Генератор тока на операционном усилителе - ELSTROIKOMPLEKT.RU

Генератор тока на операционном усилителе

ElectronicsBlog

Обучающие статьи по электронике

Генераторы на ОУ: мультивибраторы

Всем доброго времени суток! Прошлая статья была посвящена компараторам и триггерам Шмитта на операционных усилителях. Я упоминал, что они служат основой для построения различных видов генераторов колебаний. Среди всех типов генерируемых сигналов можно выделить четыре основных формы импульса: прямоугольная, треугольная, пилообразная и синусоидальная. В соответствии с этими формами импульса получили названия и генераторы сигналов.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Принцип построения импульсных генераторов на ОУ

В предыдущих статьях я рассказывал об импульсных генераторах с различной формой импульсов, выполненных на транзисторах. Для простых устройств их, возможно, применять, но для создания сложных устройств с регулировкой различных параметров их схемы оказываются неоправданно трудоёмкими в настройке и разработке. Поэтому для упрощения схемотехнической реализации применяют генераторы импульсов в основе, которых лежат операционные усилители.

В общем случае для получения импульсов различной формы требуется замкнутая система, которая состоит из трёх основных частей: интегратора, компаратора и логической схемы.


Блок-схема генератора колебаний различной формы.

Хотя схема состоит из трех частей, но довольно часто в простых генераторах применяют один-два операционных усилителя. Для повышения гибкости и универсальности схем генераторов можно добавлять дополнительные ОУ.

Первой рассматриваемым генератором будет мультивибратор, то есть генератор прямоугольных импульсов.

Автоколебательный мультивибратор на ОУ

Автоколебательный мультивибратор или просто мультивибратор называют генератор прямоугольных импульсов. В его основе лежит триггер Шмитта или компаратор с гистерезисом, но в отличие от триггера напряжение в мультивибраторе формируется интегрирующей цепочкой R1C1. Ниже приведена схема мультивибратора на ОУ


Схема автоколебательного мультивибратора на операционном усилителе.

Данный мультивибратор состоит из операционного усилителя DA1, который охвачен положительной обратной связью через резисторы R2R3 и отрицательной обратной связью при помощи интегрирующей цепочки R1C1.

Рассмотрим работу мультивибратора. В основе работы мультивибратора лежит триггер Шмитта, который создается ПОС при помощи резисторов R2R3. Так как опорное напряжение триггера равно нулю, то напряжение верхнего порогового уровня будет равно

а нижнего порога переключения триггера

Таким образом, в момент подачи питания конденсатор полностью разряжен, то есть на инвертирующем входе ОУ напряжение равно нулю. В тоже время на выходе ОУ, вследствие неидеального ОУ, присутствует некоторое положительное напряжение, часть которого через ПОС R2R3 поступает на неинвертирующий вход ОУ. Далее происходит усиление этого напряжения и на выходе ОУ происходит дальнейший рост напряжения.

Напряжение с выхода ОУ поступает также через цепочку R1C1, но вследствие того, что интегрирующая цепочка задерживает сигнал, то рост напряжения на конденсаторе С1, а следовательно и на инвертирующем входе будет происходить медленнее, чем на неинвертирующем. И в результате разность напряжений на инвертирующем и неинвертирующем входе будет расти, а следовательно будет происходить рост выходного напряжения.

В некоторый момент времени напряжение на конденсаторе UC (а также на инвертирующем входе) достигнет напряжения верхнего порогового уровня UВП триггера Шмитта и выходное напряжение UВЫХ скачком станет равным отрицательному напряжению насыщения UНАС-. В результате чего ток через резистор R1 изменится на противоположный, а конденсатор С1 начнёт разряжаться. Разряд конденсатора будет происходить до напряжения нижнего порога переключения UВП триггера. После этого также скачкообразно произойдёт переключение выходного напряжения с отрицательного насыщения к положительному напряжению насыщения UНАС+ триггера Шмитта. Данные переключения иллюстрирует график расположенный ниже


График напряжений в мультивибраторе: на выходе мультивибратора (верхний) и на конденсаторе С1 (нижний).

Частота выходных импульсов мультивибратора зависит от постоянной времени интегрирующей цепочки R1C1, а также от ширины петли гистерезиса и в общем случае определяется следующим выражением

Не трудно заметить, что при

В случае равенства сопротивлений резисторов в цепи ПОС R2 и R3 соотношения будут выглядеть следующим образом

Улучшение параметров мультивибратора

Стабильность частоты амплитуды генерирования простого мультивибратора, изображённого в начале статьи, во многом определяется стабильностью характеристик насыщения операционного усилителя, поэтому для улучшения параметров выходных импульсов (длительности и амплитуды) необходимо обеспечить стабильность амплитуды выходных импульсов и постоянной времени цепочки R1C1. Ниже приведена схема мультивибратора, в которой сведены к минимуму недостатки предыдущей схемы.


Улучшенная схема мультивибратора.

В данной схеме мультивибратора введены дополнительные элементы: входные резисторы R1 и R3, повышающие входное сопротивление ОУ и двухсторонний параметрический стабилизатор R4VD1VD2, стабилизирующий амплитуду выходных импульсов. Введение резисторов R1 и R3 связано с тем, чтобы увеличить входное сопротивление ОУ, так как они снабжены защитой по входам при больших дифференциальных сигналах. Их величина выбирается на порядок больше, чем сопротивление резисторов R5 и R6 и имеет порядок сотен килом.

Ещё большего улучшения параметров мультивибратора можно добиться, если резистор в интегрирующей RC цепочке заметить транзисторным генератором тока.

Если ставится задача получения несимметричного мультивибратора, то резистор в цепи ООС заменяется двумя параллельными диодно-резисторными цепями, что изображено на рисунке ниже


Схема несимметричного мультивибратора на операционном усилителе.

Ждущий мультивибратор (одновибратор)

Ждущий мультивибратор в отличие от автоколебательного на выходе формирует одиночный импульс под действием входного сигнала, причём длительность выходного импульса зависит от номиналов элементов обвязки операционного усилителя. Схема ждущего мультивибратора показана ниже


Схема ждущего мультивибратора (одновибратора) на операционном усилителе.

Ждущий мультивибратор состоит из операционного усилителя DA1, цепи ПОС на резисторах R4R5, цепи ООС VD1C2R3 и цепи запуска C1R1VD2.

Цикл работы ждущего мультивибратора можно условно разделить на три части: ждущий режим, переход из ждущего режима в состояние выдержки и непосредственно состояние выдержки. Рассмотрим цикл работы мультивибратора подробнее.

Ждущий режим является основной и наиболее устойчивой частью цикла работы данного типа мультивибратора, так как самопроизвольно он не может перейти в следующие части цикла работы ждущего мультивибратора. В данном состоянии на выходе мультивибратора присутствует положительное напряжение насыщения ОУ (UНАС+), которое через цепь ПОС R4R5 частично поступает на неинвертирующий вход ОУ, тем самым задавая пороговое напряжение переключения мультивибратора (UПП), которое определяется следующим выражением

На инвертирующем входе ОУ присутствует напряжение, которое задаётся диодом VD1 (в случае кремневого диода напряжение примерно равно 0,6 – 0,7 В), то есть меньше порога переключения мультивибратора. При данных условиях ждущий мультивибратор может находиться неограниченно долгое время (до тех пор, пока не поступит запускающий импульс).

Переход из ждущего режима в состояние выдержки, является следующей частью цикла работы ждущего мультивибратора и начинается после того, как на вход поступит импульс отрицательной полярности, амплитуда которого превысит двухкратное значение напряжения переключения ждущего мультивибратора. То есть минимальная амплитуда входного напряжения (UВХ min) должна быть равна

В этом случае напряжение порога переключения ждущего мультивибратора понизится и станет меньше, чем напряжение падения на диоде VD1. Далее произойдёт лавинообразный процесс переключения выходного напряжения и на выходе установится напряжение отрицательного насыщение ОУ (UНАС-) и ждущий мультивибратор перейдёт в состояние выдержки. При выборе номиналов элементов входной цепи C1 и R1 надо исходить из того, что конденсатор С1 должен полностью разрядиться за время действия входного импульса, то есть постоянная времени цепи C1R1 должна быть на порядок (в десять раз) меньше длительности входного импульса.

Заключительная часть цикла работы ждущего мультивибратора является состояние выдержки. В данном состоянии на неинвертирующий вход поступает часть напряжения с выхода мультивибратора, тем самым задавая пороговое напряжение перехода мультивибратора в ждущий режим. В тоже время выходное напряжение через цепь ООС C1R1 поступает на инвертирующий вход и открывает диод VD1, через который начинает разряжаться конденсатор С1. После разряда конденсатора С1 до 0 В происходит его зарядка через резистор R1 до напряжения перехода мультивибратора в ждущий режим. После чего схема переходит в исходное состояние и на выходе устанавливается напряжение положительного насыщения ОУ (UНАС+). Длительность состояния выдержки и непосредственно формируемого выходного импульса определяется временем зарядка конденсатора С1 через резистор R1 и в общем случае определяется следующим выражением

Так как ждущий мультивибратор имеет только одно устойчивое состояние, то за ним закрепилось название одновибратора.

Для того чтобы одновибратор вырабатывал положительные импульсы при положительных управляющих входных сигналах необходимо изменить полярность включения диодов VD1 и VD2.

Читайте также  Как опрессовать интернет кабель?

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Источник тока на ОУ и транзисторе

Предлагаем очень несложную конструкцию аналогового генератора постоянного тока общего назначения, с использованием легко доступных компонентов. Это действительно простая схема, которую легко собрать, и она очень полезна, особенно если вы хотите провести эксперименты с мощными светодиодами и так далее. Вот полная схема аналогового генератора постоянного тока. Схемотехника и теория работы просты и понятны.

Схема аналогового источника постоянного тока

Поскольку это источник постоянного тока, то есть своеобразная электронная нагрузка, он адаптирован для работы со слаботочным независимым блоком питания 12 В. Силовая часть схемы — это доступный мощный полевой МОП-транзистор IRF3205, рассматриваемый как переменный резистор. Обратите внимание, что силовой полевой транзистор можно также использовать в линейном (а не переключающем) режиме, и тогда он обычно рассматривается как переменный резистор.

Следующим ключевым элементом в этой схеме является трехконтактный программируемый диод шунтирующего стабилизатора TL431A. Также есть микросхема маломощного двойного операционного усилителя — LM358.

Принцип работы источника тока на ОУ

Принцип работы аналогового источника тока: когда нагрузка постоянного тока находится под напряжением, на силовом резисторе 1 Ом (R4) создается небольшое напряжение, которое подается на инвертирующий вход (контакт 2) IC1. Это положительное напряжение инвертируется IC1, уменьшая напряжение на выходе (вывод 1), что дополнительно снижает напряжение на R4 через T1. Это стабилизирует выходное напряжение до значения, которое окажется на его неинвертирующем входе (вывод 3). Любое изменение тока через R4 вызывает изменение напряжения на выводе 2, которое точно компенсируется отрицательной обратной связью. В результате через силовой резистор и подключенную нагрузку протекает постоянный ток.

Опорное напряжение составляет около 2,5 В, использовалась TL431A (VR1) в качестве источника опорного напряжения, потому что микросхема была под рукой. Также можно попробовать другие, более дешевые идеи создания постоянного опорного напряжения. Потенциометр 10K (TM1) предназначен для точной настройки тока, и, следовательно, 10-оборотный точный многооборотный подстроечный резистор был бы лучше, чем обычный, который использовался в данном случае.

Обратите внимание, что когда через R4 протекает ток 1 А, на нём будет 1 В. И максимальное опорное напряжение, которое может видеть IC1, будет около 1,2 В. Опорное напряжение 2,5 В дополнительно уменьшено цепью резисторов R2 — TM1 примерно до 1,2 В.

Далее была сделана быстрая тестовая версия на макетной плате. Стоит обратить внимание на то, что эту схему довольно легко заставить возбуждаться, а это нежелательно и может затруднить точную регулировку тока нагрузки. Более того, силовой резистор 1 Ом должен рассеивать довольно много энергии, да и силовой полевой транзистор должен использоваться с подходящим радиатором.

Испытания собранного устройства

Сначала тестировался прототип с белым светодиодом 12 В / 10 Вт, и подключенный осциллограф показывает, что нет никаких лишних колебаний. А затем тестировался до 12 А, используя старый резистор 0,1 Ом / 20 Вт вместо резистора по схеме 1 Ом / 5 Вт. Конечно также поменян радиатор на более мощный. По паспортным данным транзистор IRF3205 может выдерживать ток 100 А, но при достаточном охлаждении.

Теперь о нескольких вещах, которые необходимо учесть при сборке. Во-первых, для схемы генератора постоянного тока следует использовать отдельный источник питания 12 В. Затем, если решите использовать другой операционный усилитель, то выберите ОУ с питанием от шины к сети, поскольку он будет лучше, чем операционный усилитель LM358, который использовался тут. Кроме того, важно уделять внимание номинальным характеристикам компонентов в цепи силовой электроники. Неправильный выбор может привести к серьезным бедствиям, таким как перегрев.

Если что, можете заменить опорное напряжение аналоговым (или широтно-импульсным сигналом с цифровым управлением). Это более условно и легче для понимания, поэтому я не буду сейчас вдаваться в подробности. В таких случаях неиспользуемый второй операционный усилитель будет выступать в качестве буфера с единичным усилением — повторитель напряжения. Входное сопротивление буфера операционного усилителя очень высокое, а выходное очень низкое. Такое включение помогает решить проблемы согласования сопротивлений. Такое включение помогает решить проблемы согласования сопротивлений.

Практические схемы токовых нагрузок

На базе операционного усилителя и полевого транзистора и делают большинство схем источников тока или токовых нагрузок. Практические примеры конструкций смотрите далее.

Как правильно выбрать резистор для LED, а также способы питания светодиодов.

Самодельный регулируемый источник напряжения 1,4 — 30 В и тока до 3 А на основе м/с LM2596.

Высококачественный усилитель для электрогитары — полное руководство по сборке и настройке схемы на JFET и LM386.

ФУНКЦИОНАЛЬНЫЕ ГЕНЕРАТОРЫ НА ОУ В УСТРОЙСТВАХ НА МИКРОСХЕМАХ

Функциональные генераторы предназначены для синхронного формирования сигналов синусоидальной, прямоугольной и пилообразной формы в области частот, обычно не превышающей единиц мегагерц.

Функциональный генератор или генератор, способный одновременно генерировать сигналы прямоугольной и пилообразной формы, обычно состоит из двух частей (рис. 36.1):

♦ неинвертирующего триггера Шмитта на микросхеме DA1;

♦ интегратора на микросхеме DA2.

Интегратор на микросхеме DA2 интегрирует напряжение, снимаемое с выхода триггера Шмитта на микросхеме DA1. Напряжение на выходе интегратора нарастает (прямой ход «пилы»). Когда выходное напряжение интегратора превысит порог переключения триггера Шмитта, происходит его скачкообразное переключение, напряжение на выходе триггера сменит знак.

Напряжение на выходе интегратора начнет изменяться в обратную сторону (спадающий участок «пилы»). Спад напряжения происходит до тех пор, пока это напряжение не сравняется со вторым, нижним, порогом срабатывания триггера Шмитта. Произойдет очередное его переключение, и процесс будет периодически повторяться.

Период генерируемых колебаний можно вычислить из приближенного выражения

Таким образом, частота генерируемых сигналов прямо пропорционально ‘ зависит от произведения RC-элементов интегрирующей цепочки R3C1 и не зависит от напряжения питания. С выходов генератора можно одновременно снимать сигналы прямоугольной и треугольной формы.

Несколько усложнив схему функционального генератора, можно получить на его выходе сигнал и синусоидальной формы. Обычно для

получения такого сигнала используют сигнал треугольной формы с его последующей обработкой.

Функциональный генератор по типовой схеме (рис. 36.2) выполнен двух операционных усилителях в однокорпусном исполнении

[36.1]. При С 1=4,7 нФ частота генерации — 30 кГц, при 0=47 нФ —

20 Гц. Напряжение питания генератора может варьироваться в пределах 4,5—18 В.

Функциональный генератор (рис. 36.3) при изменении величины управляющего напряжения в пределах от 0,25 до 50 В синхронно изменяет частоту выходных сигналов прямоугольной и пилообразной формы в пределах от 700 Гц до 100 кГц [36.2].

Рис. 36.3. Схема широкодиапазонного функционального генератора на основе компараторов LM 7 93

Регулируемый функциональный генератор (рис. 36.4) выполнен на трех одинаковых операционных усилителях, например, типа LM148, собранных в одном корпусе для компактности [36.3]. Генератор способен вырабатывать одновременно пилообразные и прямоугольные импульсы, форму которых (А) и (В) можно ступенчато менять, пользуясь переключателем S1. Соотношение времен Т1 и Т2 определяется соотношением коммутируемых переключателем S1 резисторов, например, R:R/100. Периоды времен Т1 и Т2 определяются как T1=2RC и T2=RC/50.

Учитывая высокую актуальность функциональных генераторов, были созданы специализированные микросхемы таких генераторов. Примером функционального генератора является микросхема ICL8038 фирмы Harris Semiconductor.

Генератор, выполненный по типовой схеме включения (рис. 36.5), при варьировании номиналов RC-элементов способен работать в диапазоне частота 0,001 Гц — 300 кГц. Искажения формы синусоидального сигнала не превышают 1 %. Ширину прямоугольного (треугольного) импульса можно регулировать в пределах 2—98 %.

Рис. 36.5. Типовое включение микросхемы ICL8038 в качестве функционального генератора

Напряжение питания ±(5—15) В при двуполярном питании или 10—30 В — при однополярном. Потребляемый микросхемой ток не превышает 20 мА (номинальный — 12 мА) при напряжении питания ±10 В. Амплитуда выходного напряжения треугольной формы на сопротивлении нагрузки 100 кОм достигает 1/3 от напряжения питания, для сигнала синусоидальной формы — до 0,22 от напряжения питания.

Варианты подключения внешних элементов регулировки режима работы микросхемы ICL8038 приведены на рис. 36.6.

При использовании микросхемы ICL8038 (рис. 36.7) удобно

Рис. 36.6. Варианты подключения резистивных элементов к микросхеме ICL8038

Рис. 36.7. Вариант включения микросхемы ICL8038 с частотной модуляцией генерируемых сигналов

Читайте также  Как самому сделать лазерный уровень?

осуществлять частотную модуляцию генерируемых сигналов. Используя эту особенность микросхемы несложно создать генератор сигналов прямоугольной, треугольной и синусоидальной формы, одновременно управляемых уровнем внешнего напряжения.

Для уменьшения искажений сигнала синусоидальной формы применяют регулировки, предусмотренные схемным решением, представленным на рис. 36.8.

Рис. 36.8. Схема включения микросхемы ICL8038 с минимизацией искажения сигнала синусоидальной формы

Для того чтобы повысить нагрузочную способность генератора используют схему, показанную на рис. 36.9. Использован обычный буферный каскад, который можно использовать для каждого из выходов функционального генератора. Сопротивление нагрузки определяется выбором

микросхемы ОУ; для приведенного случая сопротивление нагрузки не должно быть менее 1 кОм.

Рис. 36.9. Схема функционального генератора на микросхеме ICL8038 с повышенной нагрузочной способностью для сигнала синусоидальной формы

Рис. 36Л0. Схема функционального генератора на микросхеме ICL8038 с регулировкой частоты от 20 Гц до 20 кГц

Практическая схема широкодиапазонного функционального генератора, перекрывающего весь диапазон звуковых частот, приведена на рис. 36.10. Потенциометром R7 минимизируют искажения сигнала синусоидальной формы. Потенциометр R3 предназначен для регулировки соотношения импульс/ пауза (или симметрии) генерируемых сигналов. Потенциометром R10 регулируют частоту генерируемых сигналов.

Аддитивный формирователь сигналов треугольной формы

Электрические сигналы треугольной формы обычно получают при использовании зарядно-разрядных процессов в RC-цепочках. В работах [36.4—36.6] описан и проанализирован [36.7] принцип формирования сигналов треугольной формы путем противофазного сложения выпрямленных с использованием двухполупериодных выпрямителей сигналов синусоидальной формы, сдвинутых между собой на угол 90°. Ниже приведен вариант практической реализации перестраиваемого по частоте генератора сигналов треугольной формы, использующий данный принцип синтеза.

На микросхемах DA1—DA3 собран LR-генератор сигналов синусоидальной формы, с выходов которого снимаются сдвинутые по фазе на угол 90° сигналы (точки А и В). Эти сигналы подаются на входы двух прецизионных выпрямителей, выполненных на микросхемах DA4, DA5 и DA6, DA7, соответственно. Сигналы с выходов выпрямителей (точки С и D) смешиваются на резистивном сумматоре-делителе напряжения R13, R15, R16 (точка Е). Выходной сигнал (точка Е) имеет треугольную форму с отклонением от линейности до 3 %.

Рабочая частота генератора определяется номиналами частотозадающих цепей — индуктивностей LI, L2, сдвоенного потенциометра R9, R10 и резисторов R7, R8. Для указанных номиналов диапазон частоты перестройки составляет 3300—4000 Гц.

Ступенчато изменить частотный диапазон работы можно переключением катушек индуктивности LI, L2. При расширении диапазона перестройки путем дальнейшего изменения соотношения элементов

Рис. 36.11. Схема беземкостного перестраиваемого генератора сигналов треугольной формы

R7/R9=R8/R10 становится заметной выраженная зависимость амплитуды выходного сигнала от частоты. Для исключения этого недостатка необходимо либо сузить диапазон перестройки генератора, либо использовать промежуточные усилители с автоматической регулировкой усиления.

При создании функциональных генераторов традиционно используют генератор прямоугольных импульсов, к выходу которого подключают формирователь треугольного напряжения, основанный на зарядно-разрядных процессах. Затем сигнал треугольной формы преобразуют в подобие синусоидального, выделяя из нее первую гармонику [36.8]. Недостатки таких схемных решений очевидны: это явно выраженная нелинейность зарядноразрядных процессов, особенно заметная при перестройке частоты генератора и заметные искажения синусоидального сигнала в результате некачественной фильтрации высших гармоник сложного сигнала.

Ниже описан функциональный генератор, формирование сигналов в котором происходит в обратной последовательности. Вначале формируется сигнал синусоидальной формы, который затем преобразуется в сигнал треугольной формы [36.4—36.6], а из последнего получают биполярный сигнал прямоугольной формы [36.9].

Практическая схема инверсного функционального генератора представлена на рис. 36.12. Устройство содержит генератор сигналов синусоидальной формы (микросхемы DA1—DA3), вырабатывающий сигналы, сдвинутые по фазе на 90°. Эти сигналы подаются на удвоитель частоты С. И. Семенова [36.5] — прецизионные двухполупериодные выпрямители (микросхемы DA4, DA5 и DA9, DA10), выходные сигналы которых складываются в противофазе, формируя тем самым сигнал треугольной формы. Сигнал треугольной формы поступает затем на схему формирования биполярных импульсов прямоугольной формы (микросхемы DA6—DA8).

Диаграммы сигналов в различных точках устройства показаны на рис. 36.12.

Генератор работает в диапазоне частот: для сигналов синусоидальной формы — 50—500 Гц, для сигналов треугольной и прямоугольной формы (с удвоением исходной частоты) — 100—1000 Гц. Рабочую частоту плавно меняют перестройкой сдвоенного потенциометра R9, R10. Ступенчатое переключение диапазона генерируемых частот вплоть до субгерцовых может быть обеспечено переключением частотозадающих конденсаторов С2 и СЗ. Так, при уменьшении емкостей конденсаторов С2 и СЗ в 10 раз, т. е. до 3,3 нФ, диапазон генерируемых частот составляет 1000—10000 Гц по пилообразному и прямоугольному сигналам; по синусоидальному — 500—5000 Гц.

Шустов М. А., Схемотехника. 500 устройств на аналоговых микросхемах. — СПб.: Наука и Техника, 2013. —352 с.

Мощные генераторы тока на операционных усилителях Текст научной статьи по специальности « Электротехника, электронная техника, информационные технологии»

Похожие темы научных работ по электротехнике, электронной технике, информационным технологиям , автор научной работы — Галалу В. Г., Силаева О. А., Хало П. В.

Текст научной работы на тему «Мощные генераторы тока на операционных усилителях»

В то же время расчеты по Алгоритму 3 не удовлетворяют ограничению (23) из-за значительных инструментальных погрешностей (см. табл. 4-7).

Из проведенных оценок следует, что:

1) при наличии 10% ограничения (22) на рост погрешности вычислений нужно выбирать Алгоритм 3 с параметрами (26), так как по сравнению с Алгоритмом 2 при близких погрешностях для его реализации требуются меньшие затраты времени и памяти;

2) когда действует 1% ограничение на рост погрешности вычислений (23), применение Алгоритма 3 невозможно из-за высоких погрешностей и следует реализовать Алгоритм 2, описываемый параметрами (25).

В завершение заметим, что изложенная методика проектирования алгоритмов вычисления среднеквадратического значения может быть использована при моделировании сигнала z(t) не только гармоническими сигналами.

1. Датчики теплофизических и механических параметров: Справочник в трех томах. T.II. Под общ. ред. Ю.Н. Коптева,; Под ред. Е.Е.Багдатьева, А.В. Гориша, Я.В. Малкова. — М.: ИПРЖР, 1999. -688 с.: ил.

2. Шлетт М. Тенденции индустрии встроенных микропроцессоров // Открытые системы. 1998. № 6.

3. Пьявченко О.Н. Конечно-разностные методы решения обыкновенных дифференциальных уравнений в микрокомпьютерах: Учебное пособие. -Таганрог. Изд-во ТРТУ, 2000. -96 с.

В.Г. Галалу, О.А. Силаева, П.В. Хало МОЩНЫЕ ГЕНЕРАТОРЫ ТОКА НА ОПЕРАЦИОННЫХ УСИЛИТЕЛЯХ

Необходимость в использовании мощных управляемых генераторов тока (ГТ) возникает при измерении малых активных сопротивлений, например обмоток мощных электрических машин, в прецизионных отклоняющих системах для пузырьковых камер, в магнитотерапии и в ряде других областей. Достаточно простые схемные решения формирования двуполярного выходного тока для заземлённой нагрузки получаются при использовании операционных усилителей, охваченных положительной и отрицательной обратной связью [1,2]. При этом предпочтение следует отдать схемам, в которых не используются дополнительные внешние транзисторы, так как они ограничивают диапазон выходных токов и вносят дополнительные нелинейные искажения [1].

Широкое распространение получила схема генератора тока Хауленда-Галалу, на одном операционном усилителе и пяти внешних резисторах. При равных коэффициентах передачи по цепям положительной и отрицательной обратной связи выходное сопротивление схемы стремится к бесконечности [2]. К недостаткам этой схемы относится сильная зависимость выходного сопротивления от точности подбора резисторов и их температурного коэффициента. Проблема может быть решена при использовании усилителей, имеющих встроенные матрицы резисторов.

Рассмотрим возможности формирования выходных токов ±100-500мА. Очевидно, что в выходном каскаде необходимо использовать мощный операционный усилитель с выходным током не менее 1А. На рис.1 представлена схема генератора тока на двух операционных усилителях, причем мощный усилитель OPA548T охвачен 100% отрица-

тельной обратной связью. Инструментальный усилитель РОЛ204 имеет встроенную матрицу резисторов и управляемый кодом коэффициент усиления [3].

Значение генерируемого тока определяется из следующего выражения: 1=ивх/Кос-0, где Ивх — входное напряжение преобразователя, а О — коэффициент усиления инструментального усилителя.

В табл. 1 представлены рекомендуемые значения сопротивлений Roc и коэффициентов усиления G для различных токов при входном сигнале ± 5В и выходном напряжении до ± 10В.

1н, тЛ ± 100 ± 250 ± 500

Ян, ^ 0 1 0 О 0-40 0-20

Другой вариант формирования мощных токов представлен на рис.2. В этой схеме инструментальный усилитель включён в цепь отрицательной обратной связи [1]. Анализ схемы показывает, что по отношению к сопротивлению Яп она аналогична предыдущей.

В табл. 2 представлены значения рекомендуемых сопротивлений обратной связи и коэффициентов усиления для требуемых токов от 100 до 500 мА и входного сигнала ±5В.

Читайте также  Какой кабель лучше медный или алюминиевый?

IH, мА ± 100 ± 250 ± 500

Rh, ^ 0 •I- 0 О 0-40 0-20

Результаты исследований показывают, что внутреннее (выходное) сопротивление генераторов Ri прямо пропорционально сопротивлению ROC. Поэтому для уменьшения относительной погрешности следует в разумных пределах увеличивать ROC. Оптимальным следует считать ROC=RH. Результаты температурных испытаний показывают, что после 2-3 циклов термотренировки, температурный дрейф уменьшается примерно в 2 раза. Скорее всего, это связано с повышением стабильности резисторов обратной связи типа С2-29, класса 0,1-0,2. Эти резисторы следует брать с запасом по мощности в 2-3 раза, т.к. от их стабильности зависят все метрологические характеристики генераторов тока. Температурный дрейф линейно зависит от температуры и от изменения входного сигнала.

1. Рассмотренные управляемые генераторы тока на базе инструментальных усилителей позволяют обеспечить достаточно высокие метрологические характеристики на уровне 14-15 двоичных разрядов в обычных условиях.

2. Относительная погрешность из-за влияния внутренних сопротивлений генераторов тока существенно уменьшается при увеличении резисторов обратной связи Roc. Внутреннее сопротивление генераторов тока может составлять ЮОМОм для токов 1-2mA и 1МОм для токов 100mA. При увеличении температуры до +850С внутреннее сопротивление Rj уменьшается примерно в 2-3 раза.

3. Температурная стабильность ГТ зависит от температурного дрейфа инструментального усилителя и ТКС резистора обратной связи ROC. В худшем случае относительная погрешность 5t Надоели баннеры? Вы всегда можете отключить рекламу.

Генератор тока на операционном усилителе

В данном подразделе будет описана разработка источника тока управляемого напряжением — блока, к которому подключён сам канал стимуляции. В начале ещё раз укажем некоторые требуемые параметры стимуляции, которые одновременно являются параметрами управляемого источника тока. Ток должен регулироваться в диапазоне от 0,2 до 3 мА с шагом 0,2 мА, импульсы тока — однополярные, напряжение стимуляции должно составлять величину до 20 Вольт при неизменной величине тока.

Регулируемый источник тока можно реализовать на транзисторах. Но транзистор является нелинейным элементом, и его характеристики сильно зависят от внешних факторов, например от температуры. По указанным причинам в данном случае будем применять источник тока на операционных усилителях. Структурная схема генератора тока на ОУ со следящей обратной ООС [2] изображена на рисунке 2.2.

Рисунок 2.2 — Структурная схема генератора тока на ОУ со следящей ООС

Укажем обозначения в схеме на рисунке 2.2: OP1 — токозадающий ОУ; OP2 — некоторая схема дифференциального усилителя, включенного в обратную связь; Ri — токозадающий резистор; Rн — сопротивление нагрузки.

Опишем принцип работы данной схемы. В случае если ОУ включён с отрицательной обратной связью, потенциалы на входах ОУ стремятся быть равными, т.е. потенциал на инверсном входе должен быть равен потенциалу на неинверсном, т.е. потенциалу на выходе цифровой линии МК. Дифференциальный усилитель OP2 усиливает падение напряжения на токозадающем резисторе Ri до величины Uвх:

где G — коэффициент усиления дифференциального усилителя.

Падение напряжение на Ri рассчитывается по формуле:

где IRi — ток через токозадающий резистор Ri, и, так как входное сопротивление дифференциального усилителя очень большое, то можно считать что ток IRi соответствует току через нагрузку Iн.

Подставив (2.2) в (2.1) получим:

Отсюда ток через резистор:

Как видим из соотношения (2.4), в данном случае получили источник тока, величина тока которого прямо пропорциональна входному напряжению и обратно пропорциональна сопротивлению токозадающего резистора. Так как вход данной схемы подключается непосредственно к цифровой линии МК, то входное напряжение может иметь 2 уровня: уровень логического нуля — около потенциала земли и уровень логической единицы — в данном случае около 5 Вольт. Исходя из этих соображений и будем производить дальнейшие расчёты.

Так как входное напряжение схемы имеет только 2 уровня, то представленная на рисунке 2.2 схема имеет существенный недостаток: данный источник тока нерегулируемый.

Усовершенствуем схему на рисунке 2.2 с целью получения регулируемого источника тока. Усовершенствованный вариант схемы представлен на рисунке 2.3.

Рисунок 2.3 — Структурная схема регулируемого источника тока

В случае схемы на рисунке 2.3 усилитель OP2 усиливает относительно входного опорного напряжения Uref.

Формула (2.3) для входного напряжения в этом случае принимает вид:

и формула для тока через нагрузку:

Как видим из (2.6), чем большее опорное напряжение усилителя OP2, тем меньше ток через нагрузку. При Uref = 0 формула (2.6) сводится к виду (2.4), т.е. в этом случае будет максимально возможный ток через нагрузку. При Uref = Uвх = 5 Вольт ток через нагрузку будет равен нулю.

Перейдём непосредственно к принципиальной схеме источника тока. Принципиальная схема изображена на рисунке 2.4.

Рисунок 2.4 — принципиальная схема источника тока

Дифференциальный усилитель реализован на операционных усилителях OP2, OP2 и резисторах включённых в их обратную связь. Примечание: в данном случае для упрощения расчётов в некоторых случаях резисторы имеют равные номиналы — на схеме на рисунке 2.4 одинаковые резисторы имеют одинаковые позиционные обозначения. Коэффициент усиления дифференциального усилителя, реализованного на указанных элементах, рассчитывается по формуле:

В данном случае желательно обеспечить минимальное падение напряжение на токозадающем резисторе, то есть максимальное падение на нагрузке. То есть желательно повысить его коэффициент усиления за счёт подбора соответствующих номиналов резисторов. Выбираем коэффициент усиления G=10. Для обеспечения указанного коэффициента усиления из стандартного ряда номиналов резисторов выбираем значения: R1 = 20 кОм, R2 = 180 кОм.

Рассчитаем требуемое значение токозадающего резистора для максимально заданной величины тока 3 мА.

Из формулы (2.4) выразим требуемое значение резистора Ri для заданного тока:

Подставив в (2.8) Uвх = 5 В, IRi = 3 мА, G = 10 найдём требуемое значение токозадающего резистора: Ri ? 167 Ом. Из прецизионного ряда номиналов резисторов E96 выберем ближайший к указанному: Ri = 165 Ом.

В качестве операционных следует выбрать такие, которые удовлетворяют требованиям по напряжению питания, частоте, и т.д. В качестве усилителей выбираем микросхемы прецизионных операционных усилителей OPA277, которые обладают следующими основными параметрами [3]: напряжение смещения: 10 мкВ; дрейф нуля: 0,1 мкВ/°C; входной ток: 1 нА; максимальная рабочая частота: 1 МГц; максимальное напряжение питания при однополярном питании: 36 Вольт.

Далее рассмотрим схему регулировки опорного напряжения дифференциального усилителя. В качестве элемента регулировки можно применить потенциометр. Но так как схема с управлением от микроконтроллера, то простой потенциометр было бы применять нерационально, хорошим решение в данном случае будет применение цифрового потенциометра с цифровым интерфейсом управления от микроконтроллера.

В качестве микросхемы цифрового потенциометра применим микросхему AD5241BR100 фирмы Analog Devices [4]. Данная микросхема управляется по шине I2C, имеет сопротивление между выводами 100 кОм, 256 позиций для регулировки. Структурная схема микросхемы цифрового потенциометра показано на рисунке 2.5.

Рисунок 2.5 — Структурная схема микросхемы цифрового потенциометра AD5290BR100

Как видим из схемы, микросхема помимо потенциометра имеет в своём составе 2 выходных цифровых линии общего назначения: O1, O2, в данном случае эти линии не задействованы. Также микросхема имеет 2 адресных входа: AD0, AD1, т.е. есть возможность применения в системе до четырёх таких микросхем. Имеется также вход SHDN, который практически отключает микросхему при подаче на него напряжения низкого логического уровня — ток потребления снижается до нескольких микроампер, W замыкается с B.

Средняя точка внутреннего резистора — W; крайние точки — A, B. Потенциал средней точки определяется как: VW = (VA-VB)·pos/256, где pos — позиция потенциометра, отправляется на потенциометр по шине I2C. В данной схеме для удобства управления вывод B подключаем к общему проводу, вывод A — к напряжению питания +5 Вольт. Выходное сопротивление цифрового потенциометра имеет тот же порядок что входное сопротивление входа опорного напряжения дифференциального усилителя, то есть если выход W подключать напрямую к входу опорного напряжения, то будет значительное взаимное влияние потенциометра и входа усилителя. То есть в данном случае необходима развязка выхода потенциометра с входом опорного напряжения усилителя. Развязку лучше всего реализовать через операционный усилитель, включённый по схеме неинвертирующего повторителя между выходом W и входом опорного напряжения.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: