Частотный преобразователь принцип работы для чайников - ELSTROIKOMPLEKT.RU

Частотный преобразователь принцип работы для чайников

Для чего нужны частотники?

    0 commentsПринцип работы 11 декабря, 2016

Частотник служит для изменения характеристик энергии, поступающей от электросети к производственному оборудованию. Речь идёт о требуемом выборе частоты тока, вида напряжения. Технические возможности изменения этих понятий лежат в определённом диапазоне. Их показатели могут отличаться и быть выше данных, получаемых от первичного энергоисточника, так и гораздо ниже его.

Состав, конструкция схема

Оборудование преобразования частоты (ПЧ) компонуют из двух секций. Первая — с управляющими функциями, состоит из микропроцессоров. Их задача: регулировать коммутацию ключей, контролировать работу, выполнять диагностику и защиту. Вторая — силовая секция. Её комплектуют на транзисторах (тиристорах), выполняющих функцию переключателей.

Характеристика

Большинство распространённых электрорегулируемых приводов используют преобразователей частоты ПЧ двух классов. Основными признаками их разделения являются структурное отличие и принцип работы силовой части устройства. Свои функции ПЧ выполняет с промежуточным узлом, действующим с постоянным током, или осуществляется прямая связь с источником.

Положительной особенностью является высокая эффективность. Отдача достигает 98,5% и более. Используется для управления мощными высоковольтными приводами. Частотник значится относительно дешёвым, несмотря на дополнительную комплектацию схем регулирования. Эффективный способ его применения оценивают, рассматривая класс, преимущества или недостатки. Сначала использовались преобразователи с прямым, непосредственным подсоединением к сети. (рисунок 1).

То есть, источник питания подключается к статорным обмоткам двигателя через открытые вентили. Конструкция силовой части состояла из выпрямителей, выполненных на полупроводниковых приборах — тиристорах.

Обладающих свойствами электровентиля. И системы управления (СУ). Которая, попеременно их открывая, подключала к сети обмотки электродвигателя. Напряжение поступает на тиристоры, имея трёхфазный вид синусоиды Ua, Uв, Uс. На выходе преобразователя сформировано напряжение U вых.

Это показано на одной фазе с вырезанной полосой (рисунок 1). Увеличенный, он имеет зазубренный вид, который аппроксимирует линия синего цвета. Выходная частота устройства значится в границах 0—30 Гц.
Этот короткий диапазон лимитирует возможность привода регулировать скорость асинхронного электродвигателя. Такое подключение на практике даёт результат один к десяти. Хотя технологические процессы диктуют значительного увеличения этого соотношения.


Применение неуправляемых тиристоров считается недостатком конструкции, так как их использование требует усовершенствовать систему регулирования. Она становится более сложной. Кроме того, «зазубренная» форма напряжения на выходе (рис. 2), приводит к появлению высших гармоник. Их наличие сопровождается дополнительными потерями. Которые наблюдаются, в увеличении перегрева электродвигателя, уменьшение крутящего усилия (момент) на валу и появление помех в сети. Поэтому дополнительный монтаж деталей и узлов для устранения этих недостатков, повышает стоимость устройства. Увеличивают его габариты, вес и уменьшают эффективность привода.

В настоящее время преобразователи с прямой (непосредственной) связью не применяют. Сейчас в системах дополнительно включён узел с функцией постоянного тока. При этом задействовано удвоенное трансформирование электроэнергии. Напряжение на входе, с неизменной амплитудой, частотой и формой синусоиды, поступает на клеммы выпрямительного блока (B). Дальше проходит фильтр (Ф), уменьшающий пульсацию высших гармоник. Назначение (И) инвертора — преобразовать постоянное напряжение в переменное варьируемой частоты и амплитуды. При этом используются отдельные внутренние блоки.
Функции электронных ключей, в составе инверторов, выполняют запираемые GTO тиристоры. Или заменяемые его типы: GCT, IGCT, SGCT, а также трёхэлектродным полупроводниковым элементом с изолированным затвором IGBT.

Преимуществом частотника на тиристорах обоих классов является возможность использовать их при повышенных показателях напряжения и тока. Они выдерживают длительную работу, электроимпульсные скачки. Устойчивое функционирование преобразователи частоты поддерживают в широком диапазоне мощностей. С вилкой от сотни кВт до десятка мВт. На выходе ПЧ напряжение составляет от 3 до 10 кв. Однако, сравнивая цену по отношению к мощности, она остаётся завышенной.

Устройства регулируемого привода, в состав которого входили запираемые тиристоры, занимали преобладающее место. Но, потом их сменил транзистор IGBT с изолированным затвором.
Применение тиристора усложняет средство управления. Являясь полупроводниковым элементом, он подключается подачей импульса на регулируемый контакт, достаточно сменить полярность напряжение или понизить величину тока близкую к нулю. Сложность процесса и дополнительные элементы делают систему регулировки более громоздкой.

Транзисторы IGBT отличаются простым способом управления с незначительной затратой расхода энергии. Большой рабочий диапазон частот расширяет границы выбора оборотов электромотора и увеличивает скоростную характеристику. Совместное действие транзистора с микропроцессорным управлением влияет на степень высших гармоник. Кроме того, отмечаются следующие особенности.

  • В обмотках и магнитопроводе электродвигателя уменьшаются потери.
  • Снижается тепло подогрев.
  • Минимум проявлений пульсаций момента.
  • Исключаются рывки ротора в зоне небольших частот.
  • Сокращаются потери в конденсаторах, трансформаторах, проводах тем самым увеличиваются сроки их эксплуатационной пригодности.
  • Приборы измерений и защиты (особенно индукционные) допускают меньшее неточностей, искажённых срабатываний.

Сравнивая ПЧ одинаковой выходной мощности с другими схемами, устройства на транзисторах IGBT отличаются надёжностью, меньшими габаритами, массой. Достигается это за счёт модульной конструкции аппаратных средств. Минимальным набора элементов, составляющих устройство. Защитой от резких колебаний тока и напряжения. Снижением количества отказов и остановок электропривода. Лучшим теплоотводом

Высокая цена низковольтных преобразователей (IGBT) на единицу выходной мощности объясняется трудностью изготовления транзисторных модулей. Рассматривая цену и качество, они предпочтительнее тиристорных. И также надо учитывать постоянную динамику сокращения стоимости производства устройств. Тенденцию к её снижению.

Затруднение в применении высоковольтного привода с прямым изменением частоты является ограничение по мощности свыше двух мВт. Так как увеличение напряжения и рабочего тока укрупняют габариты транзисторного модуля, необходим более высокоэффективный теплоотвод от полупроводника. И как выход, до появления новейших биполярных элементов, модули в преобразователях соединяют последовательно по несколько штук.

Низковольтный ПЧ на IGB транзисторах. Устройство, особенности

Рисунок 3 показывает блочную схему и функции основных узлов. После каждого из них, отображены линии выходных параметров электроэнергии. Подаваемая энергия (Uвх.), в форме синусоиды, неизменной амплитуды, частоты. Дальше — узел постоянного тока, состоящий из неуправляемого или регулируемого выпрямителя 1. Емкостного фильтра 2, с функциями сглаживания пульсации (U выпр.). Потом, сигнал Ud поступает на независимый, автономный инвертор 3, работающий с нагрузкой, которая потребляет ту же частоту.

Он преобразует одно или 3-фазный ток постоянной величины в переменный, имеет приемлемый уровень гармоник, добавленных к выходному напряжению. Собранный на полностью регулируемых полупроводниковых приборах IGBT. Сигналы СУ подсоединяют обмотку электродвигателя к соответствующим полюсам, используя силовые транзисторы. Подключение происходит в период импульсов, моделируемых по синусоиде амплитудой и частотой. Управляемые выпрямители (1) регулируют величину Ud. Функцию сглаживания выполняет электрофильтр (4).

Вывод

В результате работы частотника получают переменное напряжение с варьируемыми показателями. Подавая энергию с такими параметрами на обмотки электродвигателя, выбирают требуемую скорость вращения вала. Статические ПЧ являются наиболее применяемыми в регулировке исполнительных механизмов. Установка управляемого электропривода экономически обоснована в энергосберегающих технологиях.

Преобразователи частоты

В данной статье мы рассмотрим что такое частотный преобразователь, сферы применения преобразователей частоты, их плюсы и минусы, а также схемы частотников.

  1. Виды преобразователей частоты
  2. Способы управления преобразователем
  3. Режимы управления частотными преобразователями
  4. Преимущества частотных преобразователей
  5. Сферы применения

Преобразователи частоты (или частотники) – электротехническое оборудование для регулирования частоты переменного напряжения. Основная сфера применения этих устройств – изменение частоты вращения и крутящего момента электрических машин асинхронного типа. Принцип действия управления и регулирования основан на зависимости скорости вращения магнитного поля от частоты питающего напряжения.

Асинхронные электродвигатели широко используются в качестве приводов промышленного оборудования, насосных агрегатов, регулирующей арматуры и других устройств. Основным недостатком этих электрических машин являются постоянная скорость вращения, большие пусковые токи. При помощи частотных преобразователей возможно устранить эти недостатки и существенно расширить сферу применения электродвигателей переменного тока.

Виды преобразователей частоты

Частотные преобразователи различаются по конструкции, принципу действия, способу управления. По конструктивному исполнению преобразователи частоты разделяют на две большие группы:

Электромашинные частотники.

Электромашинные или индукционные преобразователи частоты представляют собой двигатели переменного тока, включенные в режим генератора. Применяются такие электротехнические устройства относительного редко, в условиях, где затруднено или невозможно применение электронных частотных преобразователей.

Электронные преобразователи.

Полупроводниковые ЧП состоят из силовой части, выполненной на транзисторах или тиристорах, и схемы управления на базе микроконтроллеров. Это электротехническое оборудование пригодно для трехфазных и однофазных приводов любого назначения. Различают ЧП с непосредственной связью с питающей сетью и устройства с промежуточным звеном постоянного тока.

Непосредственные преобразователи частоты

Такие частотники построены на базе быстродействующих тиристорных преобразователей, включенных по мостовым, перекрестным, нулевым и встречно-параллельным схемам.

Устройства такого типа включаются непосредственно в питающую сеть.

Плюсы непосредственных преобразователей частоты:

  • Возможностью рекуперации электроэнергии в сеть при работе в режиме торможения двигателя. Непосредственное включение обеспечивает двусторонний обмен электричеством.
  • Высоким к.п.д. за счет однократного преобразования частоты.
  • Возможностью наращивания мощности за счет присоединения дополнительных преобразователей.
  • Широким диапазоном низких частот. Непосредственные преобразователи обеспечивают стабильную работу привода на малых скоростях.

Минусы непосредственных преобразователей частоты:

  • Аппроксимированная форма выходного напряжения с наличием постоянных составляющих и субгармоник. Такая форма переменного напряжения на выходе устройства вызывает дополнительный нагрев двигателя, снижает момент, создает помехи.
  • Частота напряжения на выходе преобразователя не превышает аналогичную характеристику сетевого напряжения. Таким образом, при помощи этих устройств можно только снижать скорость вращения двигателей.
  • Основная сфера непосредственных преобразователей – электроприводы на базе асинхронных и синхронных двигателей большой и средней мощности.

Преобразователи частоты с промежуточным звеном постоянного тока.

Частотные преобразователи этого типа выполнены на базе схемы двойного преобразования. Питающее сетевое напряжение преобразуется в постоянное, затем сглаживается и инвертируется в переменное выходное напряжение заданной частоты.

Плюсы преобразователей с промежуточным звеном постоянного тока:

  • Возможностью получения выходного напряжения с частотой как выше, так и ниже аналогичного параметра сети питания. Частотники на базе схемы двойного преобразования используют для высоко- средне- и низкоскоростных электроприводов.
  • Чистой синусоидальной формой напряжения на выходе. Схема преобразователя позволяет получать переменное напряжение с минимальным отклонением от синусоидальной формы.
  • Возможностью построения простых и сложных силовых и управляющих схем для приводов с различными требованиями к скорости реагирования, диапазону скоростей.
  • Возможностью адаптации к сетям постоянного тока. Преобразователи данного типа можно приспособить для питания от резервных и аварийных источников постоянного тока без дополнительных устройств. Это позволяет применять такие частотники в приводах ответственного оборудования с резервными источниками электроэнергии.
  • Разнообразием алгоритмов управления. Преобразователи со звеном постоянного тока можно запрограммировать и адаптировать практически ко всем электроприводам, в том числе и претенциозным, где требуется особо точное регулирование скорости и момента.
Читайте также  Почему не вращается барабан стиральной машины?

Минусы преобразователей с промежуточным звеном постоянного тока:

  • Относительно большую массу и габариты, что обусловлено наличием выпрямительного, фильтрующего и инверторного блоков.
  • Повышенные потери мощности. Схема двойного преобразования несколько уменьшает общий к.п.д.

Устройство преобразователей с промежуточным звеном постоянного тока

Состоят такие преобразователи из нескольких основных блоков:

  • Выпрямителя. Для ЧП используются диодные и тиристорные преобразователи постоянного тока. Первые отличаются высоким качеством постоянного напряжения практически с полным отсутствием пульсации, низкой стоимостью и надежностью. Однако диодные выпрямители не позволяют реализовать возможность рекуперации электроэнергии в сеть при торможении двигателя. Выпрямители на тиристорах обеспечивают возможность протекания тока в обоих направлениях и позволяют отключать преобразователь от сети без дополнительной коммутирующей аппаратуры.
  • Фильтра. Выходное напряжение тиристорных управляемых выпрямителей имеет значительную пульсацию. Для ее сглаживания используют реакторы, емкостные или индуктивно-емкостные фильтры.
  • Инвертора. В ЧП используют инверторы напряжения и тока. Последние обеспечивают рекуперацию электроэнергии в сеть и применяются для управления электрическими машинами с частым пуском, реверсом и остановкой, например, крановыми двигателями.
  • Частотники на базе инверторов напряжения выдают на выходе напряжение формы “чистый синус”. Благодаря этому преобразователи такого типа получили наиболее широкое распространение.
  • Микропроцессора. Этот блок осуществляет управление входным выпрямителем, прием и обработку сигналов с датчиков, взаимодействие с автоматизированной системой высшего уровня, запись и хранение информации о событиях, формирует выходное напряжения ЧП соответствующей частоты. А также выполняет функции защиты от перегрузок, обрыва фазы и других аварийных и ненормальных режимов работы.

Способы управления преобразователем

По принципу управления различают 2 основных вида частотных преобразователей:

ЧП со скалярным управлением

Частотники этого типа выдают на выходе напряжение определенной частоты и амплитуды для поддержания определенного магнитного потока в обмотках статора. Частотники с таким принципом регулирования отличаются относительно низкой стоимостью, простотой конструкции. Нижний предел регулировки скорости составляет около 10 % от номинальной частоты вращения. Их можно использовать для управления сразу несколькими двигателями. Скалярные ЧП используют для приводов насосных агрегатов, вентиляторов и других устройств и оборудования, где не требуется поддерживать скорость вращения ротора вне зависимости от нагрузки.

ЧП с векторным управлением

Микропроцессорные устройства преобразователей с векторным управлением автоматически вычисляют взаимодействие магнитных полей статора и ротора. ЧП такого типа обеспечивают постоянную частоту вращения ротора вне зависимости от нагрузки. Они используются для оборудования, где необходимо поддерживать необходимый момент силы при низких скоростях, высокое быстродействие и точность регулирования. Применение векторных ЧП позволяет регулировать частоту вращения, задавать требуемый момент на валу.

ЧП с векторным управлением делятся на преобразователи бездатчикового типа и устройства с обратной связью по скорости. Последние используются для приводов с широким диапазоном регулирования скорости до 1:1000, необходимости позиционирования точного положения вала, регулирования момента при низких скоростях, точного поддержания частоты вращения, пуска двигателя с номинальным моментом. Преобразователи без датчика скорости применяют для приводов с более низкими требованиями.

Режимы управления частотными преобразователями

В большинстве моделей современных частотных преобразователей реализована возможность управления в нескольких режимах:

1) Ручное управление.

2) Внешнее управление.

3) Управление по дискретным входам или “сухим контактам”.

4) Управление по событиям.

Преимущества частотных преобразователей.

1) Экономия электроэнергии.

2) Увеличение срока службы промышленного оборудования.

3) Отсутствие необходимости проводить техническое обслуживание.

4) Возможность удаленного управления и контроля параметров оборудования с электроприводом.

5) Широкий диапазон мощности двигателей.

6) Защита электродвигателя от аварий и аномальных режимов работы.

7) Снижение уровня шума работающего двигателя.

Сферы применения

Частотно-регулируемые приводы применяют:

  • Для кранов и грузоподъемных машин . Крановые двигатели работают в режиме частых пусков, остановок, изменяющейся нагрузки. ЧП обеспечивают отсутствие рывков и раскачивания груза при пусках и остановках, остановку крана точно в требуемом месте, снижают нагрев электродвигателей и максимальный пусковой момент.
  • Для привода нагнетательных вентиляторов в котельных и дымососов. Общее управление с плавной регулировкой дутьевых и вытяжных вентиляторов позволяет автоматизировать процесс горения и обеспечить максимальный к.п.д . котельных агрегатов.
  • Для транспортеров, прокатных станов, конвейеров, лифтов. ЧП регулирует скорость перемещения транспортного оборудования без рывков и ударов, что увеличивает срок службы механических узлов. Для насосных агрегатов. ЧП позволяют обойтись без задвижек и вентилей, регулирующих давление и производительность, и существенно увеличить общий к.п.д системы водоподачи.
  • Для электродвигателей станков. Использование преобразователя частоты вместо коробки передач позволяет плавно увеличивать или уменьшать частоту вращения рабочего органа станка, осуществлять реверс. ЧП широко используются для станков с ЧПУ и высокоточного промышленного оборудования.

Внедрение частотно-регулируемых приводов дает значительный экономический эффект. Снижение затрат достигается за счет сокращения потребления электроэнергии, расходов на ремонт и ТО двигателей и оборудования, возможности использования более дешевых асинхронных электродвигателей с короткозамкнутым ротором, а также сокращения других производственных издержек. Средний срок окупаемости частотных преобразователей составляет от 3-х месяцев до трех лет.

Что такое частотный преобразователь, как он работает и для чего нужен

  • Определение
  • Устройство
  • Виды частотников и сфера применения
  • Способы управления
  • Количество фаз
  • Схема подключения

Определение

По определению частотный преобразователь – это электронный силовой преобразователь для изменения частоты переменного тока. Но в зависимости от исполнения изменяется и уровень напряжения, и число фаз. Может быть вам не совсем понятно, для чего нужен такой прибор, но мы постараемся рассказать о нём простыми словами.

Частота вращения вала синхронных и асинхронных двигателей (АД) зависит от частоты вращения магнитного потока статора и определяется по формуле:

где n – число оборотов вала АД, p – число пар полюсов, s – скольжение, f – частота переменного тока (для РФ – 50 Гц).

Простым языком, частота вращения ротора зависит от частоты и числа пар полюсов. Число пар полюсов определяется конструкцией катушек статора, а частота тока в сети постоянна. Поэтому, чтобы регулировать обороты мы можем регулировать только частоту с помощью преобразователей.

Устройство

С учетом сказанного выше сформулируем заново ответ на вопрос, что это такое:

Частотный преобразователь — это электронное устройство для изменения частоты переменного тока, следовательно, и числа оборотов ротора асинхронной (и синхронной) электрической машины.

Условное графическое обозначение согласно ГОСТ 2.737-68 вы можете видеть ниже:

Электронным он называется потому, что в основе лежит схема на полупроводниковых ключах. В зависимости от функциональных особенностей и типа управления будут видоизменяться и принципиальная электрическая схема, и алгоритм работы.

На схеме ниже вы видите как устроен частотный преобразователь:


Принцип действия преобразователя частоты лежит в следующем:

  • Сетевое напряжение подаётся на выпрямитель 1 и становится выпрямленным пульсирующим.
  • В блоке 2 сглаживаются пульсации и частично компенсируется реактивная составляющая.
  • Блок 3 – это группа силовых ключей, управляемых системой управления (4) методом широтно-импульсной модуляции (ШИМ). Такая конструкция позволяет получить на выходе двухуровневое ШИМ-регулируемое напряжение, которое после сглаживания приближается к синусоидальному виду. В дорогих моделях нашла применение трёхуровневая схема, где используется больше ключей. Она позволяет добиться более близкой к синусоидальной формы сигнала. В качестве полупроводниковых ключей могут использоваться тиристоры, полевые или IGBT-транзисторы. В последнее время наиболее востребованы и популярны последние два типа из-за эффективности, малых потерь и удобства управления.
  • С помощью ШИМ формируется нужный уровень напряжения, простыми словами – так модулируют синусоиду, поочередно включая пары ключей, формируя линейное напряжение.

Так мы кратко рассказали, как работает и из чего состоит частотный преобразователь для электродвигателя. Он используется в качестве вторичного источника электропитания и не просто управляет формой тока питающей сети, а преобразует его величину и частоту в соответствии с заданными параметрами.

Виды частотников и сфера применения

Способы управления

Регулировка оборотов может осуществляться разными способами, как по способу установки требуемой частоты, так и по способу регулирования. Частотники по способу управления делят на два типа:

  1. Со скалярным управлением.
  2. С векторным управлением.

Устройства первого типа регулируют частоту по заданной функции U/F, то есть вместе с частотой изменяется и напряжение. Пример такой зависимости напряжения от частоты вы можете наблюдать ниже.

Она может отличаться и программироваться под конкретную нагрузку, например, на вентиляторах она не линейная, а напоминает ветвь параболы. Такой принцип работы поддерживает магнитный поток в зазоре между ротором и статором почти постоянным.

Особенностью скалярного управления является его распространенность и относительная простота реализации. Используется чаще всего для насосов, вентиляторов и компрессоров. Такие частотники часто используют, если нужно поддерживать стабильное давление (или другой параметр), это могут быть погружные насосы для скважин, если рассматривать бытовое применение.

На производстве же сфера применения широка, например, регулировка давления в тех же трубопроводах и производительности автоматических систем вентиляции. Диапазон регулирования обычно составляет 1:10, простым языком максимальная скорость от минимальной может отличаться в 10 раз. Из-за особенностей реализации алгоритмов и схемотехники такие устройства обычно дешевле, что и является основным преимуществом.

Недостатки:

  • Не слишком точная поддержка оборотов.
  • Медленнее реакция на изменение режима.
  • Чаще всего нет возможности контролировать момент на валу.
  • С ростом скорости сверх номинальной падает момент на валу двигателя (то есть когда поднимаем частоту выше номинальных 50 Гц).

Последнее связано с тем, что напряжение на выходе зависит от частоты, при номинальной частоте напряжение равняется сетевому, а выше частотник поднимать «не умеет», на графике вы могли видеть ровную часть эпюры после 50 Гц. Следует отметить и зависимость момента от частоты, она падает по закону 1/f, на графике ниже изображена красным, а зависимость мощности от частоты синим.

Преобразователи частоты с векторным управлением имеют другой принцип работы, здесь не просто напряжение соответствует кривой U/f. Характеристики выходного напряжения изменяются в соответствии с сигналами от датчиков, так чтобы на валу поддерживался определенный момент. Но зачем нужен такой способ управления? Более точная и быстрая регулировка – отличительные черты частотного преобразователя с векторным управлением. Это важно в таких механизмах, где принцип действия связан с резким изменением нагрузки и момента на исполнительном органе.

Такая нагрузка характерна для токарных и других видов станков, в том числе ЧПУ. Точность регулирования до 1,5%, диапазон регулировки – 1:100, для большей точности с датчиками скорости и пр. – 0,2% и 1:10000 соответственно.

На форумах бытует мнение, что на сегодняшний день разница в цене между векторными и скалярными частотниками меньше чем была раньше (15-35% в зависимости от производителя), а главным отличием является в большей степени прошивка, чем схемотехника. Также отметим, что большинство векторных моделей поддерживают и скалярное управление.

  • большая стабильность работы и точность;
  • быстрее реакция на изменения нагрузки и высокий момент на низкой скорости;
  • шире диапазон регулирования.
Читайте также  Как залить ванну акрилом самому?

Главный недостаток – стоит дороже, чем скалярные.

В обоих случаях частота может задаваться вручную или датчиками, например, датчиком давления или расходомером (если речь вести о насосах), потенциометром или энкодером.

Во всех или почти во всех преобразователях частоты есть функция плавного пуска двигателя, что позволяет легче пускать двигатели от аварийных генераторов практически без риска его перегрузки.

Количество фаз

Кроме способов реагирования частотники отличаются и количеством фаз на входе и выходе. Так различают частотные преобразователи с однофазным и трёхфазным входом.

При этом большинство трёхфазных моделей могут питаться от одной фазы, но при таком применении их мощность уменьшается до 30-50%. Это связано с допустимой токовой нагрузкой на диоды и другие силовые элементы схемы. Однофазные же модели выпускаются в диапазоне мощностей до 3 кВт.

Важно! Учтите, что при однофазном подключении с напряжением на вход 220В, будет выход 3 фазы по 220В, а не по 380В. То есть линейное на выходе будет именно 220В, если говорить кратко. В связи с чем распространенные двигатели с обмотками, рассчитанными на напряжения 380/220В нужно соединять в треугольник, а те что на 127/220В – в звезду.

В сети вы можете найти много предложений типа «частотный преобразователь 220 на 380» — это в большинстве случаев маркетинг, продавцы любые три фазы называют «380В».

Чтобы получить настоящие 380В из одной фазы нужно либо использовать однофазный трансформатор 220/380 (если вход преобразователя частоты рассчитан на такое напряжение), либо использовать специализированный частотный преобразователь с однофазным входом и 380В трёхфазным выходом.

Отдельным и более редким видом преобразователей частоты являются однофазные частотники с однофазным выходом 220. Они предназначены для регулировки однофазных двигателей с конденсаторным пуском. Примером таких устройств являются:

  • ERMAN ER-G-220-01
  • INNOVERT IDD

Схема подключения

В реальности же, чтобы получить из частотного преобразователя 380В выход 3 фазы, нужно подключить на вход 3 фазы 380В:

Подключение частотника к одной фазе аналогично, за исключением подключения питающих проводов:

Однофазный преобразователь частоты для двигателя с конденсатором (насоса или вентилятора малой мощности) подключается по такой схеме:

Как вы могли видеть на схемах, кроме питающих проводов и проводов к двигателю у частотника есть и другие клеммы, к ним подключаются датчики, кнопки выносного пульта управления, шины для подключения к компьютеру (чаще стандарта RS-485) и прочее. Это даёт возможность управления двигателем по тонким сигнальным проводам, что позволяет убрать частотный преобразователь в электрощит.

Частотники – это универсальные устройства, назначение которых не только регулировка оборотов, но и защита электродвигателя от неправильных режимов работы и электропитания, а также от перегрузки. Кроме основной функции в устройствах реализуется плавный пуск приводов, что снижает износ оборудования и нагрузки на электросеть. Принцип работы и глубина настройки параметров большинства частотных преобразователей позволяет экономить электроэнергию при управлении насосами (ранее управление осуществлялось не за счет производительности насоса, а с помощью задвижек) и другим оборудованием.

На этом мы и заканчиваем рассмотрение вопроса. Надеемся, после прочтения статья вам стало понятно, что такое частотный преобразователь и для чего он нужен. Напоследок рекомендуем просмотреть полезно видео по теме:

Наверняка вы не знаете:

Принцип работы частотного преобразователя для асинхронного двигателя

Трехфазные асинхронные двигатели нашли самое широкое применение в промышленности и других областях. Современное оборудование просто невозможно представить без этих агрегатов. Одной из важнейших составляющих рабочего цикла машин и механизмов является их плавный пуск и такая же плавная остановка после выполнения поставленной задачи. Такой режим обеспечивается путем использования преобразователей частоты. Эти устройства проявили себя наиболее эффективными в больших электродвигателях, обладающих высокой мощностью.

С помощью преобразователей частоты успешно выполняется регулировка пусковых токов, с возможностью контроля и ограничения их величины до нужных значений. Для правильного использования данной аппаратуры необходимо знать принцип работы частотного преобразователя для асинхронного двигателя. Его применение позволяет существенно увеличить срок службы оборудования и снизить потери электроэнергии. Электронное управление, кроме мягкого пуска, обеспечивает плавную регулировку работы привода в соответствии с установленным соотношением между частотой и напряжением.

  1. Что такое частотный преобразователь
  2. Принцип действия частотного преобразователя
  3. Настройка частотного преобразователя для электродвигателя
  4. Частотные преобразователи для асинхронных двигателей

Что такое частотный преобразователь

Основной функцией частотных преобразователей является плавная регулировка скорости вращения асинхронных двигателей. С этой целью на выходе устройства создается трехфазное напряжение с переменной частотой.

Преобразователи частоты нередко называются инверторами. Их основной принцип действия заключается в выпрямлении переменного напряжения промышленной сети. Для этого применяются выпрямительные диоды, объединенные в общий блок. Фильтрация тока осуществляется конденсаторами с высокой емкостью, которые снижают до минимума пульсации поступающего напряжения. В этом и заключается ответ на вопрос для чего нужен частотный преобразователь.

В некоторых случаях в схему может быть включена так называемая цепь слива энергии, состоящая из транзистора и резистора с большой мощностью рассеивания. Данная схема применяется в режиме торможения, чтобы погасить напряжение, генерируемое электродвигателем. Таким образом, предотвращается перезарядка конденсаторов и преждевременный выход их из строя. В результате использования частотников, асинхронные двигатели успешно заменяют электроприводы постоянного тока, имеющие серьезные недостатки. Несмотря на простоту регулировки, они считаются ненадежными и дорогими в эксплуатации. В процессе работы постоянно искрят щетки, а электроэрозия приводит к износу коллектора. Двигатели постоянного тока совершенно не подходят для взрывоопасной и запыленной среды.

В отличие от них, асинхронные двигатели значительно проще по своему устройству и надежнее, благодаря отсутствию подвижных контактов. Они более компактные и дешевые в эксплуатации. К основному недостатку можно отнести сложную регулировку скорости вращения традиционными способами. Для этого было необходимо изменять питающее напряжение и вводить дополнительные сопротивления в цепь обмоток. Кроме того, применялись и другие способы, которые на практике оказывались неэкономичными и не обеспечивали качественной регулировки скорости. Но, после того как появился преобразователь частоты для асинхронного двигателя, позволяющий плавно регулировать скорость в широком диапазоне, все проблемы разрешились.

Одновременно с частотой изменяется и подводимое напряжение, что позволяет увеличить КПД и коэффициент мощности электродвигателя. Все это позволяет получить высокие энергетические показатели асинхронных двигателей, продлить срок их эксплуатации.

Принцип действия частотного преобразователя

Эффективное и качественное управление асинхронными электродвигателями стало возможно за счет использования совместно с ними частотных преобразователей. Общая конструкция представляет собой частотно-регулируемый привод, который позволил существенно улучшить технические характеристики машин и механизмов.

В качестве управляющего элемента данной системы выступает преобразователь частоты, основной функцией которого является изменение частоты питающего напряжения. Его конструкция выполнена в виде статического электронного узла, а формирование переменного напряжения с заданной изменяемой частотой осуществляется на выходных клеммах. Таким образом, за счет изменения амплитуды напряжения и частоты регулируется скорость вращения электродвигателя.

Управление асинхронными двигателями осуществляется двумя способами:

  • Скалярное управление действует в соответствии с линейным законом, согласно которому амплитуда и частота находятся в пропорциональной зависимости между собой. Изменяющаяся частота приводит к изменениям амплитуды поступающего напряжения, оказывая влияние на уровень крутящего момента, коэффициент полезного действия и коэффициент мощности агрегата. Следует учитывать зависимость выходной частоты и питающего напряжения от момента нагрузки на валу двигателя. Для того чтобы момент нагрузки был всегда равномерным, отношение амплитуды напряжения к выходной частоте должно быть постоянным. Данное равновесие как раз и поддерживается частотным преобразователем.
  • Векторное управление удерживает момент нагрузки в постоянном виде во всем диапазоне частотных регулировок. Повышается точность управления, электропривод более гибко реагирует на изменяющуюся выходную нагрузку. В результате, момент вращения двигателя находится под непосредственным управлением преобразователя. Нужно учитывать, что момент вращения образуется в зависимости от тока статора, а точнее – от создаваемого им магнитного поля. Под векторным управлением фаза статорного тока изменяется. Эта фаза и есть вектор тока осуществляющий непосредственное управление моментом вращения.

Настройка частотного преобразователя для электродвигателя

Для того чтобы преобразователь частоты для асинхронного двигателя в полном объеме выполнял свои функции, его необходимо правильно подключить и настроить. В самом начале подключения в сети перед прибором размещается автоматический выключатель. Его номинал должен совпадать с величиной тока, потребляемого двигателем. Если частотник предполагается эксплуатировать в трехфазной сети, то автомат также должен быть трехфазным, с общим рычагом. В этом случае при коротком замыкании на одной из фаз можно оперативно отключить и другие фазы.

Ток срабатывания должен обладать характеристиками, полностью соответствующими току отдельной фазы электродвигателя. Если частотный преобразователь планируется использовать в однофазной сети, в этом случае рекомендуется воспользоваться одинарным автоматом, номинал которого должен в три раза превышать ток одной фазы. Независимо от количества фаз, при установке частотника, автоматы не должны включаться в разрыв заземляющего или нулевого провода. Рекомендуется использовать только прямое подключение.

При правильной настройке и подключении частотного преобразователя, его фазные провода должны соединяться с соответствующими контактами электродвигателя. Предварительно обмотки в двигателе соединяются по схеме «звезда» или «треугольник», в зависимости от напряжения, выдаваемого преобразователем. Если оно совпадает с меньшим значением, указанным на корпусе двигателя, то применяется соединение треугольником. При более высоком значении используется схема «звезда».

Далее выполняется подключение частотного преобразователя к контроллеру и пульту управления, который входит в комплект поставки. Все соединения осуществляются в соответствии со схемой, приведенной в руководстве по эксплуатации. Рукоятка должна находиться в нейтральном положении, после чего включается автомат. Нормальное включение подтверждается световым индикатором, загорающимся на пульте. Для того чтобы преобразователь заработал, нажимается кнопка RUN, запрограммированная по умолчанию.

После незначительного поворота рукоятки, двигатель начинает постепенно вращаться. Для переключения вращения в обратную сторону, существует специальная кнопка реверса. Затем с помощью рукоятки настраивается нужная частота вращения. На некоторых пультах вместо частоты вращения электродвигателя, отображаются данные о частоте напряжения. Поэтому рекомендуется заранее внимательно изучить интерфейс установленной аппаратуры.

Частотные преобразователи для асинхронных двигателей

Благодаря частотным преобразователям, работа современных асинхронных двигателей отличается высокой эффективностью, устойчивостью и безопасностью. Это особенно важно, поскольку каждый электродвигатель отличается индивидуальными особенностями режима работы. Поэтому оптимизации параметров питания агрегатов с использованием преобразователей частоты придается большое значение. Когда частотный преобразователь выбирается для каких-либо конкретных целей, в этом случае должны обязательно учитываться его рабочие параметры.

Читайте также  Паровой генератор электричества

Нормальная работа устройства будет зависеть от типа электродвигателя, его мощности, диапазона, скорости и точности регулировок, а также от поддержания стабильного момента вращения вала. Эти показатели имеют первостепенное значение и должны органично сочетаться с габаритами и формой аппарата. Следует обратить особое внимание на то, как расположены элементы управления и будет ли удобно им пользоваться.

Выбирая устройство, необходимо заранее знать, в каких условиях оно будет эксплуатироваться. Если сеть однофазная, то и преобразователь должен быть таким же. То же самое касается и трехфазных аппаратов. Многое зависит от мощности асинхронных двигателей. Если при запуске на валу необходим высокий пусковой момент, то и частотный преобразователь должен быть рассчитан на большее значение тока.

Схема частотного преобразователя асинхронного двигателя

Принцип работы частотного преобразователя

Частотные преобразователи: принцип работы

Схема частотного преобразователя

Регулировка оборотов асинхронного двигателя

Что нужно знать о частотном преобразователе

Частотный преобразователь для электродвигателя

Технические аспекты применения частотных преобразователей

В настоящее время асинхронный электродвигатель стал основным устройством в большинстве электроприводов. Все чаще для управления им используется частотный преобразователь — инвертор с ШИМ-регулированием. Такое управление дает массу преимуществ, но и создает некоторые проблемы выбора тех или иных технических решений. Попробуем разобраться в них более подробно.

Устройство частотных преобразователей

Разработка и производство широкой номенклатуры мощных высоковольтных транзисторных IGBT модулей предоставили возможность реализации многофазных силовых переключателей, управляемых непосредственно с помощью цифровых сигналов. Программируемые вычислительные средства позволили на входах коммутаторов сформировать числовые последовательности, обеспечивающие сигналы частотного управления асинхронными электродвигателями.Разработка и массовый выпуск однокристальных микроконтроллеров, обладающих большими вычислительными ресурсами, обусловили возможность перехода к следящим электроприводам с цифровыми регуляторами.

Силовые преобразователи частоты, как правило, реализуют по схеме, содержащей выпрямитель на мощных силовых диодах или транзисторах и инвертор (управляемый коммутатор) на IGBT транзисторах, шунтированных диодами (рис. 1).

Рис. 1. Схема частотного преобразователя

Входной каскад выпрямляет подаваемое синусоидальное напряжение сети, которое после сглаживания с помощью индуктивно-емкостного фильтра служит источником электропитания управляемого инвертора, вырабатывающего при действии команд цифрового управления сигнал с импульсной модуляцией, который формирует в обмотках статора токи синусоидальной формы с параметрами, обеспечивающими требуемый режим работы электродвигателя.

Цифровое управление силовым преобразователем осуществляется с помощью микропроцессорных аппаратных средств и соответствующим поставленным задачам программным обеспечением. Вычислительное устройство в режиме реального времени вырабатывает сигналы управления 52 модулями, а также производит обработку сигналов измерительных систем, контролирующих работу привода.

Силовые устройства и управляющие вычислительные средства объединены в составе конструктивно оформленного промышленного изделия, называемого частотным преобразователем.

В промышленном оборудовании применяются два основных вида частотных преобразователей:

  • фирменные преобразователи для конкретных типов оборудования.
  • универсальные преобразователи частоты предназначены для многоцелевого управления работой АД в задаваемых пользователем режимах.

Установку и контроль режимов работы частотного преобразователя можно производить с помощью пульта управления, оснащенного экраном для индикации введенной информации. В простом варианте скалярного регулирования частоты можно воспользоваться набором простых логических функций, имеющихся в заводских установках контроллера, и встроенным ПИД-регулятором.

Для осуществления более сложных режимов управления с использованием сигналов с датчиков обратных связей необходимо разработать структуру САУ и алгоритм, который следует запрограммировать с помощью подключаемого внешнего компьютера.

Большинство производителей выпускает целый ряд преобразователей частоты, отличающихся входными и выходными электрическими характеристиками, мощностью, конструктивным исполнением и другими параметрами. Для подключения к внешнему оборудованию (электросети, двигателю) могут быть использованы дополнительные внешние элементы: магнитные пускатели, трансформаторы, дроссели.

Типы сигналов управления

Необходимо делать различия между сигналами различных типов и для каждого из них использовать отдельный кабель. Различные типы сигналов могут оказывать влияние друг на друга. На практике такое разделение встречается часто, например кабель от датчика давления может быть подключен непосредственно к преобразователю частоты.

На рис. 2 приведен рекомендуемый вариант подключения преобразователя частоты при наличии различных цепей и сигналов управления.

Рис. 2. Пример подключения силовых цепей и цепей управления преобразователя частоты

Можно выделить следующие типы сигналов:

  • аналоговые — сигналы напряжения или тока (0. 10 В, 0/4. 20 мА), значение которых меняется медленно или редко, обычно это сигналы управления или измерения;
  • дискретные сигналы напряжения или тока (0. 10 В, 0/4. 20 мА), которые могут принимать только два редко изменяющихся значения (высокое или низкое);
  • цифровые (данные) — сигналы напряжения (0. 5 В, 0. 10 В), которые меняются быстро и с высокой частотой, обычно это сигналы портов RS232, RS485 и т.п.;
  • релейные — контакты реле (0. 220 В переменного тока) могут включать индуктивные токи в зависимости от подключенной нагрузки (внешние реле, лампы, клапаны, тормозные устройства и т.д.).

Выбор мощности частотного преобразователя

При выборе мощности частотного преобразователя необходимо основываться не только на мощности электродвигателя, но и на номинальных токах и напряжениях преобразователя и двигателя. Дело в том, что указанная мощность частотного преобразователя относится только к эксплуатации его со стандартным 4-х полюсным асинхронным электродвигателем в стандартном применении.

Реальные приводы имеют много аспектов, которые могут привести к росту токовой нагрузке привода, например, при пуске. В общем случае, применение частотного привода позволяет снизить токовые и механические нагрузки за счет плавного пуска. Например, пусковой ток снижается с 600% до 100-150% от номинального.

Работа привода на пониженной скорости

Необходимо помнить, что хотя частотный преобразователь легко обеспечивает регулирование по скорости 10:1, но при работе двигателя на низких оборотах мощности собственного вентилятора может не хватать. Необходимо следить за температурой двигателя и обеспечить принудительную вентиляцию.

Электромагнитная совместимость

Поскольку частотный преобразователь мощный источник высокочастотных гармоник, то для подключения двигателей нужно использовать экранированный кабель минимальной длины. Прокладку такого кабеля необходимо вести на расстоянии не менее 100 мм от других кабелей. Это минимизирует наводки. Если нужно пересечь кабели, то пересечение делается под углом 90 градусов.

Питание от аварийного генератора

Плавный пуск, который обеспечивает частотный преобразователь позволяет снизить необходимую мощность генератора. Так как при таком пуске ток снижается в 4-6 раз, то в аналогичное число раз можно снизить мощность генератора. Но все равно, между генератором и приводом должен быть установлен контактор, управляемый от релейного выхода частотного привода. Это защищает частотный преобразователь от опасных перенапряжений.

Питание трехфазного преобразователя от однофазной сети

Трехфазные частотные преобразователи могут быть запитаны от однофазной сети, но при этом их выходной ток не должен превышать 50% от номинального.

Экономия электроэнергии и денег

Экономия происходит по нескольким причинам. Во-первых, за счет роста косинуса фи до значений 0.98, т.е. максимум мощности используется для совершения полезной работы, минимум уходит в потери. Во-вторых, близкий к этому коэффициент получается на всех режимах работы двигателя.

Без частотного преобразователя, асинхронные двигатели на малых нагрузках имеют косинус фи 0.3-0.4. В-третьих, нет необходимости в дополнительных механических регулировках (заслонках, дросселях, вентилях, тормозах и т.д.), все делается электронным образом. При таком устройстве регулирования, экономия может достигать 50%.

Синхронизация нескольких устройств

За счет дополнительных входов управления частотного привода можно синхронизировать процессы на конвейере или задавать соотношения изменения одних величин, в зависимости от других. Например, поставить в зависимость скорость вращения шпинделя станка от скорости подачи резца. Процесс будет оптимизирован, т.к. при увеличении нагрузки на резец, подача будет уменьшена и наоборот.

Защита сети от высших гармоник

Для дополнительной защиты, кроме коротких экранированных кабелей, используются сетевые дроссели и шунтирующие конденсаторы. Дроссель, кроме того, ограничивает бросок тока при включении.

Правильный выбор класса защиты

Для безотказной работы частотного привода необходим надежный теплоотвод. Если использовать высокие классы защиты, например IP 54 и выше, то трудно или дорого добиться такого теплоотвода. Поэтому, можно использовать отдельный шкаф с высоким классом защиты, куда ставить модули с меньшим классом и осуществлять общую вентиляцию и охлаждение.

Параллельное подключение электродвигателей к одному частотному преобразователю

С целью снижения затрат, можно использовать один частотный преобразователь для управления несколькими электродвигателями. Его мощность нужно выбирать с запасом 10-15% от суммарной мощности всех электродвигателей. При этом нужно минимизировать длины моторных кабелей и очень желательно ставить моторный дроссель.

Большинство частотных преобразователей не допускают отключение или подключение двигателей с помощью контакторов во время работы частотного привода. Это производится только через команду стоп привода.

Задание функции регулирования

Для получения максимальных показателей работы электропривода, таких как: коэффициент мощности, коэффициент полезного действия, перегрузочная способность, плавность регулирования, долговечность, нужно правильно выбирать соотношение между изменением рабочей частоты и напряжения на выходе частотного преобразователя.

Функция изменения напряжения зависит от характера момента нагрузки. При постоянном моменте, напряжение на статоре электродвигателя должно регулироваться пропорционально частоте (скалярное регулирование U/F = const). Для вентилятора, например, другое соотношение – U/F*F = const. Если увеличиваем частоту в 2 раза, то напряжение нужно увеличить в 4 (векторное регулирование). Есть приводы и с более сложными функциями регулирования.

Преимущества использования регулируемого электропривода с частотным преобразователем

Кроме повышения КПД и энергосбережения такой электропривод позволяет получить новые качества управления. Это выражается в отказе от дополнительных механических устройств, создающих потери и снижающих надежность систем: тормозов, заслонок, дросселей, задвижек, регулирующих клапанов и т.д. Торможение, например, может быть осуществлено за счет обратного вращения электромагнитного поля в статоре электродвигателя. Меняя только функциональную зависимость между частотой и напряжением, мы получаем другой привод, не меняя ничего в механике.

Чтение документации

Следует заметить, что хотя частотные преобразователи похожи друг на друга и, освоив один, легко разобраться с другим, тем не менее, необходимо тщательно читать документацию. Некоторые производители накладывают ограничения на использование своей продукции, а при их нарушении снимают изделия с гарантии.

Источник: ООО «СВ-Техноэлектро»

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: