера. Дело в том, что токопроводящие дорожки, приклеенные вдоль ленты, очень тонкие, узкие, и рассчитаны на подключение определённого количества светодиодов. Именно по этой причине нельзя подключать последовательно 2 отрезка общей длиной более 5 метров. Чтобы избежать токовых перегрузок, подключение светодиодных лент длиною 10, 15 и даже 20 метров следует выполнять по одной из приведенных схем ниже. Первый вариант предполагает использование одного блока питания большой мощности, способного обеспечить в нагрузке ток до 20 А. Для равномерного свечения светодиодов напряжение питания на каждый из 5 метровых отрезков подаётся с обеих сторон. Во втором варианте каждый отрезок запитан от отдельного источника 12В. Реализовать данную схему немного сложнее, так как потребуется еще один блок питания и больше соединительных проводов. На третьей схеме кроме двух источников постоянного напряжения на 12 В в цепь добавлены диммер и одноканальный усилитель сигнала. Диммер служит для регулировки яркости светового потока. Задача усилителя сигнала – в точности продублировать сигнал с диммера для тех светодиодных лент, которые запитаны от второго БП.

Рассмотренные способы включений LED-лент являются типовыми, но их вариации могут использоваться для разработки более сложных схем с целью реализации определенных задач или удовлетворения требований заказчика.

Подключение RGB или RGBW LED-лент

Правила и особенности подключения, о которых было сказано выше, необходимо соблюдать и при монтаже мультицветных аналогов. Однако функциональные схемы с RGB и RGBW лентами будут выглядеть немного сложнее из-за появления контроллера и дополнительных проводов. RGB/RGBW контроллер значительно расширяет возможности осветительной системы за счёт диммирования отдельных цветов, создания световых эффектов и управления с пульта дистанционного управления (ПДУ). RGB/RGBW контроллер предназначен для подключения мультицветных лент с отдельно расположенными белыми светодиодами, что позволяет использовать такую систему не только, как дополнительный, но и как основной источник света в помещении.

Для удобства читателей все основные схемы, правила монтажа, примеры и нюансы включения мультицветных лент собраны в отдельной статье о схемах подключения светодиодных RGB и RGBW-лент.

Подключение через выключатель

Разумеется, любой осветительный прибор должен подсоединяться к электросети через выключатель. Причём светодиодные ленты, управляемые с пульта, не должны быть исключением. Но на каком участке схемы должен находиться выключатель, чтобы эксплуатация всей осветительной системы была безопасной? В этом вопросе только один правильный ответ: в самом начале схемы, разрывая фазу в цепи переменного тока. Если выключатель установить в цепи постоянного тока, то блок питания будет всегда оставаться под напряжением. Это плохо по двум причинам. Во-первых, радиодетали имеют рабочий ресурс, который будет исчерпан значительно раньше. Во-вторых, блоку питания придётся круглосуточно противостоять импульсным сетевым помехам и скачкам напряжения, которые только ускорят его износ.

Несколько важных моментов

Руководствуясь описанными рекомендациями, несложно будет разработать схему для реализации подсветки или полноценного освещения, рассчитать длину проводов и определить оптимальное место размещения каждого функционального блока. Но прежде чем приступить к выполнению работ следует помнить о правилах техники безопасности:

  • работы по подключению и монтажу выполнять только на отключенном оборудовании;
  • перед первым включением дополнительно проверить надёжность всех контактов и правильность собранной схемы.

Также рекомендуется заранее приобрести некоторые расходные материалы:

  • термоусадочную трубку для изоляции спаянных участков проводов;
  • наконечники для проводов;
  • коннекторы для последовательного соединения двух участков лент;
  • алюминиевый профиль, чтобы не допустить перегрев светоизлучающих диодов.

В статье были определены все основные моменты, касающиеся подключения светодиодных лент на 12 В как с блоком, там и без блока питания. К сожалению, рассмотреть все схемы невозможно, ввиду многообразия их вариаций. К тому же постоянное совершенствование светодиодной продукции способствует появлению новых схемных решений, которые могут вызывать у рядовых пользователей вопросы с подключением и проведением расчётов.

Если у Вас возникли сложности с подключением – задайте вопрос в комментариях ниже, наши технические специалисты обязательно помогут.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: