Безщеточный двигатель принцип работы - ELSTROIKOMPLEKT.RU

Безщеточный двигатель принцип работы

О бесколлекторных низкооборотных двигателях и L6234D.

Стабилизирующий подвес для камеры своими руками. Часть 1.

Ниже речь пойдёт про управление низкооборотными трёхфазными бесколлекторными моторами в статичном режиме с использованием трёхфазного моста L6234.

Но сначала немного теории.

Что такое бесколлекторные моторы?

Как следует из названия, эти моторы у которых отсутствует щёточно-коллекторный узел. На вращающейся части – роторе – расположены постоянные магниты. На неподвижной части – статоре – обмотки электромагнитов. В движение такой мотор приводится изменением тока на разных фазах. Одним из примеров таких моторов являются шаговые двигатели. Изменение электрических фаз приводит к смещению ротора на строго предопределённый угол – один шаг.
Также есть моторы, рассчитанные на постоянное вращение. Например, двухфазные бесколлекторные моторы используются в компьютерных вентиляторах. Трёхфазные моторы используются в моделировании, а также в приводе электрических велосипедов и скутеров.
Отсутствие скользящих контактов щёток позволяет достигать большой мощности и долговечности.

Трёхфазные моторы

Рассмотрим типичный трёхфазный мотор, используемый в авиамоделировании.
Если ротор с магнитами расположен внутри кольца, образованного электромагнитными катушками, то такой мотор называют inrunner, такие моторы чаще используются в автомоделизме. В авиамоделизме популярна обратная компоновка: корпус ротора с кольцом магнитов вращается вокруг статора с электромагнитами (см. рисунок).

Эти моторы также подразделяются по количеству электромагнитов и количеству полюсов. Наиболее распространённая компоновка 12N14P что означает наличие 12 обмоток статора и 14 магнитных полюсов на роторе. Число полюсов всегда кратно 2: ведь полюса бывают только двух типов – северный и южный. Число обмоток кратно трём, поскольку двигатель трёхфазный. На схеме показана намотка обмоток. A B C – намотка соответствующей обмотки в одну сторону, -a -b -c – в противоположную.

В большинстве случаев обмотки соединяются «звездой», как показано на схеме. Подавая попарно на выходы напряжение той или иной полярности, контроллер мотора пробегает полный электрический цикл, состоящий из 6 смен полярностей. За этот цикл ротор проворачивается на два магнитных полюса. То есть, в нашем случае, чтобы мотор совершил один оборот, электрические фазы должны пройти 7 полных циклов.

Трёхфазный мост

Для электрической коммутации используются трёхфазные мосты, представляющие из себя три блока (полумоста), в каждом из которых по два транзистора – на плюс и на минус. Для управления мотором на одном из трёх полумостов выбирается «плюс», на другом «минус», а третий остаётся отключенным. При помощи ШИМ, транзисторы импульсами коммутируют фазу двигателя к выбранной полярности, пока он не провернётся на нужный угол. Затем схема коммутации меняется. Микроконтроллер в плате управления двигателем определяет моменты, когда фазы должны быть переключены. Для этого используются либо установленные на моторе датчики Холла, либо же ЭДС, возникающая в проводе свободной фазы.
Для управления маломощными моторами годится трёхфазный мост L6234.

L6234 представляет собой сборку в одном корпусе трёх полумостов, на двух n-МОП транзисторах каждый, драйверов к ним и схемы подкачки напряжения для верхнего ключа. Каждый полумост управляется значениями на двух входах: один из них выбирает полярность (коммутировать плюс, или минус), а второй включает, или отключает полумост. Для управления высокоскоростными моторами вход включения можно использовать для контроля мощности при помощи ШИМ.

Максимальный ток, на который рассчитана микросхема — 4 Ампера.

Низкоскоростные моторы

Обмотки высокооборотистых моторов наматываются пучком толстой проволки, небольшим числом витков, порядка 10-20. Они обладают очень маленьким сопротивлением постоянному току, сила тока достигает десятков Ампер, и если мотор не вращается, обмотка может перегретсья и перегореть.
Но существует разновидность таких моторов, которые предназначены для работы в статичном положении. Их обмотки наматываются большим числом витков (порядка 100) тонкой проволкой. Подавая различные значения напряжений на входы, можно создать в его обмотках магнитное поле нужной полярности, и тем самым зафиксировать его в нужном положении.

Такие моторы представляют собой промежуточное звено между шаговыми двигателями и высокоскоростными моторами: они позволяют статично фиксировать произвольное положение, но не ограничены определёнными «шагами». Используются, в основном, в стабилизирующих подвесах для видеокамер в аэровидеосъёмке. По-английски такие подвесы называются gimbal (=универсальный шарнир), а моторы так и называют gimbal motor.

Управление gimbal-мотором

Для управления можно использовать тот же самый трёхфазный мост L6234. На входы включения (ENx) подаётся постоянный высокий уровень, то есть все три полумоста постоянно включены. А вот входы выбора полярности (INx) подключаются к ШИМ-выходам микроконтроллера. В микроконтроллерах типа ATmega48/88/168/328 и т.п. можно настроить 6 ШИМ-выходов, а значит, управлять сразу двумя такими моторами.
Очень важно, чтобы все ШИМ выходы работали синфазно. То есть, если каждый ШИМ настроен на одно и то же значение, то переключаться они должны строго одновременно. L6234 позволяет коммутировать на частоте до 50кГц, поэтому, для плавной бесшумной работы, можно смело настраивать ШИМ выходы МК на максимальную частоту. При частоте МК 8 МГц и phase-correct режиме выхода, частота ШИМ составит 15 686 Гц.
Для синхронизации таймеров в ATmega48/88/168/328 можно воспользоваться регистром GTCCR, который остановит счёт таймера. Ниже пример настраивающий все 6 ШИМ выходов синфазно. Timer1 при этом работает в 8-битном режиме:

GTCCR = (1 « TSM) | (1 « PSRASY) | (1 « PSRSYNC); // Блокировка счёта
OCR0A = 0;
OCR0B = 0;
OCR1A = 0;
OCR1B = 0;
OCR2A = 0;
OCR2B = 0;

TCCR0A = 0b10100001;
TCCR0B = 0b00000001;
TCNT0 = 0;

TCCR1A = 0b10100001;
TCCR1B = 0b00000001;
TCNT1 = 0;

TCCR2A = 0b10100001;
TCCR2B = 0b00000001;
TCNT2 = 0;

(1 « TSM); // Разблокировка и одновременный запуск таймеров

Если на все 3 ШИМ выхода, управляющие одним мотором, подаётся одно и то же значение, то, хотя полярность каждого моста быстро меняется почти 16 тысяч раз в секунду, поскольку это происходит одновременно, ток через обмотки не идёт. Но если значение ШИМ хоть одного вывода отличается от остальных, то появляется небольшой промежуток времени, когда разные фазы коммутируются с разной полярностью, и через обмотки идёт ток. Чем больше разница значений ШИМ, тем большую часть времени ток будет идти.
Для того, чтобы зафиксировать мотор в нужном положении, значения ШИМ должны быть пропорциональны синусу, со смещением на треть периода (т.е. на 2/3*Pi).
Иначе говоря, значение ШИМ для i-й (от 0 до 2) фазы мотора можно вычислить по формуле:
PWM(i) = 128 + sin(A+ i * 2 / 3 * Pi) * P
Где P – выдаваемая мощность (до 127), A – электрический угол. Изменяя A можно добиться поворота мотора на определённый угол. Напомню, что изменение электрического угла на полный цикл, приводит к повороту мотора на два магнитных полюса. В схеме с 14 магнитами для целого оборота потребуется 7 циклов смены электрического угла
Если вещественную арифметику заменить на целочисленную, а значения синуса хранить в таблице, то скорости МК вполне хватит на управление такими моторами.

Создание и тестирование бесколлекторного мотора

В этой статье мы хотели бы рассказать о том, как мы с нуля создали электрический мотор: от появления идеи и первого прототипа до полноценного мотора, прошедшего все испытания. Если данная статья покажется вам интересной, мы отдельно, более подробно, расскажем о наиболее заинтересовавших вас этапах нашей работы.


На картинке слева направо: ротор, статор, частичная сборка мотора, мотор в сборе

Вступление

Электрические моторы появились более 150 лет назад, однако за это время их конструкция не претерпела особых изменений: вращающийся ротор, медные обмотки статора, подшипники. С годами происходило лишь снижение веса электромоторов, увеличение КПД, а также точности управления скоростью.

Сегодня, благодаря развитию современной электроники и появлению мощных магнитов на основе редкоземельных металлов, удаётся создавать как никогда мощные и в то же время компактные и легкие “Бесколлекторные” электромоторы. При этом, благодаря простоте своей конструкции они являются наиболее надежными среди когда-либо созданных электродвигателей. Про создание такого мотора и пойдет речь в данной статье.

Описание мотора

В “Бесколлекторных моторах” отсутствует знакомый всем по разборке электроинструмента элемент “Щетки”, роль которых заключается в передаче тока на обмотку вращающегося ротора. В бесколлекторных двигателях ток подается на обмотки не-двигающегося статора, который, создавая магнитное поле поочередно на отдельных своих полюсах, раскручивает ротор, на котором закреплены магниты.

Читайте также  Как подключить электрический звонок в квартире?

Первый такой мотор был напечатан нами 3D принтере как эксперимент. Вместо специальных пластин из электротехнической стали, для корпуса ротора и сердечника статора, на который наматывалась медная катушка, мы использовали обычный пластик. На роторе были закреплены неодимовые магниты прямоугольного сечения. Естественно такой мотор был не способен выдать максимальную мощность. Однако этого хватило, что бы мотор раскрутился до 20к rpm, после чего пластик не выдержал и ротор мотора разорвало, а магниты раскидало вокруг. Данный эксперимент сподвиг нас на создание полноценного мотора.

Узнав мнение любителей радиоуправляемых моделей, в качестве задачи, мы выбрали мотор для гоночных машинок типоразмера “540”, как наиболее востребованного. Данный мотор имеет габариты 54мм в длину и 36мм в диаметре.

Ротор нового мотора мы сделали из единого неодимового магнита в форме цилиндра. Магнит эпоксидкой приклеили на вал выточенный из инструментальной стали на опытном производстве.

Статор мы вырезали лазером из набора пластин трансформаторной стали толщиной 0.5мм. Каждая пластина затем была тщательно покрыта лаком и затем из примерно 50 пластин склеивался готовый статор. Лаком пластины покрывались чтобы избежать замыкания между ними и исключить потери энергии на токах Фуко, которые могли бы возникнуть в статоре.

Корпус мотора был выполнен из двух алюминиевых частей в форме контейнера. Статор плотно входит в алюминиевый корпус и хорошо прилегает к стенкам. Такая конструкция обеспечивает хорошее охлаждение мотора.

Измерение характеристик

Для достижения максимальных характеристик своих разработок, необходимо проводить адекватную оценку и точное измерение характеристик. Для этого нами был спроектирован и собран специальный диностенд.

Основным элементом стенда является тяжёлый груз в виде шайбы. Во время измерений, мотор раскручивает данный груз и по угловой скорости и ускорению рассчитываются выходная мощность и момент мотора.

Для измерения скорости вращения груза используется пара магнитов на валу и магнитный цифровой датчик A3144 на основе эффекта холла. Конечно, можно было бы измерять обороты по импульсам непосредственно с обмоток мотора, поскольку данный мотор является синхронным. Однако вариант с датчиком является более надёжным и он будет работать даже на очень малых оборотах, на которых импульсы будут нечитаемы.

Кроме оборотов наш стенд способен измерять ещё несколько важных параметров:

  • ток питания (до 30А) с помощью датчика тока на основе эффекта холла ACS712;
  • напряжение питания. Измеряется непосредственно через АЦП микроконтроллера, через делитель напряжения;
  • температуру внутри/снаружи мотора. Температура измеряется посредством полупроводникового термосопротивления;

Для сбора всех параметров с датчиков и передачи их на компьютер используется микроконтроллер серии AVR mega на плате Arduino nano. Общение микроконтроллера с компьютером осуществляется посредством COM порта. Для обработки показаний была написана специальная программа записывающая, усредняющая и демонстрирующая результаты измерений.

В результате наш стенд способен измерять в произвольный момент времени следующие характеристики мотора:

  • потребляемый ток;
  • потребляемое напряжение;
  • потребляемая мощность;
  • выходная мощность;
  • обороты вала;
  • момент на валу;
  • КПД;
  • мощность уходящая в тепло;
  • температура внутри мотора.

Видео демонстрирующее работу стенда:

Результаты тестирования

Для проверки работоспособности стенда мы сначала испытали его на обычном коллекторном моторе R540-6022. Параметров для этого мотора известно достаточно мало, однако этого хватило, чтобы оценить результаты измерения, которые получились достаточно близкими к заводским.

Затем уже был испытан наш мотор. Естественно он смог показать лучшее КПД(65% против 45%) и при этом больший момент(1200 против 250 г на см), чем обычный мотор. Измерение температуры тоже дало достаточно хорошие результаты, во время тестирования мотор не нагревался выше 80 градусов.

Но на данный момент измерения пока не окончательны. Нам не удалось измерить мотор в полном диапазоне оборотов из-за ограничения мощности источника питания. Также предстоит сравнить наш мотор с аналогичными моторами конкурентов и испытать его “в бою”, поставив на гоночную радиоуправляемую машину и выступить на соревнованиях.

Современные бесколлекторные двигатели постоянного тока

Благодаря существенному прогрессу в области полупроводниковой электроники и в технологии создания мощных неодимовых магнитов, широкое распространение получили сегодня бесколлекторные двигатели постоянного тока. Они применяются в стиральных машинах, пылесосах, вентиляторах, дронах и т. д.

И хотя идея касательно принципа работы бесколлекторного двигателя высказывалась еще в начале 19 века, она ждала своего часа до начала полупроводниковой эры, когда технологии стали готовы к практической реализации этой интересной и эффективной концепции, позволившей бесколлекторным двигателям постоянного тока шагать так широко, как это происходит сегодня.

В англоязычной версии двигатели данного типа именуются BLDC motor – Brushless Direct Current Motor — бесщеточный двигатель постоянного тока. Ротор двигателя содержит постоянные магниты, а рабочие обмотки располагаются на статоре, то есть устройство BLDC двигателя полностью противоположно тому, как это имеет место в классическом коллекторном двигателе. Управляется BLDC двигатель электронным регулятором, который называют ESC — Electronic speed controller — электронный регулятор хода.

Электронный регулятор хода и высокий КПД

Электронный регулятор хода позволяет плавно варьировать электрическую мощность, подаваемую на бесколлекторный электродвигатель. В отличие от ранних, более простых версий резистивных регуляторов хода, которые просто ограничивали мощность путем включения в цепь последовательно с двигателем активной нагрузки, превращающей избыточную мощность в тепло, электронный регулятор хода позволяет получить значительно более высокий КПД, не расходуя подводимую электрическую энергию на бесполезный нагрев.

Бесколлекторный двигатель постоянного тока можно классифицировать как самосинхронизируемый синхронный двигатель, в котором полностью исключен искрящий узел, требующий регулярного обслуживания — коллектор. Функцию коллектора несет на себе электроника, благодаря чему вся конструкция изделия сильно упрощается и становится компактнее.

Щетки заменены, по сути, на электронные ключи, потери в которых сильно меньше чем были бы при механической коммутации. Мощные неодимовые магниты на роторе позволяют добиться большего момента на валу. И греется такой двигатель меньше нежели его коллекторный предшественник.

В итоге КПД двигателя получается наилучшим, а показатели мощности на килограмм веса — выше, плюс достаточно широкий диапазон регулировки скорости вращения ротора и практически полное отсутствие генерируемых радиопомех. Конструктивно двигатели данного типа легко адаптируются для эксплуатации в воде и в агрессивных средах.

Электронный блок управления — очень важная и дорогостоящая часть бесколлекторного двигателя постоянного тока, без которой, однако, никак не обойтись. От данного блока двигатель получает питание, параметры которого одновременно влияют и на скорость, и на мощность, которую двигатель будет в состоянии развить под нагрузкой.

Даже если скорость вращения регулировать не нужно, все равно электронный блок управления необходим, ведь он несет на себе не только функцию управления, но также имеет силовую составляющую. Можно сказать, что ESC – это аналог частотного регулятора для асинхронных двигателей переменного тока, специально предназначенный для питания и управления бесколлекторным двигателем постоянного тока.

Управление двигателем BLDC

Чтобы понять как происходит управление BLDC двигателем, сначала вспомним как работает коллекторный двигатель. В его основе принцип вращения рамки с током в магнитном поле.

Каждый раз, когда рамка с током повернулась и нашла положение равновесия, коммутатор (щетки прижатые к коллектору) изменяет направление тока через рамку, и рамка движется дальше. Этот процесс повторяется при движении рамки от полюса к полюсу. Только вот в коллекторном двигателе таких рамок много и магнитных полюсов несколько пар, поэтому коллекторно-щеточный узел содержит не два контакта, а много.

Электронный блок управления бесколлекторным двигателем делает то же самое. Он изменяет полярность магнитного поля как только ротор необходимо провернуть дальше из положения равновесия. Только управляющее напряжение подается не на ротор, а на обмотки статора, и делается это при помощи полупроводниковых ключей в нужные моменты времени (фазы ротора).

Очевидно, что ток на обмотки статора бесколлекторного двигателя необходимо подавать в правильные моменты времени, то есть тогда, когда ротор находится в определенном известном положении. Для этого применяется один из следующих методов. Первый — на основе датчика положения ротора, второй — путем измерения ЭДС на одной из обмоток, которая в данный момент не получает питание.

Датчики бывают разными, магнитными и оптическими, наиболее популярны магнитные датчики на основе эффекта Холла. Второй способ (на основе измерения ЭДС) хотя и эффективен, однако он не позволяет осуществлять точное управление на низких скоростях и при старте. А вот датчики Холла обеспечивают возможность более точного управления во всех режимах. В трехфазных BLDC двигателях таких датчиков три штуки.

Читайте также  Кофеварка гейзерного типа принцип работы

Двигатели без датчиков положения ротора применимы в тех случаях, когда старт двигателя происходит без нагрузки на валу (вентилятор, пропеллер и т. п.). Если же старт происходит под нагрузкой, необходим двигатель с датчиками положения ротора. В том и в другом варианте есть свои плюсы и минусы.

Решение с датчиком оборачивается более удобным управлением, но при выходе из строя хотя бы одного из датчиков, двигатель придется разбирать, к тому же датчики требуют отдельных проводов. В варианте без датчика нет надобности в специальных проводах, но во время старта ротор будет раскачиваться туда-сюда. Если это недопустимо, необходимо ставить в систему датчики.

Ротор и статор, количество фаз

Ротор BLDC двигателя может быть наружным или внутренним, а статор, соответственно, внутренним или наружным. Статор изготавливают из магнитопроводящего материала, с количеством зубцов, которое нацело делится на количество фаз. Ротор может быть изготовлен необязательно из магнитопроводящего материала, но обязательно с жестко зафиксированными на нем магнитами.

Чем сильнее магниты — тем выше доступный вращающий момент. Количество зубцов статора не обязательно должно быть равно количеству магнитов на роторе. Минимальное количество зубцов равно количеству фаз управления.

Большинство современных бесколлекторных двигателей постоянного тока — трехфазные, просто в силу простоты такой конструкции и способа управления ею. Как и в асинхронных двигателях переменного тока, обмотки трех фаз соединяются здесь на статор «треугольником» либо «звездой».

Такие двигатели без датчиков положения ротора имеют 3 питающих провода, а двигатели с датчиками — 8 проводов: дополнительные два провода — для питания датчиков и три — сигнальные выводы датчиков.

Обмотка статора выполняется изолированным медным проводом так, чтобы сформировать магнитные полюса необходимого количества фаз, равномерно распределенные по окружности ротора. Количество отдельно стоящих полюсов на статоре для каждой фазы выбирается исходя из требуемой скорости вращения двигателя (и вращающего момента).

Низкооборотные двигатели с наружным ротором делают с большим количеством полюсов (и соответственно зубцов) на каждую фазу, чтобы получить вращение с угловой частотой значительно меньше частоты управляющего тока. Но даже в высокооборотных трехфазных двигателях обычно не применяют количество зубцов меньше 9.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Ранее на эту тему: Электропривод

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Бесщеточные шуруповерты: чем они лучше обычных

Бесщеточные моторы известны с 1960-х годов, но только в 2004 году они «перекочевали» с промышленных двигателей на ручной электроинструмент (пионером стала компания Makita, наладившая выпуск таких дрелей для аэрокосмической отрасли). Еще пару лет спустя первые шуруповерты Festool с бесщеточными двигателями поступили в свободную продажу. А сейчас уже практически невозможно найти приличного производителя электроинструмента, у которого в каталоге продукции не было бы пары десятков устройств, оснащенных моторами, не имеющими щеток. Чем же они так хороши? В этой статье мы попробуем разобраться, в чем заключаются преимущества и недостатки бесщеточных двигателей, и есть ли смысл за них доплачивать.

Конструкция и принцип работы двигателя электроинструмента

Начнем с небольшого экскурса в школьный курс физики и вспомним принцип работы простейшего электромотора традиционной конструкции. Основными деталями классического коллекторного двигателя постоянного тока являются:

  • статор (индуктор) — это неподвижная деталь в виде кольца из постоянных магнитов либо стального цилиндра, на котором находятся обмотки главных и добавочных полюсов (они выполняют функции электромагнитов, которые создают магнитный поток);
  • ротор (якорь) — это вращающаяся деталь в виде «барабана» с сердечником из ферромагнитного материала. В его пазах уложены секции медной обмотки;
  • коллектор — это цилиндр, собранный из множества изолированных друг от друга медных пластинок, количество которых соответствует числу секций на роторе;
  • щетки — это небольшие детали, сделанные из графита. Они подключены к электроцепи и подпружинены, чтобы обеспечить постоянный и плотный скользящий контакт с коллектором.
Устройство коллекторного двигателя.

При включении двигателя ток через щетки поступает на коллектор, а оттуда — на обмотку якоря. При протекании тока через обмотку возникает магнитное поле. Взаимодействуя с постоянным магнитным полем, которое создает статор, ротор вращается за счет того, что одноименные полюса отталкиваются, а разноименные — притягиваются друг к другу. При вращении коллектора, который закреплен на одном валу с якорем, щетки «перескакивают» с одной контактной площадки на другую. При этом меняется направление тока в обмотках ротора, разноименные полюса становятся одноименными, они снова отталкиваются друг от друга — и вращение продолжается. Таким образом, коллектор — это один из самых важных узлов коллекторного (щеточного) двигателя, потому что он выполняет сразу две важные функции: преобразует постоянный ток в переменный и одновременно является датчиком поворота вала.

Двигатели данной конструкции относительно простые и дешевые. Но коллекторно-щеточный узел — это источник потенциальных проблем. Трение между деталями и постоянное замыкание-размыкание пластинчатых контактов приводят к быстрому износу щеток, искрению на контактах и чрезмерному нагреву двигателя.

Разница между бесщеточными двигателями и обычными моторами

Вентильные (бесщеточные, бесколлекторные) двигатели работают по тем же физическим принципам, но устроены иначе. Они являются словно бы «вывернутой наизнанку» версией коллекторных моторов: магниты установлены на роторе, а обмотка — на неподвижном статоре. Таким образом, можно просто припаять провода питания к обмотке и избавиться от щеток вместе со всеми их недостатками.

Устройство бесщеточного двигателя.

Если у коллекторного двигателя переключение направления тока производится механически (при «перескакивании» щетки с одной контактной пластины на следующую), то в вентильном моторе этим занимается электроника. Получая сигналы от датчика (оптического, магнитного или основанного на эффекте Холла), который «считывает» угол поворота ротора, электроника своевременно переключает полюса, изменяя направление тока. То есть, комплекс из датчика и управляющей платы выполняет функции коллектора, но без механических и электрических потерь за счет отсутствия физического контакта между подвижной и неподвижной частями электромотора.

Преимущества бесщеточных двигателей в теории

Зная, как устроены оба вида электромоторов, и в чем заключается разница между коллекторными и бесщеточными двигателями, можно сделать выводы об их преимуществах и недостатках.

  • меньше по размеру — отсутствие коллектора позволяет сократить длину двигателя (при примерно одинаковом диаметре) и уменьшить его вес;
  • более надежные — механический износ отсутствует практически полностью, а абразивная пыль, попадающая внутрь корпуса, не так вредна из-за отсутствия коллекторно-щеточного узла;
  • меньше греются — при работе выделяется значительно меньше тепла благодаря существенному уменьшению потерь на трение;
  • более энергоэффективные — электрические потери на коммутацию снижены в разы за счет замены коллектора и щеток на электронные ключи. Коэффициент полезного действия у бесщеточного двигателя достигает 80% – 90% (по сравнению с 65% – 75% у коллекторного мотора);
  • лучше переносят короткие перегрузки — при работе под большой нагрузкой остается некоторый «запас прочности», позволяющий на короткое время повысить напряжение в цепи и увеличить тепловыделение от обмоток без вреда для мотора.

Преимущества бесщеточного инструмента на практике

Описанные выше теоретические преимущества на практике дают потрясающий результат. Шуруповерты с бесщеточными двигателями:

  • меньше и легче — разница в размерах и весе двигателей позволяет производителям выпускать легкие и компактные устройства, которые значительно удобнее в работе;
  • более мощный и оборотистый — замена механических узлов на электронные системы управления позволяет более эффективно расходовать энергию и гибче управлять характеристиками мотора;
  • дольше работает на одной зарядке — аккумуляторные шуруповерты с бесщеточными двигателями работают от батареи на 30% – 50% дольше, чем устройства с традиционными электромоторами;
  • не перегревается — незначительное тепловыделение от вентильного двигателя позволяет делать меньше пауз во время работы для охлаждения инструмента;
  • работает тише и плавнее — трение в коллекторно-щеточном узле неизбежно вызывает шум и повышенную вибрацию, а бесщеточные моторы лишены этого изъяна;
  • не искрит — шуруповерты с вентильными двигателями можно использовать при работе рядом с топливными емкостями или кислородными баллонами;
  • требует меньше обслуживания — о проблемах, связанных с подбором, покупкой и заменой графитовых щеток, можно полностью забыть;
  • реже выходит из строя — отсутствие пары трения «щетка-коллектор», способность переносить высокие нагрузки и стойкость к воздействию пыли значительно повышают надежность электроинструмента и существенно увеличивают срок его службы.
Читайте также  Технология укладки электрического теплого пола под плитку

Наглядно о разнице между бесщеточными двигателями и обычными:

Почему бесщеточный инструмент такой дорогой

Так почему же бесщеточный шуруповерт стоит значительно дороже, чем аналогичные устройства с двигателями традиционной конструкции? Тому есть несколько веских причин. Высокая цена обусловлена наличием нескольких дорогостоящих деталей и элементов.

  • Мощные неодимовые магниты, необходимые для создания компактных роторов бесщеточных двигателей, весьма дороги. Они изготавливаются по сложному технологическому процессу путем спекания недешевых редкоземельных элементов.
  • Требования к качеству датчиков очень высокие. Они должны быть сверхнадежными и максимально точными, чтобы включать и выключать подачу тока синхронно с движением магнитов, которые находятся на роторе, вращающемся с огромной скоростью.
  • Электроника, способная управлять бесщеточным двигателем, на порядок дороже, чем аналогичные модули коллекторных моторов. Грубо говоря, работой бесщеточного шуруповерта управляет не примитивная плата, а почти что микропроцессор, который постоянно отслеживает множество параметров и на лету их изменяет, в зависимости от того, какая задача является наиболее приоритетной в данный момент (максимальные мощность и момент на валу, оптимальное потребление энергии АКБ или защита от перегрузки).

Совокупность перечисленных факторов и является той причиной, почему бесщеточный инструмент такой дорогой.

Но у столь сложной и высокотехнологичной конструкции есть и «побочный эффект». Бесщеточный инструмент дорогой не только в производстве, но и в ремонте. В случае повреждения или выхода из строя основные детали бесколлекторного двигателя (якорь и электронные платы) меняются только целыми узлами в сборе. Поэтому ремонт бесщеточного инструмента нередко «влетает в копеечку».

Стоит ли покупать инструмент с бесщеточным двигателем?

В заключение можно сделать вывод, что бесщеточный двигатель — это не маркетинговая уловка, а реальное преимущество. Но приобретение инструмента с таким мотором целесообразно не всегда.

Если вы планируете купить аккумуляторный инструмент профессионального класса, то стоит присмотреться к бесщеточным устройствам. Несмотря на разницу в цене, покупка будет оправданной, поскольку шуруповерты, болгарки, дрели, реноваторы и другая техника, оснащенная современными бесколлекторными моторами, служат дольше и не так быстро «убивают» дорогостоящие аккумуляторы .

А вот при выборе инструмента хобби-класса переплачивать за «новомодный» двигатель пока что нет смысла. При эпизодическом использовании и работе в неспешном темпе дома или на даче разница в характеристиках между бесщеточными шуруповертами и обычными будет далеко не столь заметна.

Бесщеточный двигатель принцип работы

Как устроен бесщеточный двигатель

Работа бесщеточного электродвигателя основывается на электрических приводах, создающих магнитное вращающееся поле.

В настоящее время существует несколько типов устройств, имеющих различные характеристики.

С развитием технологий и использованием новых материалов, отличающихся высокой коэрцитивной силой и достаточным уровнем магнитного насыщения, стало возможным получение сильного магнитного поля и, как следствие, вентильных конструкций нового вида, в которых отсутствует обмотка на роторных элементах или стартере.

Обширное распространение переключателей полупроводникового типа с высокой мощностью и приемлемой стоимостью ускорило создание подобных конструкций, облегчило исполнение и избавило от множества сложностей с коммутацией.

Использование

Бесщеточный двигатель постоянного тока с постоянными магнитами встречается в основном в устройствах с мощностью в пределах 5 кВт.

В более мощной аппаратуре их применение нерационально.

Магниты в двигателях данного типа отличаются особой чувствительностью к высоким температурам и сильным полям.

Двигатели активно используются в электрических мотоциклах, автомобильных приводах благодаря отсутствию трения в коллекторе.

Описание и принцип работы

Бесщеточный (бесколлекторный) двигатель постоянного тока очень похож на двигатель постоянного тока с постоянными магнитами, но не имеет щеток для замены или износа из-за искрения коммутатора.

Поэтому в роторе выделяется мало тепла, что увеличивает срок службы двигателей.

Конструкция бесщеточного двигателя устраняет необходимость в щетках благодаря более сложной схеме привода, в которой магнитное поле ротора является постоянным магнитом, который всегда синхронизирован с полем статора, что позволяет более точно контролировать скорость и крутящий момент.

Управление бесщеточными двигателями постоянного тока очень отличается от обычного щеточного двигателя постоянного тока тем, что этот тип двигателя включает в себя некоторые средства для определения углового положения роторов (или магнитных полюсов), необходимые для получения сигналов обратной связи, необходимых для управления переключением полупроводников. Появление процессорной техники и силовых транзисторов позволило конструкторам отказаться от узла механической коммутации и изменить роль ротора и статора в электромоторе постоянного тока.

Принцип работы БДКП

В бесколлекторном электродвигателе роль механического коммутатора выполняет электронный преобразователь. Это позволяет осуществить «вывернутая наизнанку» схема БДКП — его обмотки расположены на статоре, что исключает необходимость в коллекторе.

Иными словами, основное принципиальное различие между классическим двигателем и БДКП в том, что вместо стационарных магнитов и вращающихся катушек последний состоит из неподвижных обмоток и вращающихся магнитов. Несмотря на то что сама коммутация в нём происходит похожим образом, её физическая реализация в бесщёточных приводах гораздо более сложна.

Как работает коллекторная машина

Чтобы произвести запуск коллекторного двигателя, потребуется подать напряжение на обмотку возбуждения, которая расположена непосредственно на якоре. При этом образуется постоянное магнитное поле, которое взаимодействует с магнитами на статоре, в результате чего проворачиваются якорь и коллектор, закрепленный на нём. При этом подается питание на следующую обмотку, происходит повтор цикла.

Как осуществляется управление

Электронный блок управления позволяет провести коммутацию обмоток привода. Для определения момента переключения при помощи драйвера отслеживается положение ротора по датчику Холла, установленном на приводе.

В том случае, если нет таких устройств, необходимо считывать обратное напряжение.

Оно генерируется в катушках статора, не подключенных на данный момент времени.

Контроллер — это аппаратно-программный комплекс, он позволяет отслеживать все изменения и максимально точно задавать порядок коммутации.

Трехфазные бесколлекторные электродвигатели

Очень много бесколлекторных электродвигателей для авиамоделей выполняется под питание постоянным током.

Но существуют и трехфазные экземпляры, в которых устанавливаются преобразователи.

Они позволяют из постоянного напряжения сделать трехфазные импульсы.

Работа происходит следующим образом:

  1. На катушку «А» поступают импульсы с положительным значением. На катушку «В» — с отрицательным значением. В результате этого якорь начнет двигаться. Датчики фиксируют смещение и подаётся сигнал на контроллер для осуществления следующей коммутации.
  2. Происходит отключение катушки «А», при этом импульс положительного значения поступает на обмотку «С». Коммутация обмотки «В» не претерпевает изменений.
  3. На катушку «С» попадается положительный импульс, а отрицательный поступает на «А».
  4. Затем вступает в работу пара «А» и «В». На них и подаются положительные отрицательные значения импульсов соответственно.
  5. Затем положительный импульс опять поступает на катушку «В», а отрицательный на «С».
  6. На последнем этапе происходит включение катушки «А», на которую поступает положительный импульс, и отрицательный идет к С.

И после этого происходит повтор всего цикла.

Преимущества использования

Изготовить своими руками бесколлекторный электродвигатель сложно, а реализовать микроконтроллерное управление практически невозможно. Поэтому лучше всего использовать готовые промышленные образцы.

Но обязательно учитывайте достоинства, которые получает привод при использовании бесколлекторных электродвигателей:

  1. Существенно больший ресурс, нежели у коллекторных машин.
  2. Высокий уровень КПД.
  3. Мощность выше, нежели у коллекторных моторов.
  4. Скорость вращения набирается намного быстрее.
  5. Во время работы не образуются искры, поэтому их можно использовать в условиях с высокой пожарной опасностью.
  6. Очень простая эксплуатация привода.
  7. При работе не нужно использовать дополнительные компоненты для охлаждения.
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: