Какая часть индукционного генератора подвижная? - ELSTROIKOMPLEKT.RU

Какая часть индукционного генератора подвижная?

«Генератор. Трансформатор. Применение трансформатора»

«Генератор. Трансформатор. Применение трансформатора»

Так как действие трансформатора основано на явлении электромагнитной индукции, следовательно, перед объяснением нового материала необходимо повторить следующие вопросы:

Объяснение нового материала.

Генератор переменного тока.

Генератор тока – устройство, преобразующее механическую энергию в электрическую.

Основные части генератора:

Индуктор – устройство, создающее МП. Якорь – обмотка, в которой индуцируется ЭДС. Кольца со щетками – устройство, которым снимают с вращающихся частей индукционный ток или подают ток питания электромагнитом.

ЭДС, индуцируемая в последовательно соединенных витках, будет складываться из суммы ЭДС в каждом из них, поэтому обмотка якоря состоит из множества витков.

Генератор состоит из неподвижной части — статора и подвижной части — ротора. Обычно на роторе располагаются электромагниты с полюсами N и S. Их обмотка, называемая обмоткой возбуждения, питается через кольца и щетки от источника постоянного тока. В пазах статора, собранного из стальных листов, находятся проводники обмотки статора. Они соединены друг с другом последовательно поочередно с передней и с задней сторон статора.

Для технических целей применяется переменный ток синусоидальной формы с частотой 50 Гц, для этого ротор должен вращаться с частотой 50 об/с. Чтобы уменьшить частоту вращения, увеличивают число пар полюсов индуктора. н = nf, n – число пар полюсов, f — частота вращения ротора.

Впервые трансформаторы были использованы в 1878 г. русским учёным П. Н. Яблочковым для питания изобретённых им »электрических свечей» – нового в то время источника света. Идея была развита сотрудником Московского университета , сконструировавшим усовершенствованный трансформатор. (Демонстрация разборного универсального трансформатора).

С помощью разборного универсального трансформатора рассматриваем устройство трансформатора.

Трансформатор состоит из замкнутого сердечника, на который надеты две (иногда и более) катушки с проволочными обмотками. Одну из обмоток, называемую первичной, подключают к источнику переменного напряжения. Вторую обмотку, к которой присоединяют «нагрузку», то есть приборы и устройства, потребляющие электроэнергию, называют вторичной.

Зарисовать в тетрадь схему устройства трансформатора, его условное обозначение (планшет)

Действие трансформатора основано на явлении электромагнитной индукции. При прохождении переменного тока по первичной обмотке в сердечнике появляется переменный магнитный поток, который возбуждает ЭДС индукции в каждой обмотке. Сердечник из трансформаторной стали концентрирует магнитное поле, так, что магнитный поток существует только внутри сердечника и одинаков во всех его сечениях.

В первичной обмотке, имеющей n1 витков, полная ЭДС индукции е1 равна n1е.

Во вторичной обмотке полная ЭДС е2 равна n2е, следовательно

Обычно активное сопротивление обмоток трансформатора мало, и им можно пренебречь. В этом случае модуль напряжения на зажимах катушки приблизительно равен ЭДС индукции, значит:

,

Мгновенные значения ЭДС е1 и е2 изменяются синфазно (одновременно достигают максимума и одновременно проходят через нуль.) Поэтому отношение можно заменить:

Величину k называют коэффициентом трансформации.

При k > 1, — трансформатор – понижающий. При k

Учебники

Разделы физики

Журнал «Квант»

Лауреаты премий по физике

Общие

Т. Генератор пер. тока

Генератор переменного тока

Электрические машины, преобразующие механическую энергию в электрическую, называют генераторами. В современной энергетике применяют индукционные генераторы переменного тока, в которых используется явление электромагнитной индукции. Они позволяют получать большие токи при достаточно высоком напряжении.

Простейшей моделью такого генератора может служить рамка abcd (рис. 1), вращающаяся в однородном магнитном поле вокруг своей оси ОО’, перпендикулярной индукции магнитного поля.

Пусть в начальный момент времени t = 0 плоскость рамки перпендикулярна вектору магнитной индукции (рис. 1, а), ее пронизывает максимальный магнитный поток (

Phi_m left( alpha = 0right).) При равномерном вращении рамки пронизывающий ее магнитный поток уменьшается. Вследствие этого, согласно закону электромагнитной индукции, в рамке возникает ЭДС индукции (

varepsilon_i.) Когда плоскость рамки станет параллельна вектору индукции магнитного поля (рис. 1, б), пронизывающий ее магнитный поток станет равным нулю (

left( Phi = 0, alpha = frac 2right).) Скорость же изменения магнитного потока при прохождении рамки через это положение наибольшая, так как проводники рамки аЬ и cd движутся в этот момент перпендикулярно линиям индукции. Возникающая ЭДС индукции, пропорциональная скорости изменения магнитного потока, будет максимальная, и создаваемый ею в этом случае индукционный ток направлен (согласно правилу правой руки) от Ь к a и от d к с. При дальнейшем повороте рамки магнитный поток увеличивается, ЭДС, не изменяя своего знака, будет уменьшаться по величине и в положении (рис. 1, в) (

Phi = Phi_0, frac = 0,) так как при прохождении через это положение проводники витка аЬ и cd скользят вдоль линии поля, не пересекая их. Следовательно, ЭДС индукции, возникающая в контуре в этом случае, (

varepsilon_i = 0.) При дальнейшем вращении рамки магнитный поток уменьшается. Скорость изменения магнитного потока увеличивается и ЭДС индукции возрастает. Согласно рисунку 1, г (

left | varepsilon_i right | = left | varepsilon_ right |,) но направление индукционного тока в витках (согласно правилу правой руки) совпадает с направлением от a к и от с к d (противоположно таковому на рис. 1, б). Это направление будет сохраняться и при дальнейшем движении рамки и начнет убывать, так как магнитный поток хотя и увеличивается, но скорость изменения его уменьшается.

При последующих оборотах рамки все эти явления будут повторяться вновь. Таким образом, ЭДС индукции во вращающейся рамке за один оборот изменяется от (

Выясним, по какому закону будет изменяться ЭДС индукции в рамке площадью S, если рамка вращается с постоянной угловой скоростью ω (ω = const) в однородном магнитном поле с индукцией (

vec B ) вокруг оси, расположенной в плоскости рамки и перпендикулярной вектору (

За время t рамка повернется на угол (

varphi = wt,) и угол между нормалью к рамке и вектором магнитной индукции будет (

alpha = wt.) Магнитный поток, пронизывающий рамку, в момент времени t равен (

Согласно закону Фарадея, мгновенное значение ЭДС индукции, возникающей в рамке, равно первой производной магнитного потока по времени (

varepsilon_i = — Phi’.) Поэтому

varepsilon_i = wBS sin wt = varepsilon_0 sin wt,)

varepsilon_0 = wBS ) — амплитудное значение ЭДС, которое, как видно, тем больше, чем быстрее вращается рамка, чем больше площадь рамки, тем больше магнитная индукция поля.

Таким образом, при равномерном вращении рамки в однородном магнитном поле в ней возникает синусоидальная ЭДС с частотой колебаний, равной частоте вращения рамки, которая будет создавать синусоидальный ток в цепи той же частоты, но фаза колебания тока не обязательно должна совпадать с фазой изменения ЭДС. Поэтому в общем случае мгновенное значение силы тока (

I = I_0 sin left( wt + varphi,right)) где (

varphi ) — разность фаз между колебаниями силы тока и ЭДС (рис. 2).

Чтобы использовать переменный ток, рамки соединяют с двумя изолированными кольцами, к кольцам прижимают щетки, к которым присоединяют контакты внешней цепи (рис. 3).

Мы рассмотрели принцип работы генератора переменного тока. Устройство генератора переменного тока гораздо сложнее. В настоящее время имеется много различных типов индукционных генераторов. Однако в каждом из них есть одни и те же основные части: 1) электромагнит (или постоянный магнит), создающий магнитное поле. Он называется индуктором;

Читайте также  Интернет кабель как надеть разъем?

2) обмотка, в которой индуцируется ЭДС. Эта часть носит название якорь;

3) состоящий из металлических колец коллектор;

4) щетки, соединяющие неподвижные проводники с вращающимися проводниками.

Неподвижная часть генератора называется статором. В описанном случае статором является индуктор. Подвижная часть генератора — ротор. В рассмотренном случае ротором является якорь. Для получения ЭДС индукции важно относительное перемещение проводника и магнитного поля. Поэтому на практике индуктор делают вращающимся, а якорь — неподвижным. Это вызвано тем, что с помощью подвижных контактов практически невозможно отводить от генератора токи высокого напряжения (большой амплитуды) из-за сильного искрения в подвижных контактах. Индуктором же является электромагнит, для питания которого нужен сравнительно слабый постоянный ток, и при таком слабом токе скользящие контакты хорошо работают.

Для того чтобы увеличить амплитуду ЭДС, необходимо увеличить магнитный поток через витки якоря. А это можно сделать, сконцентрировав магнитный поток в том месте, где находится якорь. Поэтому магнитную систему генератора изготавливают в виде замкнутой цепи, состоящей из двух сердечников, сделанных из железа. Обмотки индуктора размещены в пазах одного из сердечников, а обмотки якоря — в пазах другого. Один из сердечников, обычно внутренний, вращается вместе с индуктором. Другой сердечник с якорем в пазах неподвижен (статор). Зазор между сердечниками статора и ротора делают как можно уже. Этим достигается наибольшее значение потока магнитной индукции.

Сердечники изготавливают из тонких изолированных друг от друга железных пластин, чтобы уменьшить токи Фуко (см. Закон электромагнитной индукции), при протекании которых происходит нагревание сердечников.

Для увеличения амплитудного значения ЭДС индукции якорь изготавливают из большого числа витков. Амплитуда возникающей ЭДС индукции будет равна в этом случае (

varepsilon_0 = N Phi_0 w,) где N — число витков.

Когда у ротора имеется одна пара магнитных полюсов, то частота вращения совпадает с частотой переменного тока. В нашей стране и странах СНГ используется промышленный переменный ток частотой 50 Гц. В случае N пар полюсов частота переменного тока в N раз больше частоты вращения ротора. Одну пару полюсов делают у турбогенераторов, роторы которых приводятся во вращение паровой турбиной, а тихоходные многополюсные генераторы устанавливаются на гидростанциях. Так, на Братской ГЭС — 24, на Волжской ГЭС — 44, на Угличской на Волге — 48 пар полюсов.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 396-399.

Индукционный генератор переменного тока

Индукционный генератор переменного тока. В индукционных генераторах переменного тока механическая энергия превращается в электрическую. Индукционный генератор состоит из двух частей: подвижной, которая называется ротором, и неподвижной, которая называется статором. Действие генератора основано на явлении электромагнитной индукции. Индукционные генераторы имеют сравнительно простое устройство и позволяют получать большие токи при достаточно высоком напряжении. В настоящее время имеется много типов индукционных генераторов, но все они состоят из одних и тех же основных частей. Это, во-первых, электромагнит или постоянный магнит, создающий магнитное поле, и, во-вторых, обмотка, состоящая из последовательно соединенных витков, в которых индуцируется переменная электродвижущая сила. Так как электродвижущие силы, наводимые в последовательно соединенных витках, складываются, то амплитуда электродвижущей силы индукции в обмотке пропорциональна числу витков в ней.

Рис. 6.9

Число силовых линий, пронизывающих каждый виток, непрерывно меняется от максимального значения, когда он расположен поперек поля, до нуля, когда силовые линии скользят вдоль витка. В результате при вращении витка между полюсами магнита через каждые пол-оборота направление тока меняется на противоположное, и в витке появляется переменный ток. Во внешнюю цепь ток отводится при помощи скользящих контактов. Для этого на оси обмотки укреплены контактные кольца, присоединенные к концам обмотки. Неподвижные пластины – щетки – прижаты к кольцам и осуществляют связь обмотки с внешней цепью (рис. 6.9).

Пусть виток провода вpащается в одноpодном магнитном поле с постоянной угловой скоpостью . Магнитный поток, пронизывающий виток, меняется по закону , здесь S – площадь витка. Согласно закону Фаpадея в обмотке наводится электродвижущая сила индукции, которая опpеделяется следующим обpазом:

,

где N – число витков в обмотке. Таким образом, электродвижущая сила индукции в обмотке изменяется по синусоидальному закону и пpопоpциональна числу витков в обмотке и частоте вpащения.

В опыте с вращающейся обмоткой статором является магнит и контакты, между которыми помещена обмотка. В больших промышленных генераторах вращается электромагнит, который является ротором, в то время как обмотки, в которых наводится электродвижущая сила, уложены в пазах статора и остаются неподвижными. На тепловых электростанциях для вращения ротора используются паровые турбины. Турбины, в свою очередь, приводятся во вращение струями водяного пара, полученного в огромных паровых котлах за счет сжигания угля или газа (теплоэлектростанции) или распада вещества (атомные электростанции). На гидроэлектростанциях для вращения ротора используются водяные турбины, которые вращаются водой, падающей с большой высоты.

Электрогенераторы играют важнейшую роль в развитии нашей технологической цивилизации, поскольку позволяют получать энергию в одном месте, а использовать ее в другом. Паровая машина, например, может преобразовывать энергию сгорания угля в полезную работу, но использовать эту энергию можно только там, где установлены угольная топка и паровой котел. Электростанция же может размещаться весьма далеко от потребителей электроэнергии – и, тем не менее, снабжать ею заводы, дома и т.п.

Рассказывают (скорее всего, это всего лишь красивая сказка), будто Фарадей демонстрировал прототип электрогенератора Джону Пилу, канцлеру казначейства Великобритании, и тот спросил ученого: «Хорошо, мистер Фарадей, все это очень интересно, а какой от всего этого толк?».

«Какой толк? – якобы удивился Фарадей. – Да вы знаете, сэр, сколько налогов эта штука со временем будет приносить в казну?!»

Трансформатор.

Трансформатор. Электродвижущая сила мощных генераторов электростанций велика, между тем практическое использование электроэнергии требует чаще всего не очень высоких напряжений, а передача энергии, наоборот, очень высоких.

Для уменьшения потерь на нагревание проводов необходимо уменьшить силу тока в линии передачи, и, следовательно, для сохранения мощности увеличить напряжение. Напряжение, вырабатываемое генераторами (обычно около 20 кВ), повышают до напряжения 75 кВ, 500 кВ и даже до напряжения 1,15 МВ, в зависимости от длины линии электропередачи. Повышая напряжение с 20 до 500 кВ, то есть в 25 раз, уменьшают потери в линии в 625 раз.

Преобразование переменного тока определенной частоты, при котором напряжение увеличивается или уменьшается в несколько раз практически без потери мощности, осуществляется электромагнитным устройством, не имеющим подвижных частей – электрическим трансформатором. Трансформатор – важный элемент многих электрических приборов и механизмов. Зарядные устройства и игрушечные железные дороги, радиоприемники и телевизоры – всюду трудятся трансформаторы, которые понижают или повышают напряжение. Среди них встречаются как совсем крошечные, не более горошины, так и настоящие колоссы массой в сотни тонн и более.

Читайте также  Освещение в деревянном доме с низкими потолками
Рис. 6.10

Трансформатор состоит из магнитопровода, представляющего собой набор пластин, которые обычно изготавливаются из ферромагнитного материала (рис. 6.10). На магнитопроводе располагаются две обмотки – первичная и вторичная. Та из обмоток, которая подключается к источнику переменного напряжения, называется первичной, а та, к которой присоединяют «нагрузку», то есть приборы, потребляющие электроэнергию, называется вторичной. Ферромагнетик увеличивает количество силовых линий магнитного поля приблизительно в 10 000 раз и локализует поток магнитной индукции внутри себя, благодаря чему обмотки трансформатора могут быть пространственно разделены и все же остаются индуктивно связанными.

Действие трансформатора основано на явлениях взаимной индукции и самоиндукции. Индукция между первичной и вторичной обмоткой взаимна, то есть ток, протекающий во вторичной обмотке, индуцирует электродвижущую силу в первичной, точно так же, как первичная обмотка индуцирует электродвижущую силу во вторичной. Более того, поскольку витки первичной обмотки охватывают собственные силовые линии, в них самих возникает электродвижущая сила самоиндукции. Электродвижущая сила самоиндукции наблюдается также и во вторичной обмотке.

Пусть первичная обмотка подсоединяется к источнику переменного тока с электродвижущей силой , поэтому в ней возникает переменный ток , создающий в магнитопроводе трансформатора переменный магнитный поток ?, который сосредотачивается внутри магнитного сердечника и пронизывает все витки первичной и вторичной обмоток.

При отсутствии внешней нагpузки выделяемая в тpансфоpматоpе мощность близка к нулю, то есть близка к нулю сила тока. Применим к первичной цепи закон Ома: сумма электродвижущей силы индукции и напряжения в цепи равна произведению силы тока на сопротивление. Полагая , можно записать: , следовательно, , где Ф – поток пронизывающий каждый виток первичной катушки. В идеальном трансформаторе все силовые линии проходят через все витки обеих обмоток, и поскольку изменяющееся магнитное поле порождает одну и ту же электродвижущую силу в каждом витке, то суммарная электродвижущая сила, индуцируемая в обмотке, пропорциональна полному числу ее витков. Следовательно, .

Коэффициент трансформации напряжения равен отношению напpяжения во вторичной цепи к напряжению в первичной цепи. Для амплитудных значений напряжений на обмотках можно записать:

.

Таким образом, коэффициент трансформации определяется как отношение числа витков вторичной обмотки к числу витков первичной обмотки. Если коэффициент , трансформатор будет повышающим, а если – понижающим.

Написанные выше соотношения, строго говоря, применимы только к идеальному трансформатору, в котором нет рассеяния магнитного потока и отсутствуют потери энергии на джоулево тепло. Эти потери могут быть связаны с наличием активного сопротивления самих обмоток и возникновением индукционных токов (токов Фуко) в сердечнике.

Токи Фуко.

Токи Фуко. Индукционные токи могут возникать также в сплошных массивных проводниках. При этом замкнутая цепь индукционного тока образуется в толще самого проводника при его движении в магнитном поле или под влиянием переменного магнитного поля. Эти токи названы по имени французского физика Ж.Б.Л. Фуко, который в 1855 г. обнаружил нагревание ферромагнитных сердечников электрических машин и других металлических тел в переменном магнитном поле и объяснил этот эффект возбуждением индукционных токов. Эти токи в настоящее время называются вихревыми токами или токами Фуко.

Если железный сердечник находится в переменном магнитном поле, то в нем под действием индукционного электрического поля наводятся внутренние вихревые токи – токи Фуко, ведущие к его нагреванию. Так как электродвижущая сила индукции всегда пропорциональна частоте колебаний магнитного поля, а сопротивление массивных проводников мало, то при высокой частоте в проводниках будет выделяться, согласно закону Джоуля–Ленца, большое количество тепла.

Во многих случаях токи Фуко бывают нежелательными, поэтому приходится принимать специальные меры для их уменьшения. В частности, эти токи вызывают нагревание ферромагнитных сердечников трансформаторов и металлических частей электрических машин. Для снижения потерь электрической энергии из-за возникновения вихревых токов сердечники трансформаторов изготавливают не из сплошного куска ферромагнетика, а из отдельных металлических пластин, изолированных друг от друга диэлектрической прослойкой.

Рис. 6.11

Вихревые токи широко используются для плавки металлов в так называемых индукционных печах (рис. 6.11), для нагревания и плавления металлических заготовок, получения особо чистых сплавов и соединений металлов. Для этого металлическую заготовку помещают в индукционную печь (соленоид, по которому пропускают переменный ток). Тогда, согласно закону электромагнитной индукции, внутри металла возникают индукционные токи, которые разогревают металл и могут его расплавить. Создавая в печи вакуум и применяя левитационный нагрев (в этом случае силы электромагнитного поля не только разогревают металл, но и удерживают его в подвешенном состоянии вне контакта с поверхностью камеры), получают особо чистые металлы и сплавы.

Индукционные генераторы

ИНДУКЦИОННЫЙ ГЕНЕРАТОР — это преобразователь механической энергии в электрическую. Нужен электромеханический индукционный генератор? Росиндуктор — генератор от профессионалов с нашего склада. Индукционные генераторы работают при возникновении переменного магнитного поля в катушке. Катушка создаёт переменное магнитное поле, вектор которого меняется с заданной генератором частотой. Созданные вихревые токи, индуцированные магнитным полем, производят нагрев металлического элемента, который передаёт энергию теплоносителю.

Принцип действия индукционного генератора

Принцип действия индукционного генератора основан на законе электромагнитной индукции — индуцирование электродвижущей силы в прямоугольном контуре (проволочной рамке), находящейся в однородном вращающемся магнитном поле, или наоборот, прямоугольный контур вращается в однородном неподвижном магнитном поле. Если в контуре вращается однородное магнитное поле с равномерной угловой скоростью, то в нем индуктируется синусоидальная электродвижущая сила.

Индукционный генератор переменного тока

Это электрическая машина, преобразующая механическую энергию в электрическую энергию переменного тока, например, за счет вращения проволочной катушки в магнитном поле, или, наоборот, за счет вращения магнита. До тех пор, пока силовые линии магнитного поля пересекают проводящую катушку, в ней индуцируется электрический ток. Индуцированный электрический ток течет таким образом, что его поле отталкивает магнит, когда рамка приближается к нему, и притягивает, когда рамка удаляется. Каждый раз, когда рамка изменяет ориентацию относительно полюсов магнита, электрический ток также изменяет свое направление на противоположное. Все то время, пока источник механической энергии вращает проводник (или магнитное поле), генератор будет вырабатывать переменный электрический ток.

Устройство индукционного генератора

По конструкции выделяют генераторы:

  • с неподвижными магнитными полюсами и вращающимся якорем,
  • с вращающимися магнитными полюсами и неподвижным статором.

Генераторы с неподвижными магнитными полюсами используются чаще, поскольку при неподвижной статорной обмотке нет необходимости снимать с помощью скользящих контактов (щеток) и контактных колец с ротора большой ток высокого напряжения. Статор (неподвижная часть) собирается из отдельных железных листов, изолированных друг от друга, а на внутренней поверхности статора имеются пазы, куда вкладываются провода статорной обмотки генератора. Ротор (подвижная часть) обычно изготавливают из сплошного железа, а полюсные наконечники магнитных полюсов ротора собирают из листового железа. Для создания максимально возможной магнитной индукции при вращении между статором и полюсными наконечниками ротора желателен минимальный зазор, а геометрическую форму полюсных наконечников подбирают такой, чтобы вырабатываемый генератором ток был наиболее близок к синусоидальному. На сердечники полюсов садят катушки возбуждения, питаемые постоянным током, который подводится с помощью щеток к контактным кольцам, расположенным на валу генератора.

Читайте также  Соединение токоведущих шин

Электромеханический индукционный генератор

Магнитное поле в электромеханическом генераторе создается с помощью постоянного или электромагнита, переменная электродвижущая сила индуцируется в обмотке. В промышленных генераторах поле создается вращающимся магнитом, обмотки остаются неподвижными.

Генератор индукционного тока

Генераторы индукционного тока имеют широкую область применения: чаще всего их используют в местах, в которых требуется непрерывная подача электроэнергии, таких как медицинские учреждения, морозильные склады и т.п. также такие генераторы могут быть востребованы на строительных площадках и для электрификации загородных домов.

Генератор индукционного нагрева

Индукционный нагрев — это нагревание электропроводящих материалов электрическими токами, которые индуцируются переменным магнитным полем. Генераторы индукционного нагрева применяются для:

  • нагрева заготовок из магнитных материалов, в том числе для гибки и термообработки деталей,
  • термической обработки мелких и хрупких деталей,
  • поверхностной закалки изделий,
  • плавки, сварки и пайки металлов,
  • обеззараживания медицинского инструмента.

Какая часть индукционного генератора подвижная?

Электрические машины, в которых механическая энергия превращается в электрическую с потщью явления электромагнитной индукции, называют индукционными генераторами.

Основные элементы индукционного генератора переменного тока показаны на рис. 26.1, а: 1 — индуктор, создающий магнитное поле; 2 — якорь (проводник, в котором наводится э. д. с.); 3 — металлические кольца и 4 — щетки, соединяющие неподвижные проводники с вращающимися проводниками.

Для получения э. д. с. индукцин важно относительное перемещение проводника и магнитного поля, поэтому на практике индуктор делают вращающимся и называют его ротором, а якорь делают неподвижным и называют его статором. Это целесообразно, так как ротором является электромагнит, для питания которого нужен сравнительно слабый постоянный ток. При такой конструкции ток в ротор передается с. помощью скользящего контакта, который хорошо работает при слабом токе, а потребитель соединяется с генератором неподвижными проводами.

Ротор и статор делают из стали и между ними оставляют очень маленький зазор, поэтому вектор индукции В в зазоре везде перпендикулярен к поверхности статора. Следовательно, вектор В все время перпендикулярен к вектору линейной скорости точек поверхности ротора, т. е. к вектору скорости относительного движения магнитного поля и проводников якоря.

Это означает, что в выражении для э. д. с. угол а все время равен Поэтому, чтобы в проводниках наводилась синусоидально изменяющаяся э. д. с., магнитным полюсам ротора придают специальную форму, обеспечивающую синусоидальное изменение величины вектора В вдоль окружности ротора (рис. 26.3).

Когда у ротора имеется одна пара магнитных полюсов, то частота вращения ротора совпадает с частотой переменного тока. При двух парах полюсов частота изменения магнитного поля в зазоре вдвое больше частоты вращения ротора, поэтому для получения стандартной частоты переменного тока такой ротор должен делать не 50, а Одну пару полюсов делают у турбогенераторов; роторы которых приводятся во вращение паровой турбиной, а тихоходные многополкхтные генераторы устанавливаются на гидростанциях.

Схема устройства индукционного генератора постоянного тока показана на рис. 26.4. Она отличается от схемы генератора переменного тока (рис. 26.1, а) только тем, что здесь вместо колец используется коллектор (3 на рис. 26.4), представляющий собой кольцо, разрезанное на секторы, изолированные друг от друга. Коллектор создает у потребителя ток, постоянный по направлению. Это обеспечивается тем, что левая щетка (см. рис. 26.4) всегда соединена с поднимающейся стороной витка, а правая — с опускающейся стороной. Ясно, что у генераторов постоянного тока якорь делать неподвижным нельзя. График изменения э. д. с. такого генератора показан на рис. 26.5.

Для сравнения на рисунке пунктиром показано изменение э. д. с. в случае сплошных колец.

На практике обмотку якоря разбивают на ряд секций, соединенных с отдельными секторами коллектора. Это ослабляет пульсации напряжения на полюсах машины, т. е. делает его постоянным по величине.

При работе генератора на проводники якоря действует сила Ампера (§ 22.9), препятствующая вращению якоря, которая тем больше, чем сильнее ток, протекающий через обмотку якоря. Следовательно, при увеличении тока, потребляемого от генератора, для вращения его якоря приходится затрачивать все больше энергии. Это относится и к генератору переменного тока.

Отметим еще, что электрические машины постоянного тока обладают обратимостью, т. е. могут работать и как генератор и как электродвигатель.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: