Электрическая дуга и причины ее возникновения - ELSTROIKOMPLEKT.RU

Электрическая дуга и причины ее возникновения

Явление электрической дуги

Электрическая дуга представляет собой электрический разряд в среде (воздух, вакуум, элегаз, трансформаторное масло) с большим током, низким напряжением, высокой температурой. Это явление как электрическое, так и тепловое.

Может возникать между двумя контактами при их размыкании.

Обратимся к ВАХ-диаграмме:

На данном графике у нас зависимость тока от напряжения, немного не в масштабе, но так нагляднее. Значит, есть три области:

  • в первой области у нас высокое падение напряжения у катода и малые токи — это область тлеющего разряда
  • во второй области у нас падение напряжения резко снижается, а ток продолжает увеличиваться — это переходная область между тлеющим и дуговым разрядом
  • третья область характеризует дуговой разряд — малое падение напряжения и высокая плотность тока и следовательно высокая температура.

Механизм возникновения дуги может быть следующий: контакты размыкаются и между ними возникает разряд. В процессе размыкания воздух между контактами ионизируется, обретая свойства проводника, затем возникает дуга. Зажигание дуги — это процессы ионизации воздушного промежутка, гашение дуги — явления деионизации воздушного промежутка.

Явления ионизации и деионизации

В начале горения дуги преобладают процессы ионизации, когда дуга устойчива, то процессы ионизации и деионизации происходят одинаково часто, как-только процессы деионизации начинают преобладать над процессами ионизации — дуга гаснет.

  • термоэлектронная эмиссия — электроны отрываются от раскаленной поверхности катодного пятна;
  • автоэлектронная эмиссия — электроны вырываются с поверхности из-за высокой напряженности электрического поля.
  • ионизация толчком — электрон вылетает с достаточной скоростью и в пути сталкивается с нейтральной частицей, в результате образуется электрон и ион.
  • термическая ионизация — основной вид ионизации, поддерживает дугу после её зажигания. Температура дуги может достигать тысяч кельвинов, а в такой среде увеличивается число частиц и их скорости, что способствует активным процессам ионизации.
  • рекомбинация — образование нейтральных частиц из противоположно заряженных при взаимодействии
  • диффузия — положительно заряженные частицы отправляются “за борт”, из-за действия электрического поля дуги от середины к границе

Бывают ситуации, когда при размыкании контактов дуга не загорается, тогда говорят о безыскровом разрыве. Такое возможно при малых значениях тока и напряжения, или при отключении в момент, когда значение тока проходит через ноль.

Свойства дуги постоянного тока

Дуга может возникать как при постоянном токе-напряжении, так и при переменном. Начнем рассмотрение с постоянки:

Анодная и катодная области — размер=10 -4 см; суммарное падение напряжения=15-30В; напряженность=10 5 -10 6 В/см; в катодной области происходит процесс ударной ионизации из-за высокой напряженности, образовавшиеся в результате ионизации электроны и ионы образуют плазму дуги, которая обладает высокой проводимостью, данная область отвечает за разжигание дуги.

Ствол дуги — падение напряжения пропорционально длине дуги; плотность тока порядка 10кА на см 2 , за счет чего и температура порядка 6000К и выше. В данной области дуги происходят процессы термоионизации, данная область отвечает за поддержание горения.

ВАХ дугового разряда постоянного тока

Эта кривая соответствует кривой 3 на самом верхнем рисунке. Тут есть:

  • Uз — напряжение зажигания
  • Uг — напряжение гашения

Если ток уменьшить от Io до 0 мгновенно, то получится прямая, которая лежит снизу. Эти кривые характеризуют дуговой промежуток как проводник, показывают какое напряжение нужно приложить, чтобы создать в промежутке дугу.

Чтобы погасить дугу постоянного тока, необходимо, чтобы процессы деионизации преобладали над процессами ионизации.

  • можно определить из ВАХ дуги
  • активное, независимо от рода тока
  • переменная величина
  • падает с ростом тока

Если разорвать цепь амперметра под нагрузкой, то тоже можно увидеть дугу.

Свойства дуги переменного тока

Особенностью дуги переменного тока является её поведение во времени. Если посмотреть на график ниже, то видно, что дуга каждый полупериод проходит через ноль.

Видно, что ток отстает от напряжения примерно на 90 градусов. Вначале появляется ток и резко повышается напряжение до величины зажигания (Uз). Далее ток продолжает расти, а падение напряжения снижается. В точке максимального амплитудного значения тока, значение напряжения дуги минимальное. Далее ток стремится к нулю, а падение напряжения опять возрастает до значения гашения (Uг), которое соответствует моменту, когда ток переходит через ноль. Далее всё повторяется опять. Слева от временной характеристики приведена вольт-амперная характеристика.

Особенностью переменной дуги, кроме её зажигания и гашения на протяжении полупериода, является то, как ток пересекает ноль. Это происходит не по форме синусоиды, а более резко. Образуется бестоковая пауза, во время которой происходят знакомые нам процессы деионизации. То есть возрастает сопротивление дугового промежутка. И чем больше возрастет сопротивление, тем сложнее будет дуге обратно зажечься.

Если дуге дать гореть достаточно долго, то уничтожению подлежат не только контакты, но и само электрооборудование. Условия для гашения дуги заложены на стадии проектирования, постоянно внедряются новые методы борьбы с этим вредным явлением в коммутационных аппаратах.

Само по себе явление дуги не является полезным для электрооборудования, так как ведет к ухудшению эксплуатационных свойств контактов: выгорание, коррозия, механическое повреждение.

Но не всё так печально, потому что светлые умы нашли полезное применение дуговому разряду — использование в дуговой сварке, металлургии, осветительной технике, ртутных выпрямителях.

Дуга. Условия возникновения и горения дуги. Способы гашения дуги.

1. Условия возникновения и горения дуги

Размыкание электрической цепи при наличии в ней тока сопровождается электрическим разрядом между контактами. Если в отключаемой цепи ток и напряжение между контактами больше, чем критические для данных условий, то между контактами возникает дуга, продолжительность горения которой зависит от параметров цепи и условий деионизации дугового промежутка. Образование дуги при размыкании медных контактов возможно уже при токе 0,4-0,5 А и напряжении 15 В.

Рис. 1. Расположение в стационарной дуге постоянного тока напряжения U(a) и напряженности Е(б).

В дуге различают околокатодное пространство, ствол дуги и околоанодное пространство (рис. 1). Все напряжение распределяется между этими областями Uк, Uсд, Uа. Катодное падение напряжения в дуге постоянного тока 10-20 В, а длина этого участка составляет 10–4-10–5 см, таким образом, около катода наблюдается высокая напряженность электрического поля (105-106 В/см). При таких высоких напряженностях происходит ударная ионизация. Суть ее заключается в том, что электроны, вырванные из катода силами электрического поля (автоэлектронная эмиссия) или за счет нагрева катода (термоэлектронная эмиссия), разгоняются в электрическом поле и при ударе в нейтральный атом отдают ему свою кинетическую энергию. Если этой энергии достаточно, чтобы оторвать один электрон с оболочки нейтрального атома, то произойдет ионизация. Образовавшиеся свободные электроны и ионы составляют плазму ствола дуги.

Рис. 2. Изменение тока и напряжения при гашении дуги переменного тока в цепи с индуктивной нагрузкой.

Проводимость плазмы приближается к проводимости металлов [у= 2500 1/(Ом×см)]/ В стволе дуги проходит большой ток и создается высокая температура. Плотность тока может достигать 10 000 А/см2 и более, а температура — от 6000 К при атмосферном давлении до 18000 К и более при повышенных давлениях.

Высокие температуры в стволе дуги приводят к интенсивной термоионизации, которая поддерживает большую проводимость плазмы.

Термоионизация — процесс образования ионов за счет соударения молекул и атомов, обладающих большой кинетической энергией при высоких скоростях их движения.

Чем больше ток в дуге, тем меньше ее сопротивление, а поэтому требуется меньшее напряжение для горения дуги, т. е. дугу с большим током погасить труднее.

При переменном токе напряжение источника питания ucд меняется синусоидально, так же меняется ток в цепи i (рис. 2), причем ток отстает от напряжения примерно на 90°. Напряжение на дуге uд, горящей между контактами выключателя, непостоянно. При малых токах напряжение возрастает до величины uз (напряжения зажигания), затем по мере увеличения тока в дуге и роста термической ионизации напряжение падает. В конце полупериода, когда ток приближается к нулю, дуга гаснет при напряжении гашения uг. В следующий полупериод явление повторяется, если не приняты меры для деионизации промежутка.

Если дуга погашена теми или иными способами, то напряжение между контактами выключателя должно восстановиться до напряжения питающей сети — uвз (рис. 2, точка А). Однако поскольку в цепи имеются индуктивные, активные и емкостные сопротивления, возникает переходный процесс, появляются колебания напряжения (рис. 2), амплитуда которых Uв,max может значительно превышать нормальное напряжение. Для отключающей аппаратуры важно, с какой скоростью восстанавливается напряжение на участке АВ. Подводя итог, можно отметить, что дуговой разряд начинается за счет ударной ионизации и эмиссии электронов с катода, а после зажигания дуга поддерживается термоионизацией в стволе дуги.

Читайте также  Как сделать землю для электричества?

2. Условия гашения дуги переменного тока

В коммутационных аппаратах необходимо не только разомкнуть контакты, но и погасить возникшую между ними дугу.

В цепях переменного тока ток в дуге каждый полупериод проходит через нуль (рис. 2), в эти моменты дуга гаснет самопроизвольно, но в следующий полупериод она может возникнуть вновь. Как показывают осциллограммы, ток в дуге становится близким нулю несколько раньше естественного перехода через нуль (рис. 3, а). Это объясняется тем, что при снижении тока энергия, подводимая к дуге, уменьшается, следовательно, уменьшается температура дуги и прекращается термоионизация. Длительность бестоковой паузы tп невелика (от десятков до нескольких сотен микросекунды), но играет важную роль в гашении дуги. Если разомкнуть контакты в бестоковую паузу и развести их с достаточной скоростью на такое расстояние, чтобы не произошел электрический пробой, то цепь будет отключена очень быстро.

Во время бестоковой паузы интенсивность ионизации сильно падает, так как не происходит термоионизации. В коммутационных аппаратах, кроме того, принимаются искусственные меры охлаждения дугового пространства и уменьшения числа заряженных частиц. Эти процессы деионизации приводят к постепенному увеличению электрической прочности промежутка uпр (рис. 3, б).

Резкое увеличение электрической прочности промежутка после перехода тока через нуль происходит главным образом за счет увеличения прочности околокатодного пространства (в цепях переменного тока 150-250В). Одновременно растет восстанавливающееся напряжение uв . Если в любой момент uпр > uв промежуток не будет пробит, дуга не загорится вновь после перехода тока через нуль. Если в какой-то момент uпр = uв , то происходит повторное зажигание дуги в промежутке.

Рис. 3. Условия гашения дуги переменного тока:

а – погасание дуги при естественном переходе тока через нуль; б – рост электрической прочности дугового промежутка при переходе тока через нуль

Таким образом, задача гашения дуги сводится к созданию таких условий, чтобы электрическая прочность промежутка между контактами uпр была больше напряжения между ними uв.

Процесс нарастания напряжения между контактами отключаемого аппарата может носить различный характер в зависимости от параметров коммутируемой цепи. Если отключается цепь с преобладанием активного сопротивления, то напряжение восстанавливается по апериодическому закону; если в цепи преобладает индуктивное сопротивление, то возникают колебания, частоты которых зависят от соотношения емкости и индуктивности цепи. Колебательный процесс приводит к значительным скоростям восстановления напряжения, а чем больше скорость duв/dt, тем вероятнее пробой промежутка и повторное зажигание дуги. Для облегчения условий гашения дуги в цепь отключаемого тока вводятся активные сопротивления, тогда характер восстановления напряжения будет апериодическим (рис. 3, б).

3. Способы гашения дуги в коммутационных аппаратах до 1000 В

В коммутационных аппаратах до 1 кВ широко используются следующие способы гашения дуги:

Удлинение дуги при быстром расхождении контактов.

Чем длиннее дуга, тем большее напряжение необходимо для ее существования. Если напряжение источника питания окажется меньше, то дуга гаснет.

Деление длинной дуги на ряд коротких (рис. 4, а).

Как показано на рис. 1, напряжение на дуге складывается из катодного Uк и анодного Uа падений напряжений и напряжения ствола дуги Uсд:

Если длинную дугу, возникшую при размыкании контактов, затянуть в дугогасительную решетку из металлических пластин, то она разделится на N коротких дуг. Каждая короткая дуга будет иметь свое катодное и анодное падения напряжений Uэ. Дуга гаснет, если:

U U2 и, следовательно, гасительные устройства будут работать в неодинаковых условиях. Для выравнивания напряжения параллельно главным контактам выключателя (ГК) включают емкости или активные сопротивления (рис. 16, б, в). Значения емкостей и активных шунтирующих сопротивлений подбирают так, чтобы напряжение на разрывах распределялось равномерно. В выключателях с шунтирующими сопротивлениями после гашения дуги между ГК сопровождающий ток, ограниченный по значению сопротивлениями, разрывается вспомогательными контактами (ВК).

Шунтирующие сопротивления уменьшают скорость нарастания восстанавливающегося напряжения, что облегчает гашение дуги.

4. Гашение дуги в вакууме.

Высокоразреженный газ (10-6-10-8 Н/см2) обладает электрической прочностью, в десятки раз большей, чем газ при атмосферном давлении. Если контакты размыкаются в вакууме, то сразу же после первого прохождения тока в дуге через нуль прочность промежутка восстанавливается и дуга не загорается вновь.

5. Гашение дуги в газах высокого давления.

Воздух при давлении 2 МПа и более обладает высокой электрической прочностью. Это позволяет создавать достаточно компактные устройства для гашения дуги в атмосфере сжатого воздуха. Еще более эффективно применение высокопрочных газов, например шестифторисгой серы SF6 (элегаз). Элегаз обладает не только большей электрической прочностью, чем воздух и водород, но и лучшими дугогасящими свойствами даже при атмосферном давлении.

Что такое электрическая дуга, как она возникает и где применяется?

Наблюдать искровые разряды приходилось каждому, в том числе и людям, далёким от познаний в электротехнике. Гигантскими искровыми разрядами сопровождаются грозы. Высвобождение огромной энергии, сконцентрированной в электрическом разряде молнии (см. рис. 1), сопровождается ослепительной вспышкой раскалённого ствола. Одним из видов искровых разрядов, созданных человечеством, является дуговой разряд, или попросту, электрическая дуга.

На сегодняшний день причины возникновение и свойства электрической дуги детально изучено наукой. Физики установили, что в области её горения возникает огромная концентрация зарядов, которые образуют плазму ствола. Температуры столба достигает нескольких тысяч градусов.

Что такое электрическая дуга?

Это загадочное явление впервые описал русский учёный В. Петров. Он создавал электрическую дугу, используя батарею, состоящую из тысяч медных и цинковых пластин. Изучая процесс зажигания дуги постоянным током, учёный пришёл к выводу, что воздушный промежуток между электродами при определённых условиях приобретает электропроводимость.

Одним из условий возникновения электрического пробоя является достаточно высокая разность потенциалов на концах электродов. Чем выше напряжение, тем больший газовый промежуток может преодолеть разряд. При этом образуется электропроводный газовый столб, который сильно разогревается во время горения дуги.

Возникает резонный вопрос: «Почему воздух, являющийся отличным изолятором в обычном состоянии, вдруг становится проводником?».

Объяснение может быть только одно – в стволе дуги образуются носители зарядов, способные перемещаться под действием электрического поля. Поскольку в воздухе, в отличие от металлов, нет свободных электронов, то вывод напрашивается только один – ионизация газов (см. рис. 3). То есть, запуск процесса насыщения газа ионами, являющимися носителями электрического заряда.

Рис. 3. Физика электрической дуги

Ионизация воздуха происходит под действием различного вида излучений, включая рентгеновское и космическое облучение. Поэтому в воздухе всегда находятся небольшое количество ионов. Но поскольку ионы почти сразу рекомбинируются (превращаются в нейтральные атомы и молекулы), то концентрация заряженных частиц всегда мизерная. Получить вспышку дуги при такой концентрации невозможно.

Для возникновения дугового разряда нужен лавинообразный процесс ионизации. Его можно вызвать путём сильного нагревания газа, которое происходит при зажигании.

При размыкании контактов происходит эмиссия электронов, скапливающихся на очень маленьком пространстве. Под действием напряжённости электрического поля отрицательные заряды устремляются к электроду с положительным знаком.

При достижении напряжения пробоя, между электродами возникает искровой разряд, разогревающий область между электродами. Если ток достаточно большой, то количество тепла будет достаточно для запуска лавинообразного процесса ионизации воздуха.

На участке, который называют дуговым промежутком, образуется ствол, называемый столбом дуги и состоящий из горячей проводимой плазмы. По этому стволу протекает ток, поддерживающий разогревание плазмы. Так происходит процесс зажигания дугового разряда.

Насыщение плазменного ствола ионами разных знаков приводит к значительному увеличению плотности тока, а также к рекомбинации части ионов. Разогревание плазмы приводит также к увеличению давления в стволе. Поэтому часть ионов улетучивает в окружающее пространство.

Если не поддерживать образование новых зарядов, то произойдёт гашение дуги. Как мы уже выяснили, устойчивому горению сопутствуют 2 фактора: наличие напряжения между электродами и поддержание высокой температуры плазмы. Исключение одного из них, приведёт к гашению дуги.

Таким образом, можем сформулировать определение электрической дуги. А именно электрическая дуга — это вид искрового разряда, сопровождающегося большой плотностью тока, длительностью горения, малым падением напряжения на промежутке ствола, характеризующегося повышенным давлением газа, в котором поддерживается высокая температура.

Электрическая дуга отличается от обычного разряда большей длительностью горения.

Строение

Электрическая дуга состоит из трёх основных зон:

  • катодной;
  • анодной;
  • плазменного столба.

В сварочных дугах размеры катодной и анодной зоны незначительные, по сравнению с длиной столба. Толщина этих зон составляет тысячные доли миллиметра. В зоне катодного падения напряжения (на конце отрицательного электрода) наблюдается наличие катодных пятен, которые образуются в результате сильного нагревания.

На рисунке 4 изображена схема строения дуги, создаваемой сварочным аппаратом.

Рис. 4. Строение сварочной дуги

Обратите внимание: с целью достижения наглядности, на картинке сильно преувеличены электродные зоны. В действительности их толщина измеряется в микронах.

Читайте также  Почему кондиционер не работает на тепло?

Свойства

Высокая плотность тока в стволе электрической дуги определяет её главные свойства:

  1. Чрезвычайно высокую температуру плазменного ствола и околоэлектродных зон.
  2. Длительное горение, при поддержании условий образования ионов.

Эти свойства необходимо учитывать при борьбе с возникновением электрической дуги, так и при её применении в некоторых сферах.

Полезное применение

Как это ни странно, но физики нашли применение этому электрическому явлению ещё на этапе развития науки об электричестве. Пример тому – лампочка Яблочкова. Она состояла из двух угольных электродов, между которыми зажигалась электрическая дуга.

У этой лампы были два недостатка. Электроды быстро изнашивались (выгорали), а спектр света смещался в ультрафиолетовую зону, что негативно влияло на зрение. По этим причинам дуговые лампы не нашли широкого применения и их быстро вытеснили лампы накаливания, существующие до сегодняшнего дня.

Исключение составляют дугоразрядные лампы, а также мощные прожектора, используемые преимущественно в военных целях.
Дуговой разряд стал массово применяться на практике с момента изобретения сварочного аппарата. Дуговую сварку применяют для сварки металлов. (см. рис. 5)

Рис. 5. Дуговая сварка

Используя проводимость плазмы, включая в сварочную цепь специальные сварочные электроды, достигают высокой температуры в сосредоточенном пятне. Регулируя сварочный ток, сварщик имеет возможность настроить аппарат на нужную температуру дугового разряда. Для защиты ствола от тепловых потерь, металлические электроды покрыты специальной смесью, обеспечивающей стабильность горения.

Электрическую дугу применяют в доменных печах для плавки металлов. Дуговая плавка удобна тем, что можно регулировать её температуру путём изменения параметров тока.

Наряду с полезным применением, в электротехнике часто приходится бороться с дуговыми разрядами. Не контролированный дуговой разряд может нанести существенный вред на линиях электропередач, в промышленных и бытовых сетях.

Рис. 6. Дуговой разряд на ЛЭП

Причины возникновения

Исходя из определения, можем назвать условия возникновения электрической дуги:

  • наличие разнополярных электродов с большими токами;
  • создание искрового разряда;
  • поддержание напряжения на электродах;
  • обеспечение условий для сохранения температуры ствола.

Искровой разряд возникает в двух случаях: при кратковременном соприкосновении электродов или при приближении к параметрам пробоя. Мощный электрический пробой всегда зажигает ствол.

При сохранении оптимальной длины дуги температура плазмы поддерживается самостоятельно. Однако, с увеличением промежутка между электродами, происходит интенсивный теплообмен ствола с окружающим воздухом. В конце концов, в стволе, вследствие падения температуры, образование ионов лавинообразно прекратится, в результате чего произойдёт гашение пламени.

Пробои часто случаются на высоковольтных ЛЭП. Они могут привести к разрушению изоляторов и к другим негативным последствиям. Длинная электрическая дуга довольно быстро гаснет, но даже за короткое время горения её разрушительная сила огромна.

Дуга имеет склонность к образованию при размыкании контактов. При этом контакты выключателя быстро выгорают, электрическая цепь остаётся замкнутой до момента исчезновения ствола. Это опасно не только для сетей, но и для человека.

Способы гашения

Следует отметить, что гашение дуги происходит и по разным причинам. Например, в результате остывания столба, падения напряжения или когда воздух между электродами вытесняется сторонними испарениями, препятствующими ионизации.

С целью недопущения образования дуг на высоковольтных проводах ЛЭП, их разносят на большое расстояние, что исключает вероятность пробоя. Если же пробой между проводами всё-таки случится, то длинный ствол быстро охладится и произойдёт гашение.

Для охлаждения ствола его иногда разбивают на несколько составляющих. Данный принцип часто используют в конструкциях воздушных выключателей, рассчитанных на напряжения до 1кВ.

Некоторые модели выключателей состоят из множества дугогасительных камер, способствующих быстрому охлаждению.

Быстрой ионизации можно достигнуть путём испарения некоторых материалов, окружающих пространство подвижных ножей. Испарение под высоким давлением сдувает плазму ствола, что приводит к гашению.

Существуют и другие способы: помещение контактов в масло, автодутьё, применение электромагнитного гашения и др.

Воздействие на человека и электрооборудование

Электрическая дуга представляет опасность для человека своим термическим воздействием, а также ультрафиолетовым действием излучающего света. Огромную опасность таит в себе высокое напряжение переменных токов. Если незащищённый человек окажется на критически близком расстоянии от токоведущих частей приборов, может произойти пробой электричества с образованием дуги. Тогда на тело, кроме воздействия тока, окажет действие термической составляющей.

Распространение дугового разряда по конструктивным частям оборудования грозит выжиганием электронных элементов, плат и соединений.

Электрическая дуга и причины ее возникновения

  • Главная
  • Новости
  • Скачать
  • Статьи
  • Форум
  • Видео
  • Регистрация
  • Вход
  • Поиск
  • Добавить чертеж
  • Как добавить видео с youtube
  • Помощь
  • Реклама

Чертежи и проекты

Подразделы

Остекление балконов позволяет значительно сократить затраты на отопление квартиры в осенне-зимний период. Ведь конструкции из металлопластика не только весьма эстетичны, они также позволяют поддерживать наиболее приемлемый для вас температурный режим.

Возле Окружной Дороги, что на самой окраине Киева, располагается знаменитый «Обойный рынок». На нем любой покупатель может найти практически все, что нужно для строительства и ремонта.

Терасса или веранда всегда была объектом нападения капризов природы. До современного развития промышленности, в прошлом веке, при постройке не только терасс, но и домов использовали только дерево с каснем (в последствии с кирпичем). Но на сегодняшний день есть альтернатива, превозходящая по своем свойствам деревянную доску.

В фольклоре и литературе целого ряда балтийских стран, западно-европейских стран очень часто встречаются таинственные, загадочные персонажи — трубочисты.

Арт-квартал «Выше» – первый пригород комфорт-класса всего в 20 минутах от центра Тулы. Яркие цвета фасада, выделяют ЖК на фоне городского ландшафта. Новые жители уже наслаждаются живописными пейзажами из панорамных окон своих просторных квартир, гуляют по окружающим лугам, слушают пение птиц в лесу, парке на территории района. Это принципиально новый формат жизни в городе на природе.

Предлагаем ознакомиться с большим количеством материалов, которые помогут произвести установку различных конструкций. В каталоге представлена продукция множества производителей. Она поставляется в тубах, предназначенных для использования с монтажными пистолетами.

Если мы спросим среднестатистического человека на улице: «Выгодно ли в России, на широте Москвы, построить и эксплуатировать солнечную электростанцию?», он, скорее всего, ответит «НЕТ» и будет, в общем-то, прав. Отсутствие окупаемости связано даже не с относительно высокой стоимостью самих солнечных батарей (панелей)

Если раньше пределом мечты была отдельная квартира с чередой изолированных комнат, то сегодня создатели интерьеров охотно сносят перегородки, наполняя сквозные пространства воздухом и светом.

1. Общие положения

2. Назначение, основные технические характеристики высокочастотных заградителей

3. Устройство и принцип работы высокочастотных заградителей

4. Эксплуатация высокочастотных заградителей

5. Оперативное обслуживание высокочастотных заградителей

6. Охрана труда и пожарная безопасность

Система охлаждения предназначена для отвода тепла, создаваемого потерями энергии работающего АТ-1. Система охлаждения автотрансформатора комбинированная вида М/Д/ДЦ состоит из шестнадцати радиаторов, тридцати двух электровентиляторов, четырех маслонасосов (два рабочих и два резервных), четырех обратных клапанов КОП 150-40.

Электрическая дуга: свойства. Защита от воздействия электрической дуги

Электрическая дуга может быть крайне разрушительной для оборудования и, что более важно, представлять опасность для людей. Тревожное количество вызванных ею несчастных случаев происходит ежегодно, часто приводя к серьезным ожогам или смерти. К счастью, в электротехнической промышленности достигнут значительный прогресс в части создания средств и методов защиты от воздействия дуги.

Причины и места возникновения

Электрическая дуга является одной из самых смертоносных и наименее изученных опасностей электроэнергии и преобладает в большинстве отраслей промышленности. Широко признается, что чем выше напряжение электрической системы, тем больше риск для людей, работающих на территории или вблизи проводов и оборудования, находящихся под напряжением.

Тепловая энергия от вспышки дуги, однако, может на самом деле быть больше и возникать чаще при более низких напряжениях с теми же разрушительными последствиями.

Возникновение электрической дуги, как правило, происходит при случайном контакте между токоведущим проводником, таким как контактный провод троллейбусной или трамвайной линии с другим проводником, или заземленной поверхностью.

Что же такое электрическая дуга?

По сути, так в обиходе именуют хорошо известный в физике и электротехнике дуговой разряд – вид самостоятельного электроразряда в газе. Каковы же физические свойства электрической дуги? Она горит в широком диапазоне давления газа, при постоянном или переменном (до 1000 Гц) напряжении между электродами в диапазоне от нескольких вольт (сварочная дуга) до десятков киловольт. Максимальная плотность тока дуги наблюдается на катоде (10 2 -10 8 А/см 2 ), где она стягивается в катодное пятно, очень яркое и малое по размерам. Оно беспорядочно и непрерывно перемещается по всей площади электрода. Температура его такова, что материал катода в нем кипит. Поэтому возникают идеальные условия для термоэлектронной эмиссии электронов в прикатодное пространство. Над ним образуется небольшой слой, заряженный положительно и обеспечивающий ускорение эмитируемых электронов до скоростей, при которых они ударно ионизируют атомы и молекулы среды в межэлектродном промежутке.

Читайте также  Обогрев водосточной системы греющим кабелем

Такое же пятно, но несколько большее и малоподвижное, формируется и на аноде. Температура в нем близкая к катодному пятну.

Если ток дуги порядка нескольких десятков ампер, то из обоих электродов вытекают с большой скоростью нормально к их поверхностям плазменные струи или факелы (см. на фото ниже).

При больших токах (100-300 А) возникают добавочные плазменные струи, и дуга становится похожей на пучок плазменных нитей (см. на фото ниже).

Как проявляет себя дуга в электрооборудовании

Как было сказано выше, катализатором ее возникновения является сильное тепловыделение в катодном пятне. Температура электрической дуги, как уже упоминалось, может достигать 20 000 °С, примерно в четыре раза выше, чем на поверхности солнца. Этот зной может быстро расплавить или даже испарить медь проводников, которая имеет температуру плавления около 1084 °С, намного ниже, чем в дуге. Поэтому в ней часто образуются пары меди и брызги расплавленного металла. Когда медь переходит из твердого состояния в пар, она расширяется в несколько десятков тысяч раз от своего первоначального объема. Это эквивалентно тому, что кусочек меди в один кубический сантиметр изменится до размера 0,1 кубометра в доли секунды. При этом возникнет давление высокой интенсивности и звуковые волны, распространяющиеся вокруг с большой скоростью (которая может быть свыше 1100 км в час).

Воздействие электрической дуги

Тяжелые травмы, и даже со смертельным исходом, при ее возникновении могут получить не только лица, работающие на электрооборудования, но и люди, находящиеся поблизости. Дуговые травмы могут включать в себя внешние ожоги кожи, внутренние ожоги от вдыхания горячих газов и испаренного металла, повреждения слуха, зрения, такие как слепота от ультрафиолетового света вспышки, а также многие другие разрушительные повреждения.

При особо мощной дуге может также произойти такое явление, как ее взрыв, создающий давление более 100 килопаскалей (кПа) с выбросом частиц мусора, подобных шрапнели, со скоростью до 300 метров в секунду.

Лица, перенесшие воздействия электрического тока электрической дуги, могут нуждаться в серьезном лечения и реабилитации, а цена их травм может быть экстремальной — физически, эмоционально и финансово. Хотя законодательство требует от предприятий проведения оценки рисков для всех видов трудовой деятельности, однако риск поражения электрической дугой часто упускается из виду, потому что большинство людей не знают, как оценивать и эффективно управлять этой опасностью. Защита от воздействия электрической дуги предполагает использование целого комплекса средств, включая применение при работе с электрооборудованием, находящимся под напряжением, специальных электрозащитных средств, спецодежды, а также самого оборудования, прежде всего высоко- низковольтных коммутационных электроаппаратов, сконструированных с применением средств гашения дуги.

Дуга в электрических аппаратах

В этом классе электротехнических устройств (автоматические выключатели, контакторы, магнитные пускатели) борьба с данным явлением имеет особое значение. Когда контакты выключателя, не оборудованного специальными устройствами для предотвращения дуги, размыкаются, то она обязательно зажигается между ними.

В момент, когда контакты начинают отделяться, площадь последних уменьшается быстро, что приводит к увеличению плотности тока и, следовательно, к повышению температуры. Выделяемого тепла в промежутке между контактами (обычная среда масло или воздух) достаточно для ионизации воздуха или испарения и ионизации масла. Ионизированный воздух или пар действует как проводник для тока дуги между контактами. Разность потенциалов между ними весьма мала, но ее достаточно для поддержания дуги. Следовательно, ток в цепи остается непрерывным тех пор, пока дуга не устранена. Она не только задерживает процесс прерывания тока, но также генерирует огромное количество теплоты, которое может привести к повреждению самого выключателя. Таким образом, главная проблема в выключателе (прежде всего высоковольтном) – это гашение электрической дуги в кратчайшие сроки для того, чтобы выделяемое в ней тепло не могло достичь опасного значения.

Факторы поддержания дуги между контактами выключателей

К ним относятся:

1. Напряжение электрической дуги, равное разности потенциалов между контактами.

2. Ионизированные частицы между ними.

Принимая это, отметим дополнительно:

  • Когда между контактами имеется небольшой промежуток, даже небольшой разности потенциалов достаточно для поддержания дуги. Одним из способов ее гашения является разделение контактов на такое расстояние, что разность потенциалов становится недостаточной для поддержания дуги. Тем не менее этот метод является практически неосуществимым в высоковольтном оборудовании, где может потребоваться разделение на многие метры.
  • Ионизированные частицы между контактами, как правило, поддерживают дугу. Если ее путь деионизирован, то процесс гашения будет облегчен. Это может быть достигнуто путем охлаждения дуги или удаления ионизированного частиц из пространства между контактами.
  • Есть два способа, посредством которых осуществляется защита от электрической дуги в выключателях:

— метод высокого сопротивления;

— метод нулевого тока.

Гашение дуги увеличением ее сопротивления

В этом методе сопротивление на пути дуги растет с течением времени так, что ток уменьшается до значения, недостаточного для ее поддержания. Следовательно, он прерывается, и электрическая дуга гаснет. Основной недостаток этого метода состоит в том, что время гашения достаточно велико, и в дуге успевает рассеиваться огромная энергия.

Сопротивление дуги может быть увеличена путем:

  • Удлинения дуги – сопротивление дуги прямо пропорциональна ее длине. Длина дуги может быть увеличена за счет изменения зазора между контактами.
  • Охлаждением дуги, точнее среды между контактами. Эффективное охлаждение обдувом должно быть направлено вдоль дуги.
  • Помещением контактов в трудноионизируемую газовую среду (газовые выключатели) или в вакуумную камеру (вакуумные выключатели).
  • Снижением поперечного сечения дуги путем ее пропускания через узкое отверстие, или снижением площади контактов.
  • Разделением дуги — ее сопротивление может быть увеличено путем разделения на ряд небольших дуг, соединенных последовательно. Каждая из них испытывает действие удлинения и охлаждения. Дуга может быть разделена путем введения некоторых проводящих пластин между контактами.

Гашение дуги методом нулевого тока

Этот метод используется только в цепях переменного тока. В нем сопротивление дуги сохраняется низким, пока ток не снижается до нуля, где она гаснет естественным путем. Ее повторное зажигание предотвращается несмотря на увеличение напряжения на контактах. Все современные выключатели больших переменных токов используют этот метод гашения дуги.

В системе переменного тока последний падает до нуля после каждого полупериода. В каждое такое обнуление дуга гаснет на короткое время. При этом среда между контактами содержит ионы и электроны, так что ее диэлектрическая прочность небольшая и может быть легко разрушена растущим напряжением на контактах.

Если это происходит, электрическая дуга будет гореть в течение следующего полупериода тока. Если сразу же после его обнуления диэлектрическая прочность среды между контактами растет быстрее, чем напряжение на них, то дуга не зажжется и ток будет прерван. Быстрое увеличение диэлектрической прочности среды вблизи нуля тока может быть достигнуто путем:

  • рекомбинации ионизированных частиц в пространстве между контактами в нейтральные молекулы;
  • удалением ионизированных частиц прочь и заменой их нейтральными частицами.

Таким образом, реальной проблемой в прерывании переменного тока дуги является быстрая деионизация среды между контактами, как только ток становится равным нулю.

Способы деионизация среды между контактами

1. Удлинение зазора: диэлектрическая прочность среды пропорциональна длине зазора между контактами. Таким образом, при быстром размыкании контактов может быть достигнута и более высокая диэлектрическая прочность среды.

2. Высокое давление. Если оно в непосредственной близости от дуги, увеличивается, плотность частиц, составляющих канал дугового разряда, также растет. Повышенная плотность частиц приводит к высокому уровню их деионизации и, следовательно, диэлектрическая прочность среды между контактами увеличивается.

3. Охлаждения. Естественная рекомбинация ионизированных частиц происходит быстрее, если они остывают. Таким образом, диэлектрическая прочность среды между контактами может быть увеличена путем охлаждения дуги.

4. Эффект взрыва. Если ионизированные частицы между контактами сметены прочь и заменены неионизированными, то диэлектрическая прочность среды может быть увеличена. Это может быть достигнуто с помощью газового взрыва, направленного в зону разряда, или впрыскиванием масла в межконтактное пространство.

В таких выключателях в качестве среды гашения дуги используется газ гексафторид серы (SF6). Он имеет сильную тенденцию поглощать свободные электроны. Контакты выключателя открываются в потоке высокого давления SF6) между ними (см. рисунок ниже).

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: