Магнитная подушка принцип действия - ELSTROIKOMPLEKT.RU

Магнитная подушка принцип действия

Аппараты для магнитотерапии: обзор

Магнитные поля обладают загадочным действием на организм, многие приписывают им лечебные свойства. Во многих программах реабилитации и санаторно-курортного лечения присутствуют данные процедуры и обещают мощный оздоровительный эффект. Так ли это на самом деле и в каких случаях магнитотерапия может помочь?

Магнитное поле земли оказывает на нас действие на протяжении всей жизни, поэтому для нашего организма это не является необычным. Так, по данным многочисленных исследований, вреда от магнитотерапии не зафиксировано, вне зависимости от её типа. Магнитотерапия одна из разновидностей физиотерапии, когда то или иное воздействие на организм должно привести к лечебному эффекту. Обычно курс магнитотерапии проходят в составе программы реабилитации. Её используют при:

  • заболеваниях опорно-двигательного аппарата;
  • заболеваниях сердечнососудистой системы;
  • проблемах неврологического характера;
  • легочных болезнях;
  • проблемах пищеварительной системы;
  • в гинекологии, хирургии и при травмах.

Виды полей в магнитотерапии

Используются магнитные поля нескольких видов:

  • Переменные – возникают в катушке при пропускании переменного электрического тока.
  • Постоянные – при пропускании постоянного электрического тока или от зафиксированных постоянных магнитов.
  • Импульсные – изменяющиеся по силе, но стабильные по направлению.
  • Бегущие импульсные – реализуются за счет последовательного включения катушек, так поле перемещается в пространстве.
  • Высокоамплитудные импульсные – возникают при токе высокого напряжения со сверхкороткой длительностью. В отличие от других полей могут возбуждать нервные волокна, стимулировать мышцы.

Общий лечебный эффект связан с неспецифическими реакциями нервной, иммунной и гуморальных систем регуляции, активируются резервы организма и компенсаторно-приспособительные механизмы. Возникает вопрос, а можно ли проводить подобные процедуры дома, без посещения лечебных учреждений?

Обычно курс магнитотерапии проходят в составе программы реабилитации .

Производители

Производители приборов для магнитотерапии дома:

  • Елатомский приборный завод;
  • Невотон;
  • Новатор;
  • Ретон.

Елатомский приборный завод один из самых известных производителей домашней серии «Алмаг» . Обычно длительность процедуры составляет 15-20 минут 1 раз в день на протяжении 10-20 дней.

Приборы

Алмаг-01 Аппарат магнитотерапевтический бегущим импульсным полем . Самый простой в применении, имеет 1 программу. Активируется включением в розетку, автоматически выключается после сеанса. Излучатель состоит из 4 катушек, соединенных в гибкую линейку. Это позволяет использовать её на любых участках тела, независимо от рельефа, в том числе охватывать суставы по окружности.

Алмаг-02 Аппарат магнитотерапевтический . Аппарат с расширенными функциями и большим излучателем в форме сетки из катушек. Их можно легко трансформировать, как в излучатель в форме линейки, так и в одиночные катушки на держателе. Аппарат имеет 79 программ работы, а большая поверхность воздействия может оказывать значительный эффект на весь организм.

Алмаг-03 Аппарат магнитотерапевтический . Данный комплект еще называется Диамаг, он создан специально для проведения процедур, направленных на работу головного мозга. В состав аппарата входят 2 пластины с излучателями и ремни для фиксации на голове, а также сам аппарат с 4-мя различными программами воздействия. Данный прибор может применяться не только дома, но и в лечебных учреждениях. В показаниях заявлена болезнь Паркинсона и другие заболевания головного мозга.

Алмаг+ аппарат магнитотерапевтический . Состоит из 2 сдвоенных излучателей, которые можно укладывать как матрицей, так и линейно. Аппарат имеет 3 вида программ.

Аппарат имеет три вида программ и подходит для использования в домашних условиях.

Противопоказания

Противопоказаниями для низкочастотной магнитной терапии являются:

  • острый период инфарктов и инсультов;
  • ишемическая болезнь сердца с нарушениями сердечного ритма;
  • беременность;
  • кровотечения.

Также противопоказаниями будут эпилептический синдром, лихорадка выше 38 °C , сильное истощение.

Высокоинтенсивная магнитная терапия противопоказана пациентам с:

  • имплантированными кардиостимуляторами;
  • эпилепсией;
  • тиреотоксикозом;
  • онкологическими заболеваниями;
  • в течении 2 месяцев после инфаркта миокарда;
  • системными заболеваниями крови;
  • желчнокаменной болезнью;
  • переломами костей до иммобилизации.

Сила эффекта

В исследованиях больший эффект магнитотерапия оказывает на нервную и сердечно-сосудистую систему. Основные эффекты были связаны с уменьшением боли, тревоги и улучшением качества жизни. То есть, если в составе проблемы есть один или несколько этих компонентов, возможно, будет отмечен положительный эффект.

Чтобы быть довольным результатом, нельзя предъявлять завышенных ожиданий. Так как механизм действия магнитного поля на организм достаточно сложен для восприятия, могут появляться заблуждения, формироваться образ «волшебной таблетки» или надежда на чудесное исцеление, когда врачи не смогли помочь. Физиотерапия всегда идет в комплексе, и хотя может являться важной частью лечения, но не будет единственной. Типичным примером может стать образ человека с избыточным весом и болью в коленях. Курсы противовоспалительных препаратов помогают с переменным успехом. Одна из ключевых причин избыточный вес, который приводит к болям. Покупка аппарата без корректировки образа жизни и снижения веса вряд ли даст нужный эффект.

Сначала следует получить консультацию специалиста, максимально выполнить рекомендации и потом со спокойной душой можно дополнить это магнитотерапией в домашних условиях.

Магнитотерапия, что это – реальность или миф.

Поговорим о магнитотерапии в домашних условиях. Реально ли она эффективна, или же это очередной миф? Чтобы получить ответ на этот вопрос – следует рассмотреть некоторые научно доказанные факты.

В нашей повседневной жизни мы окружены постоянно действующими магнитными полями, которые исходят от нашей планеты, являющейся огромным магнитом, а также от Луны и Солнца, и иных космических тел. Научными исследованиями достоверно установлено, что наличие природного магнетизма крайне важно для поддержания всех существующих на Земле форм жизни.

Человеческое тело, как одна из таких жизненных форм, включает в себя миллиарды живых клеток, имеющих собственный, пусть и не большой, электрический заряд, изменение потенциала которого и порождает эффект магнетизма. Проведёнными многочисленными исследованиями установлено, что электрическая активность постоянно присутствует в теле человека, и как следствие, и магнитная активность, которая неразрывно связана с электрическим потенциалом. Например, возможно измерение электрических токов в момент работы сердца, и кроме того, такие токи возникают и в процессе формирования тканей костей. Таким образом напрашивается вывод, что с помощью индукции магнитного поля с необходимой напряжённостью, действительно возможно оказать какое-то воздействие на состояние живых тканей и их природные функции.

Но, сразу же возникает очередной вопрос: «А как именно будут реагировать те или другие ткани на воздействующий на них электромагнетизм?». Особенно учитывая то, что такие поля не имеют привычного нам вкуса, цвета или запаха… Таким образом, природа этого воздействия многим людям неясна, и отсюда возникает определённое скептическое отношение касательно полезных свойств магнитотерапии для организма. Но, следует отметить, что, как и в любом другом деле, здесь важен действительный конечный результат. Например, медицине до настоящего времени доподлинно так и неизвестен механизм лекарственного действия народного средства — липового чая, но это нисколько не принизило его достоинств в народном лечении простуды, ангины и гриппа. Раз помогает – значит это действительно необходимо! Так же вполне можно поставить вопрос и с магнитотерапией, как таковой.

К сожалению, существуют и факты шарлатанства с применением магнитов. Таких «чудодейственных браслетов» и прочего, обещающих мгновенное исцеление от всех недугов, полным-полно в интернет-пространстве. И многие люди, попавшиеся на удочку таких псевдоцелительных сайтов, впоследствии негативно начинают воспринимать любую информацию о магнитотерапии в целом, хотя научных исследований на эту тему, доказывающих благотворное воздействие магнитотерапии на организм человека, проведено уже немало. Кроме того, сумятицу в умы привносят многочисленные, как восторженные, так и не очень, отзывы пользователей специализированных лечебных приборов для магнитотерапии, которые указывают нам, как все «за», так и «против» лечения магнитотерапией. Так будет ли польза от магнитотерапии в домашних условиях? Чему следует верить.

Магнитотерапия и её научное обоснование

В современное время воздействие магнитотерапией на организм человека успешно используется для устранения болей, снятия воспалений и отёчности при самых различных недугах. Замечательный лечебный эффект проявляется от воздействия магнитотерапии при лечении остеохондрозов, способствуя при этом регенерации костных и хрящевых тканей. И данный факт в научном сообществе не оспаривается.

Современные санитарные нормы считают предельно допустимой для организма человека, при длительном воздействии постоянным магнитным полем, магнитную индукцию не более 0,05 Тл. Но, так как шарлатанами в различных «псевдолечебных средствах» зачастую используются неодьмиевые магниты с индукцией более даже чем 0,1 Тл, которые при особо длительном воздействии могут вызвать симптомы, как ожоге поверхности кожи, не говоря уже об усилении недомогания больного, то становиться вполне понятным скептицизм относительно магнитотерапии у людей, столкнувшимися с таким как бы «народным лечением». Следует также заметить, что, согласно действующим санитарным нормам, безвредная величина магнитной индукции на тело человека может быть и больше, но при определённых условиях… Так при кратковременном воздействии постоянным магнитным полем индукция должна быть не более 0,07 Тл, при переменном поле – не более 0,05 Тл, а при воздействии импульсный магнитным полем – не превышать 3 Тл.

Читайте также  Как сделать из аккумуляторного шуруповерта электрический?

Кроме того, для переменного магнитного поля имеется ещё одна важная характеристика — это частота индукции электромагнитного поля. В современной лечебной практике, в отличии от псевдо «народной медицины», используются магнитные поля с принципиально разными переменными составляющими:

  1. Индуктотермия — высокочастотное магнитное поле.
  2. Магнитотерапия — низкочастотное магнитное поле.

Первое – используется в основном при стационарном лечении ввиду сложности применяемых при этом лечебных приборов. Такое лечение осуществляется только лишь короткими курсами, имея при этом обширный ряд противопоказаний, ввиду того, что электромагнитные поля высокой частоты существенно поглощаются организмом больного, что приводит к заметному повышению температуры тела пациента, что не всегда желательно и безопасно.

Второе, то есть как таковая магнитотерапия, сама по себе более физиологична, так как используются переменные магнитные поля с частотой, близкой к естественному биологическому ритму человека, лежащих в пределах 0,1…100 Гц. Именно лечебные приборы для магнитотерапии применяются не только для лечения заболеваний, но и для их профилактики! Кроме того, такую магнитотерапию в домашних условиях применять также можно успешно, как и в лечебных учреждениях.

К таким лечебным приборам, снискавшим себе вполне заслуженную славу, относятся отечественные специализированные лечебные приборы, выпускаемые Елатомским приборным заводом Компании «ЕЛАМЕД», как-то, например, лечебные приборы АЛМАГ-01, МАВИТ, ДИАМАГ и многие другие, рекомендованные для повседневного лечения магнитотерапией в домашних условиях, прошедшие все клинические испытания и сертификацию. В случае применения таких лечебных приборов отсутствует наличие эффекта нагрева внутренних тканей, что и определяет их достаточно высокую переносимость при различных ограничениях и большой чувствительности у пациентов. Лечебные приборы для домашнего применения являются хорошей альтернативой в очень многих случаях, когда применение иных физиотерапевтических методов лечения, по каким-либо противопоказаниям, не допустимо, например, терапия посредством УВЧ, СВЧ или ультразвука.

Целительный эффект магнитотерапии

Важнейшей целью использования лечения магнитотерапией в медицине является борьба с болью. Так каким же образом достигается этот целебный эффект?

Основным результатом воздействия магнитного поля на человеческий организм является влияние на гормонопродуцирующие органы, сосуды и ферменты. При этом происходит расслабление мышц, приводящее к качественному улучшению циркуляции в микрососудах крови и лимфы, в ходе чего выведение токсинов и молочной кислоты значительно ускоряется. Одновременно с этим, к повреждённым клеткам тканей человека начинает поступать ещё больше питательных веществ и кислорода, то есть улучшается обменный процесс в организме, что в свою очередь ведёт к снижению болевого синдрома, делая процесс выздоровления более интенсивным. Зачастую, именно магнитотерапия, в случае иррационального питания, сочетающегося с продолжительным приёмом лекарственных препаратов, по сути является дезинтоксикационной терапией. Кроме того, благодаря благотворному воздействию низкочастотной магнитотерапии у пациентов в значительной степени повышается иммунитет, а кровь насыщается иммуноглобулинами и лимфоцитами.

В ходе многочисленных клинических исследований установлено, что самое выраженное целительное биологическое воздействие на человека оказывают, в первую очередь, именно импульсные магнитные поля, во вторую очередь – магнитотерапия переменным полем, и только лишь затем — посредством постоянных магнитов. Причём всевозможные опасения, связанные с качеством лечебных приборов для магнитотерапии, прошедших государственную сертификацию и покупаемых в магазинах медтехники, аптеках и Представительских центрах производителей таких лечебных приборов — абсолютно беспочвенны! Задумайтесь – Вы когда-нибудь видели в продаже в аптеке какие-либо изделия с магнитами, изготовленные «на коленках» и не имеющие сертификатов соответствия и безопасности государственного образца? Нет! А вот на всевозможных псевдолечебных интернет-порталах – их полным-полно… В результате чего, их использование и порождает иногда недоверие к магнитотерапии, как одному из методов физиотерапевтических процедур. Следует помнить, что магнитотерапию, проводимую посредством специализированных лечебных приборов, называют также ещё также «электронной гомеопатией», но это только лишь при обязательном соблюдении разработанных научной медициной методик лечения. Поэтому, консультация у врача-специалиста, перед применением таких лечебных приборов – обязательна! Отступление от его рекомендаций и разработанных методик лечения магнитотерапией может как раз и дать тот самый негативный эффект, о котором потом упоминают в отрицательных отзывах пользователи лечебных приборов, «забыв» при этом, конечно, указать, что инструкцию к аппарату они даже не читали или же рекомендациям врача не следовали.

Лечебные приборы для магнитотерапии в домашних условиях вполне доступны каждому и год от года становятся всё более востребованными, и не только в России, но и за рубежом, помогая облегчить боли, ускорить заживление переломов, улучшить обмен веществ в организме, способствуя капиллярному кровообращению, снимая отёки и устраняя воспалительные процессы.

Наиболее успешно магнитотерапия используется при лечении переломов, артритов и артрозов. Научными исследованиями установлено, что импульсное электромагнитное поле приводит к стимуляции процессы в организме человека, свойственные остеогенезу, способствуя тем самым наиболее быстрому срастанию тканей костей. Также в результате проводимых клинических исследований был достоверно подтверждён эффект обезболивания при лечении магнитотерапией коленных суставов.

Конечно же, лечение магнитотерапией – это лишь один из множества методов физиотерапии. Его, после обязательной консультации с лечащим врачом, можно применять, как самостоятельный метод, так и в сочетании с иными методами, как-то, например, комплексно с медикаментозным лечением. При таком комплексном подходе будет снижен побочный эффект от приёма лекарственных препаратов и усилено их целительное действие за счёт улучшения обменных процессов в организме. Следует учитывать, что для использования лечебных приборов для магнитотерапии обязательно постановка точного диагноза и причины недуга, которые может провести только квалифицированный специалист!

Трамвай на магнитной подушке может появиться в Нижнем раньше, чем в Москве

В последние дни августа журналисты «Российской газеты» были допущены на режимную территорию МИТ (входит в госкорпорацию «Роскосмос») и смогли запечатлеть на видео и фото сеанс левитации… в исполнении двух вагонов без машиниста.

На первый взгляд — ничего особенного. Весьма похожие снаружи и внутри бело-голубые вагоны можно увидеть в районе ВДНХ и телецентра «Останкино» на московской монорельсовой дороге, разработанной тем же МИТ.

Но главное не в вагоне, а в том, что ПОД вагонами. Как сообщил по горячим следам на своей странице в Twitter глава «Роскосмоса» Дмитрий Рогозин, такой состав «не едет, а летит по монорельсу, не касаясь путей».

Московский институт теплотехники — одно из ведущих предприятий российской (советской) ракетно-космической отрасли, в разные годы здесь создавались ракетные комплексы «Пионер», «Тополь», «Тополь-М», «Булава», «Ярс». Поэтому Дмитрию Рогозину первому и доложили, что на территории МИТ начались испытания транспортной монорельсовой системы, которая будет использовать технологию магнитной левитации.

Или, по-другому, магнитной подушки.

Научный руководитель этой проектно-конструкторской организации академик РАН и Герой Труда Юрий Соломонов свое слово сдержал: заявил в начале 2021 года, что в третьем квартале начнутся испытания полноразмерного демонстрационного образца, и они начались. Самого академика Соломонова в тот день на испытаниях не было. Поясняли происходящее и отвечали на вопросы другие специалисты — непосредственные разработчики системы, руководители и партнеры проекта.

Заместитель начальника одного из отделов МИТ Владимир Шанаев рассказал, что на разработку и создание демонстрационного образца ушло восемь месяцев. А ходовые испытания, если не возникнет каких-то неожиданностей, планируют завершить в течение месяца.

Валентин Занин, который предстал как руководитель-координатор всего проекта и одноименной компании «Национальные магнитолевитационные дороги», дал понять, что наряду с МИТ в новом деле участвуют другие организации и разработчики, связанные между собой еще с советских времен и все эти годы не перестававшие следить за развитием технологий маглев (магнитной левитации) применительно к транспорту в странах Европы, в Японии, Южной Корее, а теперь и в Китае.

А посмотреть там есть на что. Еще в 1979 году прототип поезда на магнитной подушке был продемонстрирован в Гамбурге. Он перевозил пассажиров со средней скоростью 75 км/ч. Спустя пять лет свой уже коммерческий маглев появился в Бирмингеме (Великобритания). Экспериментальная линия протяженностью 600 метров соединила терминал международного аэропорта и расположенную рядом железнодорожную станцию. И десять лет, вплоть до 1995 года, успешно работала.

Железнодорожная линия на магнитном подвесе действует в южно-корейском Тэджоне: соединяет Национальный музей науки и выставочный парк. Правда, и тут расстояние не более километра.

В Японии и Китае шагнули дальше — занялись разработкой и внедрением высокоскоростных поездов на магнитной подушке. Сегодня рекорд скорости принадлежит японскому JR-Maglev MLX01, который на испытательной трассе показал 581 км/ч. А самый известный из работающих — это, кончено, маглев в Шанхае. Он соединяет станцию метро Лунъян Лу с международным аэропортом Пудун. В создании этой высокоскоростной линии использованы разработки немецкой компанией Transrapid. Расстояние в 30 километров шанхайский маглев преодолевает за семь с половиной минут.

Читайте также  Как определить марку кабеля по внешнему виду?

А нынешним летом — первое сообщение агентства «Синьхуа» пришло 20 июля — в китайском Циндао (провинции Шаньдун на северо-востоке страны) презентовали маглев уже собственной, китайской разработки. Как было заявлено, поезд может достигать 600 км/ч, а это новый мировой рекорд скорости для наземного транспорта…

Видимо, понимая и соизмеряя свои возможности с достижениями конкурентов, Валентин Занин и его единомышленники нацелились на создание транспортных систем на магнитной подушке исключительно для городских условий, «где много улиц с крутыми поворотами, а скорость — фактор не главный». По существу, это современный аналог трамвая и альтернатива метро в тех местах, где подземку невозможно или трудно проложить.

— Мы предлагаем первый в России и Европе монорельс с магнитной левитацией для плотной городской застройки, — говорит Валентин Занин. — Поэтому в составе всего четыре или только два вагона — по ситуации. Крутые повороты — гигантская проблемы для городов с трамвайными сетями: раньше времени изнашиваются рельсы, требуют замены колесные пары. А у нас ничего этого не будет…

Монорельс на магнитной подушке, по словам Занина, в 3-4 раза дешевле в эксплуатации, чем трамвай. И практически весь жизненный срок, это 30 — 40 лет, «работает без ремонта» (цитирую дословно). А средств на строительство, по его же расчетам, требуется в 10 раз меньше, чем на прокладку метро той же протяженности…

Опыт сооружения, экспериментальной обкатки и нынешнее состояние Московского монорельса побуждают, мягко скажем, усомниться в доказательности таких расчетов. Но первые смотрины, на которые нас пригласили в МИТ, не самый подходящий повод для дискуссий. Как говорится, поживем — увидим.

А пока кандидат технических наук и лауреат Государственной премии Валентин Занин призвал журналистов и своих коллег в Московском институте теплотехники смотреть на перспективы городского маглева в России с оптимизмом. И весьма уверенно заявил, что уже до конца 2021 года ожидает первые контракты на проектирование и строительство таких магнитолевитирущих транспортных систем в городах центральной России.

По его же словам, нельзя исключить, что трамвай на магнитной подушке появится в Краснодаре или Нижнем Новгороде раньше, чем в Москве.

Поезда на магнитной подушке: почему «транспорт будущего» не прижился

Поезда на магнитной подушке — это экологический чистый, бесшумный и быстрый транспорт. Они не могут слететь с рельсов и в случае неполадки способны безопасно остановиться. Но почему же такой транспорт не получил широкого распространения, и люди по-прежнему пользуется обычными электричками и поездами?

В 1980-е годы считалось, что поезда с магнитной левитацией (маглевы) это транспорт будущего, который уничтожит внутренние авиарейсы. Эти поезда могут перевозить пассажиров со скоростью 800 км/ч и не наносят практически никакого вреда окружающей среде.

Маглевы способны ездить в любую погоду и не могут сойти со своего единственного рельса — чем дальше поезд отклоняется от путей, тем сильнее его толкает обратно магнитная левитация. Все маглевы двигаются с одинаковой частотой, поэтому не будет никаких неполадок с сигналами. Представьте себе, какой эффект оказали бы такие поезда на экономику и транспорт, если бы расстояние между отдаленными крупными городами преодолевалось за полчаса.

Но почему вы до сих пор не можете ездить по утрам на работу со сверхзвуковой скоростью? Концепт маглевов существует уже более века, еще с начала 1900-х было оформлено множество патентов, использующих эту технологию. Однако до наших дней дожило лишь три рабочие системы поездов на магнитной подушке, причем все они есть только в Азии.

Японский маглев. Фото: Yuriko Nakao/Reuters

До этого первый рабочий маглев появился в Великобритании: в период с 1984 по 1995 из аэропорта Бирмингема ходил шаттл AirLink. Маглев был популярным и дешевым транспортом, но его обслуживание обходилось очень дорого, поскольку некоторые запчасти были единичного производства и их было тяжело найти.

В конце 1980-х Германия тоже обратилась к этой идее: ее беспилотный поезд M-Bahn ездил между тремя станциями западного Берлина. Однако технологию левитирующих поездов решили отложить на потом, и линию закрыли. Ее производитель TransRapid проводил испытания маглевов до тех пор, пока в 2006 году на тренировочном полигоне в Латене не произошел несчастный случай, в котором погибло 23 человека.

Это происшествие могло поставить крест на немецких маглевах, если бы компания TransRapid не подписала до этого договор на строительство в 2001 году маглева для Шанхайского аэропорта. Сейчас этот маглев является самым быстрым электропоездом в мире, который ездит со скоростью 431 км/ч. С его помощью расстояние от аэропорта до бизнес-квартала Шанхая можно преодолеть всего за восемь минут. На обычном транспорте для этого понадобился бы целый час. В Китае есть еще один среднескоростной маглев (его скорость составляет около 159 км/ч), который работает в столице провинции Хунань, Чанша. Китайцы настолько полюбили эту технологию, что к 2020 году планируют запустить еще несколько маглевов в 12 городах.

Канцлер Германии Ангела Меркель первой проехала на маглеве TransRapid до Шанхайского аэропорта. Фото: Rolf Vennenbernd/EPA

В Азии сейчас ведется работа и над другими проектами поездов на магнитной подушке. Один из самых известных — это беспилотный шаттл EcoBee, который ездит от южнокорейского аэропорта Инчхон с 2012 года. На его самой короткой линии расположено семь станций, между которыми маглев проносится со скоростью 109 км/ч. А еще поездки на нем абсолютно бесплатны.

Система Linimo рядом с Нагоей представляет собой городской маглев, который движется с относительно медленной скоростью. Японцы используют технологию магнитной левитации с 1969 года. Сейчас их самый амбициозный проект — это линия маглевов Chuo Shinkanse, по которой можно будет ездить из Токио до Нагойи со скоростью в 498 км/ч (в основном путь будет проходить под землей).

Почему такая технология не прижилась в других странах?

Все упирается в деньги. Строительство маглевов нужно начинать с нуля. Правительства большинства стран просто не готовы к таким затратам, особенно если у них уже развита традиционная железнодорожная инфраструктура. На постройку небольшого маглева в Шанхае потребовалось более $1 миллиарда, а на строительство японского еще больше.

Японский маглев. Фото: Kyodo/Reuters

Кроме того, маглевы не гарантируют какую-либо прибыль. Даже самые успешные азиатские проекты принесли плоды лишь через несколько десятков лет и ценой огромных усилий. Например, шанхайский маглев приносит ежегодные убытки в размере $93 миллионов.

Если китайское правительство способно смириться с такими расходами, то власти большинства стран считают, что будет дешевле обновить существующие железные дороги. Повлиять на ситуацию могут только частные инвестиции, однако даже группа частных сообществ «Японские железные дороги» во многом контролируется государством и до сих пор получает от него значительные субсидии.

Есть ли преимущества у такой инфраструктуры будущего?

Несмотря на огромную стоимость линии маглевов от аэропорта Инчхон, его создатели утверждают, что она на две трети ниже цены обычной железной дороги. По их словам, «хоть расходы на электричество для работы маглева на 30% выше, чем у стандартного поезда, эксплуатация поезда обходится на 60-70% дешевле».

Аналогично для строительства одного километра японского маглева потребовалось $93 миллиона, однако расходы на техобслуживание довольно небольшие, а сам маглев гораздо надежнее и тише, чем традиционные транспортные системы. Кроме того, эти поезда идеальны для городов, поскольку не вредят атмосфере.

Поэтому другим странам все же стоит следить за тем, что происходит в азиатском регионе. Потому что воплотить идею маглевов вполне реально.

Электромагнитные транспортные средства и аппараты. Транспорт на магнитной подушке

Мы представляем вам проект, основной темой которого является «Электромагнитные транспортные средства и аппараты». Занявшись этой работой, мы поняли, что наиболее интересным вопросом для нас является транспорт на магнитной подушке.

Недавно знаменитый английский писатель-фантаст Артур Кларк сделал очередное предсказание. «. Мы, возможно, стоим на пороге создания космического аппарата нового типа, который сможет покидать Землю с минимальными затратами за счет преодоления гравитационного барьера, — считает он. — Тогда нынешние ракеты станут тем же, чем были воздушные шары до первой мировой войны». На чем же основано такое суждение? Ответ нужно искать в современных идеях создания транспорта на магнитной подушке.

Читайте также  Как самому вырыть колодец пошагово?

Скачать:

Вложение Размер
vystuplenie.docx 261.46 КБ

Предварительный просмотр:

I-ая открытая студенческая научно-практическая конференция

«Моя проектная деятельность в колледже»

Направление научно-практического проекта:

Электромагнитные транспортные средства и аппараты. Транспорт на магнитной подушке

Сухов Виталий Владимирович, студент группы 2 ЭТ

Галин Алексей Леонидович, студент группы 2 ЭТ

Название учебного заведения:

ГБОУ СПО Электромеханический колледж №55

Утенкова Еатерина Сергеевна

Магнитоплан или Маглев

Вопросы эксплуатации транспорта на магнитной подушке

Технологии магнитного подвеса поездов

Достоинства и недостатки транспорта на магнитной подушке

Разработки новых видов транспорта

Мы представляем вам проект, основной темой которого является «Электромагнитные транспортные средства и аппараты». Занявшись этой работой, мы поняли, что наиболее интересным вопросом для нас является транспорт на магнитной подушке.

Недавно знаменитый английский писатель-фантаст Артур Кларк сделал очередное предсказание. «. Мы, возможно, стоим на пороге создания космического аппарата нового типа, который сможет покидать Землю с минимальными затратами за счет преодоления гравитационного барьера, — считает он. — Тогда нынешние ракеты станут тем же, чем были воздушные шары до первой мировой войны». На чем же основано такое суждение? Ответ нужно искать в современных идеях создания транспорта на магнитной подушке.

Магнитоплан или Маглев

Магнитоплан или Маглев (от англ. magnetic levitation ) — это поезд на магнитном подвесе, движимый и управляемый магнитными силами. Такой состав, в отличие от традиционных поездов, в процессе движения не касается поверхности рельса. Так как между поездом и поверхностью движения существует зазор, трение исключается, и единственной тормозящей силой является сила аэродинамического сопротивления.

Скорость, достижимая маглев, сравнима со скоростью самолета и позволяет составить конкуренцию воздушным сообщениям на малых (для авиации) расстояниях (до 1000 км). Хотя сама идея такого транспорта не нова, экономические и технические ограничения не позволили ей развернуться в полной мере: для публичного использования технология воплощалась всего несколько раз. В настоящее время, Маглев не может использовать существующую транспортную инфраструктуру, хотя есть проекты с расположением элементов магнитной дороги между рельсов обычной железной дороги или под полотном автотрассы.

Необходимость поездов на магнитной подушке (MAGLEV) [Magnetic Levitation] обсуждается уже долгие годы, однако результаты попыток их реального применения оказались обескураживающими. Важнейший недостаток поездов MAGLEV заключается в особенности работы электромагнитов, которые и обеспечивают левитацию вагонов над полотном. Электромагниты, не охлаждаемые до состояния сверхпроводимости, потребляют гигантские объемы энергии. При использовании же сверхпроводников в полотне стоимость их охлаждения сведет на нет все экономические преимущества и возможность осуществления проекта.

Альтернатива предложена физиком Ричардом Постом из Lawrence Livermore National Laboratory, Калифорния. Ее суть заключается в использовании не электромагнитов, а постоянных магнитов. Ранее применяемые постоянные магниты были слишком слабы, что бы поднять поезд, и Пост применяет метод частичной акселерации, разработанный отставным физиком Клаусом Хальбахом из Lawrence Berkley National Laboratory. Хальбах предложил метод расположения постоянных магнитов таким образом, что бы сконцентрировать их суммарные поля в одном направлении. Inductrack – так Пост назвал эту систему – использует установки Хальбаха, вмонтированные в днище вагона. Полотно, само по себе, — это упорядоченная укладка витков изолированного медного кабеля.

Установка Хальбаха концентрирует магнитное поле в определенной точке, снижая ее в других. Будучи вмонтированной в днище вагона, она генерирует магнитное поле, которое индуцирует достаточные токи в обмотках полотна под движущимся вагоном, чтобы поднять вагон на несколько сантиметров и стабилизировать его [рис.1]. Когда поезд останавливается, эффект левитации исчезает, вагоны опускаются на дополнительные шасси.

Рис. 1 Установка Хальбаха

На рисунке представлено 20 метровое опытное полотно для испытания MAGLEV поездов типа Inductrack, которое содержит около 1000 прямоугольных индуктивных обмоток, каждая шириной 15 см. На переднем плане испытательная тележка и электрический контур. Алюминиевые рельсы вдоль полотна поддерживают тележку до момента достижения устойчивой левитации. Установки Хальбаха обеспечивают: под днищем – левитацию, по бокам – устойчивость.

Когда поезд достигает скорости 1-2 км/ч, магниты производят достаточные для левитации поезда токи в индуктивных обмотках. Сила, движущая поезд, генерируется электромагнитами, установленными с интервалами вдоль пути. Поля электромагнитов пульсируют таким образом, что отталкивают от себя установки Хальбаха, смонтированные в поезде, и двигают его вперед. Согласно Посту, при правильном расположении установок Хальбаха, вагоны не потеряют равновесия ни при каких обстоятельствах, вплоть до землетрясения. В настоящее время, исходя из успехов демонстрационной работы Поста в масштабе 1/20, NASA подписало 3-х годичный контракт с его коллективом в Ливерморе для дальнейшего исследования данной концепции для более эффективного запуска спутников на орбиту. Предполагается, что эта система будет использоваться в качестве многоразового разгонного носителя, который разгонял бы ракету до скорости около 1 Маха, перед включением на ней основных двигателей.

Однако, несмотря на все сложности перспективы использования транспорта на магнитной подушке остаются весьма заманчивыми. Так, японское правительство готовится возобновить работу над принципиально новым видом наземного транспорта — поездами на магнитной подушке. По заверениям инженеров, вагоны «маглева» способны покрывать расстояние между двумя крупнейшими населенными центрами Японии — Токио и Осакой — всего за 1 час. Нынешним скоростным железнодорожным экспрессам для этого требуется времени в 2,5 раза больше.

Секрет скорости «маглева» состоит в том, что вагоны, подвешенные в воздух силой электромагнитного отталкивания, двигаются не по колее, а над ней. Это напрочь исключает потери, неизбежные при трении колес о рельсы. Многолетние испытания, проводившиеся в префектуре Яманаси на пробном участке длиной 18,4 км, подтвердили надежность и безопасность этой транспортной системы. Вагоны, двигавшиеся в автоматическом режиме, без пассажирской нагрузки развивали скорость в 550 км/час. Пока что рекорд скоростного передвижения по рельсам принадлежит французам, чей поезд TGV в 1990 году на испытаниях разогнался до 515 км/час.

Вопросы эксплуатации транспорта на магнитной подушке

Японцев также тревожат экономические проблемы, и в первую очередь вопрос рентабельности сверхскоростной линии «маглева». Ныне ежегодно между Токио и Осакой совершают путешествие около 24 млн. человек, 70% пассажиров пользуются при этом скоростной железнодорожной линией. По подсчетам футурологов, революционное развитие сети компьютерной связи неминуемо приведет к снижению пассажиропотока между двумя крупнейшими центрами страны. На загруженности транспортных линий может сказаться и наметившееся падение численности активного населения страны

Российский проект открытия движения поездов на магнитной подушке из Москвы в Санкт-Петербург в ближайшее время не будет реализован, сообщил на пресс-конференции в Москве в конце февраля 2011 года руководитель Федерального агентства железнодорожного транспорта Михаил Акулов. С этим проектом могут быть проблемы, поскольку нет опыта эксплуатации поездов на магнитной подушке в условиях зимы, сказал Акулов, сообщив, что такой проект предложен группой российских разработчиков, которые взяли на вооружение опыт Китая. Вместе с тем Акулов отметил, что идея создания высокоскоростной магистрали Москва – Санкт-Петербург сегодня вновь актуальна. В частности, предложено совместить создание высокоскоростной магистрали с параллельным строительством автомобильного шоссе. Глава агентства добавил, что мощные бизнес-структуры из Азии готовы участвовать в этом проекте, не уточнив, о каких именно структурах идет речь.

Технологии магнитного подвеса поездов

На данный момент существует 3 основных технологии магнитного подвеса поездов:

1. На сверхпроводящих магнитах (электродинамическая подвеска, EDS).

Сверхпроводящий магнит — соленоид или электромагнит с обмоткой из сверхпроводящего материала. Обмотка в состоянии сверхпроводимости обладает нулевым омическим сопротивлением. Если такая обмотка замкнута накоротко, то наведённый в ней электрический ток сохраняется практически сколь угодно долго.

Магнитное поле незатухающего тока, циркулирующего по обмотке сверхпроводящего магнита, исключительно стабильно и лишено пульсаций, что важно для ряда приложений в научных исследованиях и технике. Обмотка сверхпроводящего магнита теряет свойство сверхпроводимости при повышении температуры выше критической температуры Тк сверхпроводника, при достижении в обмотке критического тока Iк или критического магнитного поля Нк. Учитывая это, для обмоток сверхпроводящих магнитов. применяют материалы с высокими значениями Тк, Iк и Нк.

2. На электромагнитах (электромагнитная подвеска, EMS).

3. На постоянных магнитах; это новая и потенциально самая экономичная система.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: