Магнитные усилители принцип действия - ELSTROIKOMPLEKT.RU

Магнитные усилители принцип действия

МАГНИТНЫЙ УСИЛИТЕЛЬ

Магнитные усилители широко применяются на отечественных тепловозах в системах регулирования мощности дизель-генераторов и в других устройствах автоматики.
Работа магнитных усилителей основана на использовании законов прохождения переменного тока в электрических цепях и физических свойств ферромагнитных материалов. Магнитный усилитель имеет сердечник, на который надеты катушки обмоток (рис. 222).

Рис. 222 Схема магнитного усилителя

Сердечник изготавливают из электротехнической стали или других ферромагнитных материалов, например из пермаллоя. Катушки Р1 и Р2 рабочей обмотки усилителя включены в цепь переменного тока. В обмотку управления У1 подводится постоянный ток. Рабочая обмотка магнитного усилителя представляет собой индуктивное сопротивление.
При описании возбудителей с расщепленными полюсами подробно рассматривался процесс намагничивания ферромагнитных сердечников. Если вначале с увеличением магнитодвижущей силы пропорционально ей возрастают магнитный поток и магнитная индукция, то при наступлении магнитного насыщения материала сердечника практически прекращается изменение магнитной индукции, как бы ни увеличивали мы магнитодвижущую силу за счет повышения величины тока в обмотке. Явление магнитного насыщения ферромагнитных материалов использовано в магнитном усилителе.
Вследствие большого индуктивного сопротивления рабочей обмотки при отсутствии тока в обмотке управления сила тока в цепи рабочей обмотки будет весьма невелика. Если по обмотке управления пропустить постоянный ток и довести сердечник до магнитного насыщения, то переменный ток рабочих обмоток уже не будет создавать дополнительного изменяющегося магнитного потока. Индуктивное сопротивление рабочих обмоток резко снизится, и в соответствии с законом Ома ток, протекающий по этим обмоткам, значительно увеличится. При постепенном увеличении тока в обмотке управления также постепенно снижается переменный магнитный поток, создаваемый рабочими обмотками, и нарастает ток в цепи этих обмоток.
В магнитных усилителях устанавливаются две катушки Р1 и Р2 рабочей обмотки (см. рис. 222). Ими создаются согласные по направлению магнитные потоки, замыкающиеся во внешнем кольце магнитопровода усилителя. В среднем стержне с обмоткой управления магнитные потоки рабочих обмоток имеют противоположное направление, взаимокомпенсируются и не индуктируют э. д. с. в обмотке управления. Появление трансформаторной э. д. с. в управляющей обмотке могло бы привести к нарушению работы цепей управления.
Обмотка управления потребляет небольшую мощность. Благодаря этому с помощью небольшого тока, затрачивая незначительную мощность, можно регулировать в широких пределах достаточно большую по величине мощность нагрузки. Отсюда такие аппараты получили свое наименование усилителей.
Магнитный усилитель можно рассматривать и как регулируемый резистор в цепи переменного тока, изменение сопротивления которого производится с помощью управляющего постоянного тока.
Нагрузка Rн т. е. объект, в котором ток регулируется с помощью магнитного усилителя, включается в цепь рабочих обмоток. Нагрузкой магнитных усилителей часто являются обмотки возбуждения генераторов. Чтобы через нагрузку проходил постоянный, а не переменный ток, в цепь включается выпрямительный мост В.
Отношение тока нагрузки к току в обмотке управления называют коэффициентом усиления магнитного усилителя по току, а отношение мощностей нагрузки и управления — коэффициентом усиления по мощности. Коэффициенты усиления обычных магнитных усилителей обычно лежат в пределах от 50 до 200.
Увеличения коэффициентов усиления магнитных усилителей достигают применением обратной связи. Схемы таких усилителей показаны на рис. 223.

Рис. 223. Схемы магнитных усилителей с обратными связями: а) внешней; б)внутренней

Усилитель оборудуется дополнительной обмоткой обратной связи ОС (рис. 223, а), которая устанавливается вместе с обмоткой управления и включается последовательно с внешней нагрузкой Rн. Через обмотку обратной связи проходит уже выпрямленный выходной ток рабочих обмоток. Создаваемый ею магнитный поток усиливает магнитный поток обмотки управления У1. В процессе работы магнитного усилителя при увеличении тока в обмотке управления увеличивается ток рабочих обмоток и одновременно возрастает ток в обмотке обратной связи, так как она включена последовательно с нагрузкой. Поэтому обмотка обратной связи усиливает действие обмотки управления. При небольшом увеличении тока управления происходит резкое изменение тока нагрузки. В рассмотренном усилителе была применена специальная обмотка обратной связи. Такие магнитные усилители называют усилителями с внешней обратной связью. В качестве обмоток обратной связи могут быть использованы и рабочие обмотки (рис. 223, б). В этом случае они как бы берут на себя дополнительную роль, а специальной обмотки обратной связи не имеется. Последовательно с каждой рабочей обмотки включается выпрямитель. Поэтому через катушки рабочих обмоток ток проходит только в одном направлении. Каждая катушка работает лишь в течение полупериода изменения величины переменного тока. В результате рабочие катушки создают магнитный поток одного направления, совпадающего с направлением магнитного потока управляющей (регулировочной) обмотки. Таким образом, рабочие обмотки усиливают действие регулировочной обмотки, увеличивая коэффициент усиления. Такая система обратной связи получила название внутренней. Внутренняя обратная связь упрощает устройство магнитного усилителя, так как не требует установки дополнительной обмотки.
Рассмотренные выше обратные связи являются положительными, приводящими к увеличению коэффициента усиления магнитного усилителя. Могут применяться при необходимости и отрицательные обратные связи, снижающие коэффициент усиления.
Магнитные усилители, используемые в электрических схемах тепловозов для регулирования мощности тяговых генераторов, имеют внутреннюю положительную обратную связь. Они получили название амплистатов.
Само слово амплистат состоит из двух частей: ампли — происходит от латинского слова amplificatio — усиление (увеличение) и стат -— от греческого слова statos — стоящий (неподвижный). Таким образом, в переводе амплистат.— это статический (неподвижный, без вращающихся частей) усилитель. Коэффициент усиления по мощности магнитных усилителей с обратной связью очень велик. У тепловозных амплистатов он составляет около 50 000.
При наличии обратной связи даже в случае отсутствия тока в обмотке управления магнитный усилитель подмагничивается рабочими обмотками, и ток нагрузки достигает значительной величины. Если теперь пропускать ток по обмотке управления в том направлении, при котором создаваемый ею магнитный поток будет усиливать намагничивающее действие рабочих обмоток, то выходной ток усилителя возрастет.
Изменение направления тока в обмотке управления вызовет размагничивание усилителя и снижение выходного тока вплоть до определенной наименьшей величины- Отношение наибольшего выходного тока магнитного усилителя к наименьшему называют кратностью выходного тока усилителя. Большая кратность выходного тока — очень важное достоинство магнитных усилителей.
В магнитных усилителях часто применяется несколько обмоток управления. При этом ток нагрузки усилителя могут независимо регулировать ряд различных автоматических устройств. Величина тока нагрузки будет определяться алгебраической суммой магнитодвижущих сил обмоток управления.
Показанные на рис. 222 и 223 магнитные усилители работают на однофазном переменном токе. Кроме того, применяются трехфазные магнитные усилители, состоящие как бы из трех однофазных усилителей. Трехфазные магнитные усилители были использованы в электросхемах тепловозов ТЭ10 для регулирования тока в обмотке независимого возбуждения тягового генератора.
На тепловозах 2ТЭ10Л, 2ТЭ10В и ТЭП60 однофазные амплистаты применены в качестве основного аппарата управления мощностью тягового генератора.

Рис. 224. Амплистат возбуждения тепловоза 2ТЭ10Л а) общий вид; б) электрическая схема

Амплистат выполнен с двумя магнитными сердечниками (магнитопро-водами), набранными из листов электротехнической стали толщиной 0,35 мм (рис. 224). На каждом сердечнике расположено по одной катушке Н1-К1 и Н2-К2 рабочей обмотки. Четыре обмотки подмагничивания (управления) — задающая, управляющая, регулировочная и стабилизирующая—охватывают оба сердечника. Рабочая обмотка амплнста-та включена последовательно с выпрямителем в цепь питания обмотки независимого возбуждения от подвоз-будителя переменного тока. Обмотки подмагничивания питаются постоянным током от источников:

  • задающая обмотка НЗ — КЗ — от бесконтактного тахометрического блока или тахогенератвра на тепловозах первых лет постройки;
  • управляющая обмотка НУ — КУ—от распределительного трансформатора через трансформаторы постоянного тока и напряжения и селективный узел электрической схемы;
  • регулировочная обмотка HP — КР — от распределительного трансформатора через индуктивный датчик объединенного регулятора и выпрямитель;
  • стабилизирующая обмотка НС — КС — от стабилизирующего трансформатора через выпрямитель.

При этом задающая обмотка создает основную положительную магнитодвижущую силу подмагничивания- Регулировочная обмотка усиливает подмагничивание амплистата. Магнитодвижущая сила управляющей обмотки направлена встречно магнитодвижущей силе задающей и регулировочной обмоток, поэтому управляющая обмотка размагничивает амплистат. Стабилизирующая обмотка получает питание только при переходных процессах возбудителя для сглаживания этих процессов и повышения устойчивости работы схемы.
Следовательно, рабочие обмотки амплистата являются регулируемым индуктивным сопротивлением в цепи возбуждения возбудителя. Величина сопротивления изменяется в результате совместного действия четырех обмоток управления. Чем больше ток в задающей и регулировочной обмотках (ток уставки), тем значительнее выходной ток амплистата и выше» напряжение возбудителя и тягового генератора. С увеличением тока в управляющей обмотке вследствие ее размагничивающего действия уменьшается выходной ток амплистата, соответственно снижается напряжение возбудителя и тягового генератора.
При работе дизеля с заданной частотой вращения коленчатого вала напряжение тахометрического блока сохраняется постоянным, поэтому остается постоянной и магнитодвижущая сила задающей обмотки. С увеличением частоты вращения вала дизеля по позициям контроллера пропорционально повышаются выходное напряжение тахометрического блока, ток в задающей обмотке амплистата, ток возбуждения возбудителя, его напряжение и напряжение тягового генератора. Схема питания управляющей обмотки обеспечивает регулирование тока в ней в зависимости от силы тока и напряжения тягового генератора с целью получения его селективной характеристики.
Ток в регулировочной обмотке амплистата изменяется с помощью индуктивного датчика объединенного регулятора частоты вращения и мощности дизеля таким образом, чтобы мощность тягового генератора сохранялась постоянной на гиперболическом участке его внешней характеристики. Следовательно, магнитный поток регулировочной обмотки корректирует суммарное подмагничивание сердечника амплистата, преобразуя линейный участок селективной характеристики тягового генератора и гиперболический.
Рабочая обмотка амплистата выполнена из 236 витков медного провода диаметром 1,35 мм. Номинальная величина напряжения питания цепи рабочей обмотки равна 60 В, ток продолжительного режима достигает 8,5 А. Обмотки управления рассчитаны на номинальный ток до 1,4 -— 1,5 А, изготовлены из более тонкого медного провода диаметром 0,8 мм. Число витков задающей- и управляющей обмоток равняется 500, а корректирующей регулировочной — 200. В рабочей части характеристики (рис. 225) внешний ток амплистата изменяется от 0,2 до 9 А, т.е. кратность выходного тока равна 45 и является вполне достаточной для регулирования возбуждения тягового генератора в необходимых пределах.

Читайте также  Почему гудят трубы когда открываешь кран?

Рис. 225. Характеристика аплистата возбуждения

Магнитный усилитель — схема, принцип действия, особенности работы, устройство. Как устроен и работает.

Как устроен и работает магнитный усилитель. Схема. (10+)

Магнитный усилитель позволяет управлять переменным током, проходящим через него, путем пропускания небольшого управляющего постоянного тока через управляющую обмотку.

Принцип действия магнитного усилителя

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

[Индуктивность, Гн] = 1.257E-9 * [Магнитная проницаемость сердечника] * [Площадь сечения магнитопровода, кв. мм] * [количество витков]^2 / [Длина средней магнитной линии сердечника, мм]

Принцип действия магнитного усилителя основан на интересном свойстве ферромагнитных материалов. Этим материалам свойственно насыщение. Это означает, что в ненамагниченном состоянии магнитная проницаемость может быть несколько тысяч или несколько десятков тысяч (для трансформаторного железа). При такой высокой магнитной проницаемости индуктивность катушки, намотанной на сердечнике, будет большой. Большим будет и модуль сопротивления переменному току. Путь переменному току будет практически перекрыт. Магнитный усилитель закрыт.

Но все меняется, если достаточно сильно (до насыщения) намагнитить сердечник. При этом его магнитная проницаемость приблизится к единице. Индуктивность, а значит модуль сопротивления, уменьшится в тысячи или десятки тысяч раз. Магнитный усилитель откроется.

Рисунок иллюстрирует описанный процесс. Магнитная индукция, характеризующая интенсивность магнитного поля, отложена по вертикальной оси. Сначала она быстро нарастает при небольшом росте электрического тока. Потом происходит перелом графика. Индукция уже растет намного медленнее по отношению к силе тока. Когда магнитный усилитель закрыт, сила тока располагается между точками 1 — 2. Сила тока через открытый магнитный усилитель находится между точками 3 — 4.

На этом рисунке мы видим график тока через магнитный усилитель в его разных режимах. A1 — усилитель открыт. A2 — усилитель закрыт. A3 — промежуточное состояние. Мы видим, что в открытом или закрытом состоянии магнитный усилитель практически не искажает сигнал. Но вот в промежуточном состоянии искажения очень существенные. Кроме того в промежуточном состоянии достаточно высоки потери на перемагничивание сердечника. В таком режиме магнитный усилитель используется только, если нагрузка не чувствительна к искажению формы сигнала или происходит последующая фильтрация. Замечу, что искажения, вносимые магнитным усилителем, довольно безобидные. В выходном сигнале нет высших гармоник.

Устройство, схема

Типичный магнитный усилитель состоит из двух совершенно одинаковых дросселей с двумя обмотками, соединенных, как показано на схеме.

Силовые обмотки L2 и L3 соединены параллельно. Выводы 1 — 2 предназначены для подвода переменного тока, которым мы хотим управлять. Они включаются последовательно с нагрузкой. Управляющие обмотки соединены последовательно навстречу друг другу, чтобы напряжение на одной равнялось минус напряжению на другой.

Очень важно, чтобы дроссели были максимально идентичными. Напряжение на обмотке L1, наводимое с обмотки L2, должно быть в точности равно напряжению на обмотке L4, наводимому с обмотки L3. Тогда на выводах 3 — 4 вообще не будет напряжения, что необходимо для правильной работы устройства.

Возможным вариантом является намотка обоих дросселей на одном Ш — образном сердечнике.

Здесь обмотка L1 подмагничивает оба дросселя. В обмотке L4 нет необходимости. Ниже мы рассчитаем количество витков для управляющих обмоток. Число витков обмотки L1 во втором исполнении равно числу витков обмотки L1 в первом исполнении. Может показаться, что второе исполнение экономит медь, ведь не нужно мотать вторую управляющую обмотку. Но на самом деле. Длина витка L1 во втором исполнении значительно больше, чем в первом. Экономия меди есть, но не очень большая.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Здравствуйте. Измерение постоянного тока. Токовые клещи Вы пробовали делать или это теоретические разработки? Если делали можно рабочую схему с данными. Хотелось ее сделать. Читать ответ.

Тиристорное переключение нагрузки, коммутация (включение / выключение).
Применение тиристоров в качестве реле (переключателей) напряжения переменного то.

Защита силового ключа от перенапряжения. Сброс скачков напряжения на т.
Как защитить силовой транзистор от пробоя броском высокого напряжения. Описание .

Бестрансформаторные источники питания, преобразователи напряжения без .
Расчет онлайн гасящего конденсатора бестрансформаторного источника питания.

Повышающие переменное, постоянное напряжение бестрансформаторные преоб.
Повышение напряжения без трансформатора. Умножители. Рассчитать онлайн. Преобраз.

Магнитный усилитель

Магнитный усилитель — это статический аппарат, предназначенный для управления величиной переменного тока посредством слабого постоянного тока. Применяется в схемах автоматического регулирования электродвигателей переменного тока.

Работа магнитного усилителя основана на нелинейности характеристики намагничивания магнитопровода. На крайних стержнях магнитного усилителя находится рабочая обмотка, которая состоит из двух катушек, соединённых последовательно. На среднем стержне размещается обмотка управления из большого количества витков W=. Если ток в неё не подаётся, а к рабочей обмотке, соединённой последовательно с нагрузкой, подведено переменное напряжение U

, то из-за малого количества витков W

магнитопровод не насыщается, и почти всё напряжение падает на реактивном сопротивлении рабочих обмоток Z

. На нагрузке в этом случае выделяется малая мощность.

Если теперь пропустить по обмотке управления ток Iу, то даже при небольшом его значении (из-за большого W=), возникает насыщение магнитопровода. В результате реактивное сопротивление рабочей обмотки резко уменьшается, а величина тока в цепи — увеличивается. Таким образом, посредством малых сигналов в обмотке управления можно управлять значительной величиной мощности в рабочей цепи магнитного усилителя.

В простейшем случае магнитный усилитель — это управляемая постоянным током индуктивность, которая включается в цепь переменного тока последовательно с нагрузкой. При большой индуктивности ток в последовательной цепи и в нагрузке маленький, при малой индуктивности ток в последовательной цепи и в нагрузке большой. Существует целый ряд разработок, в которых магнитный усилитель используется для удвоения частоты, бесконтактного переключения токов (бесконтактные реле), для стабилизации напряжения питания, для модуляции сигналов ВЧ сигналами НЧ.

В последнее время магнитный усилитель был частично потеснён полупроводниковыми приборами, но в ряде применений по-прежнему не имеет конкурентов.

Основное назначение — управление силовым электроприводом (распространены в строительной технике), По-прежнему магнитные усилители используются в системах, измеряющих постоянные токи от тензодатчиков. Магнитный усилитель позволяет бесконтактно измерять постоянные токи в линиях электропередач. В последнее время для этого всё чаще применяют более компактные датчики Холла.

Схема магнитного усилителя

Сердечник изготавливают из электротехнической стали или других ферромагнитных материалов, например из пермаллоя. Катушки Р1 и Р2 рабочей обмотки усилителя включены в цепь переменного тока. В обмотку управления У1 подводится постоянный ток. Рабочая обмотка магнитного усилителя представляет собой индуктивное сопротивление.
При описании возбудителей с расщепленными полюсами подробно рассматривался процесс намагничивания ферромагнитных сердечников. Если вначале с увеличением магнитодвижущей силы пропорционально ей возрастают магнитный поток и магнитная индукция, то при наступлении магнитного насыщения материала сердечника практически прекращается изменение магнитной индукции, как бы ни увеличивали мы магнитодвижущую силу за счет повышения величины тока в обмотке. Явление магнитного насыщения ферромагнитных материалов использовано в магнитном усилителе.
Вследствие большого индуктивного сопротивления рабочей обмотки при отсутствии тока в обмотке управления сила тока в цепи рабочей обмотки будет весьма невелика. Если по обмотке управления пропустить постоянный ток и довести сердечник до магнитного насыщения, то переменный ток рабочих обмоток уже не будет создавать дополнительного изменяющегося магнитного потока. Индуктивное сопротивление рабочих обмоток резко снизится, и в соответствии с законом Ома ток, протекающий по этим обмоткам, значительно увеличится. При постепенном увеличении тока в обмотке управления также постепенно снижается переменный магнитный поток, создаваемый рабочими обмотками, и нарастает ток в цепи этих обмоток.
Магнитный усилитель можно рассматривать и как регулируемый резистор в цепи переменного тока, изменение сопротивления которого производится с помощью управляющего постоянного тока.
Нагрузка Rн т. е. объект, в котором ток регулируется с помощью магнитного усилителя, включается в цепь рабочих обмоток. Нагрузкой магнитных усилителей часто являются обмотки возбуждения генераторов. Чтобы через нагрузку проходил постоянный, а не переменный ток, в цепь включается выпрямительный мост В.
Отношение тока нагрузки к току в обмотке управления называют коэффициентом усиления магнитного усилителя по току, а отношение мощностей нагрузки и управления — коэффициентом усиления по мощности. Коэффициенты усиления обычных магнитных усилителей обычно лежат в пределах от 50 до 200.

Читайте также  Лучшие производители кухонных вытяжек

Магнитный усилитель забытая схемотехника.

Магнитный усилитель совершенно забыт в 21 первом веке усилиями производителей радиодеталей. И напрасно.

Магнитный усилитель, это простота и красота схемотехники. С применением управляемых дросселей насыщения, можно упрощением схемы обойтись без целого огорода ламп и полупроводников.

Перед применением магнитных усилителей нужно отдельно разобраться с его работой в конкретном устройстве для конкретных режимов. Это узел, который плохо поддается расчетам.

Регулирующий дроссель это:

Количество витков силовой обмотки.

Количество витков обмотки управления.

Из этого следует, что для нормальной работы магнитного регулятора нужно всего лишь правильно подобрать количество витков в обмотках.

Сначала выбирается количество витков в силовой обмотке для данного железа. Силовая обмотка должна садить проходящее через нее напряжение требуемого тока, на величину предела регулировки, это без подачи управляющего напряжения на обмотку управления. Чем больший проходящий через обмотку ток, тем меньше КПД магнитного регулятора.

Теперь нужно подобрать число витков в управляющей обмотке для заданного тока, регулирующего напряжения.

Число витков в управляющей обмотке должно быть достаточным для полной компенсации падения напряжения на силовой обмотке, заданным током регулирующего напряжения. Магнитная индукция обмотки управления определяется числом витков на Вольт. Чем больше витков, тем меньший ток управления, но больше напряжение.

Пропорция витков в обмотках магнитного регулятора, или коэффициент трансформации, должен быть такой, чтобы силовая обмотка не влияла на обмотку управления больше, чем может компенсировать управляющее напряжение и ток схемы управления.

Это все быстро и легко подгоняется экспериментально.

Несколько закономерностей для магнитных ключей.

Чем больше токи протекают через силовую обмотку, тем меньше КПД магнитных ключей.

Магнитные ключи, это устройства, работающие без запасов, путем тщательного подбора под конкретный режим.

Чем шире диапазон регулирования, тем меньший КПД магнитного ключа.

Вот, для примера, несколько схем 1961 года, армейских и бытовых.

1. Стабилизатор анодного напряжения 5000 вольт лампы ГИ-19Б, применяемой в РЛС П-12, 1961г.

Схема была настолько засекречена, что описания принципа ее работы не было даже в сопутствующей документации.

Принцип ее работы основан на балансном мосте, выполненном на лампе 6Н1П. Чем больше положительное напряжение на 2й ножке — сетке регулирующей лампы 6Н1П, тем меньше напряжение на 7й ножке управляющей лапы 6П1П. Следовательно, меньше напряжение на управляющей обмотке магнитного ключа и меньше выходное напряжение.

2. Схема стабилизатора 7,5В, 35А для накала лампы ГИ-19Б, применяемой в РЛС П-12, 1961г.

Особенность этой схемы, применение 2П1Л в качестве управляющей радиолампы.

2П1Л, это низковольтный лучевой тетрод прямого накала, предназначен для усиления звуковой частоты с напряжением накала 2В и конструктивно, с замком в ключе. Лампа для батарейных ламповых приемников. 2П1Л позже стала 2П1П — такая же, только пальчиковая.

Стабилизация напряжения в этом стабилизаторе осуществляется изменением накала лампы 2П1Л. В лампах прямого накала реакция на колебание накального напряжения намного быстрее, чем в лампах с косвенным накалом.

Вот фото магнитного ключа — стабилизатора накала лампы ГИ-19Б, в РЛС П-12.

Если в трансформаторе, через магнитный шунт, вместо обмотки управления сделать насыщенный резонансный контур 50Гц х 220В, то этот контур будет держать стабильное напряжение в некоторых пределах изменения входного напряжения и выходной нагрузки. Это уже будет феррорезонансный стабилизатор.

4. Схема стабилизатора напряжения СНФ-200 для телевизоров 1961г.

Работа схемы стабилизатора напряжения СНФ-200, заключается в следующем.

На толстой части керна мотается сетевая, ненасыщающаяся обмотка, которая подключается к сети 220В. Толщина керна не позволяет железу входить в насыщение в пределах допустимых нагрузок.

После магнитного шунта, толщина керна значительно меньше и в диапазоне нагрузок, на 10-15 процентов ниже максимальной мощности, железо входит в насыщение.

Напряжение на насыщенной обмотке при стабильной нагрузке, почти не меняется, при колебаниях сети 220В.

Расширить участок стабилизации до 20-30 процентов, можно компенсировав гистерезис железа, намотав некоторое количество витков на ненасыщенной части керна, в противоположную сторону. Таким образом, увеличение входного напряжения будет компенсировать неизбежный рост выходного напряжения, компенсируя гистерезис железа.

Количество витков компенсирующей обмотки зависит от ширины петли гистерезиса железа, пропорций количества витков в обмотках и диаметра провода.

Чем больше гистерезис железа, тем большие колебания выходного напряжения будут вызывать нестабильность нагрузки и нестабильность входного напряжения.

Уменьшение габаритов достигается применением резонансных конденсаторов в насыщающейся цепи, применением железа с малыми потерями и малой толщиной пластин.

Улучшение синусоиды на выходе, достигается применением резонансных дросселей в насыщающейся цепи.

Феррорезонансные стабилизаторы, кроме большого веса, габаритов, сильного гудения, имеют большую потребляемую мощность. Например, описываемый стабилизатор СНФ-200, являлся одним из лучших, и при этом его потребляемая мощность была 80Вт, при выходной мощности 160Вт.

Теперь можно привести примеры современных методов стабилизации переменного напряжения на основе магнитных регуляторов.

5. Вот простая схема эффективного стабилизатора напряжения на основе магнитного усилителя.

Выходное переменное напряжение стабилизируется магнитным усилителем, управляемым напряжением компенсации, получаемым от изменения накала дампового диода. Чем больше напряжение накала, тем больше компенсационное напряжение, и наоборот.

6. И напоследок схема регулировки сварочной дуги стационарной дуговой сварки ВДГ-303-3.

Напряжение дуги регулируется и стабилизируется управляющим, компенсирующим колебания сети 380В, напряжением 0+5В.

Вот фото магнитных ключей, стабилизаторов сварочного напряжения.

Спасибо за внимание.

С ув. Белецкий А. И. 15.01.2018г. Кубань Краснодар.

Как работает простейший магнитный усилитель

В систему автоматического управления (САУ) электрической передачей современных тепловозов входят магнитные усилители. Магнитным усилителем (МУ) называется электромагнитный управляющий аппарат, обеспечивающий плавное изменение величины переменного тока в результате изменения индуктивного сопротивления катушки с ферромагнитным сердечником при подмаг-ничивании его постоянным током управляющих обмоток.

Простейший МУ имеет два сердечника (рис. 14), на которых смонтированы рабочие обмотки ОР1, ОР2 с равным числом витков дор, соединенные встречно друг другу. Они включены в цепь переменного тока с неизменным напряжением и. Обмотка управления ОУ с числом витков шу охватывает оба сердечника и получает питание от источника постоянного тока (тока управления).

Рассмотрим несколько упрощенно принцип действия МУ, полагая неизменной индуктивность его обмоток в течение периода напряжения питания (используя теорию линеаризованного магнитного усилителя). Переменный ток в рабочей обмотке зависит от общего сопротивления цепи 1, которое включает активное сопротивление цепи 1?„ и индуктивное сопротивление обмотки Хи. Ток по закону Ома для цепи пеоеменного тока

Появление индуктивного сопротивления в обмотке обусловливается электродвижущей силой (э. д. с.) самоиндукции Эта э. д. с. индуцируется в витках обмотки под действием изменяющегося магнитного потока, вызванного переменным током. Направлена э. д. с. самоиндукции всегда так, чтобы препятствовать изменению тока. Она тем больше, чем больше скорость изменения тока в витках или пронизывающего их магнитного потока. Эта скорость зависит от частоты переменного тока 1.

Обмотки в зависимости от числа витков, геометрических размеров, материала сердечника обладают различными свойствами с точки зрения индуцирования э. д. с. самоиндукции. Эти свойства характеризуются индуктивностью Ь. Индуктивное сопротивление (Ом) подсчитывается по формуле где Ца — абсолютная магнитная проницаемость, Гн/м, 5С — площадь поперечного сечения сердечника, м2, 1с — средняя длина магнитных силовых линий в сердечнике, создаваемых током рабочей обмотки или обмотки управления, м

Читайте также  Терморезисторы принцип работы

Абсолютная магнитная проницаемость ца характеризует магнитные свойства среды, т. е. различную способность создавать магнитный поток. Магнитная проницаемость вакуума цо. называемая магнитной

Рис 14 Схема простейшего магнитного усилителя

ОУ — обмотка управления, ОР1, ОР2 — рабочие обмотки, Ян — резистор в цепн рабочих обмоток, II ^ — напряжение пнтання рабочих обмоток, I, — ток в цепи рабочих обмоток постоянной, является важной физической константой и в СИ равна 0,000001257 Гн/м.

Рис 16 Характеристика управления про стейшего магнитного усилителя (без обратной связи)

Магнитная проницаемость материала Ц — безразмерная величина, показывающая, во сколько раз абсолютная магнитная проницаемость данного материала ца больше магнитной постоянной цо, т. е. ц.= = Ца/Н’0- Магнитная проницаемость ферромагнитных материалов (железо, никель, кобальт и их сплавы) в тысячи раз больше, чем для вакуума. Магнитная проницаемость воздуха, а также неферромагнитных материалов близка к единице (ц = = 1)

При увеличении тока в обмотках управления МУ увеличивается напряженность магнитного поля (А/м),

где 1у — ток в обмотке управления, А

С увеличением напряженности магнитного поля Н возрастает магнитная индукция В до момента магнитного насыщения сердечника, после которого индукция В остается постоянной (рис. 15). При намагничивании сердечника магнитная проницаемость ц = В/(10Н). После магнитного насыщения сердечника при его дальнейшем намагничивании 1 резко уменьшается и стремится к значению, близкому к единице. Магнитная проницаемость ц может служить показателем степени намагниченности сердечника. При большом намагничивании ферромагнитный сердечник по способности пропускать магнитный поток приближается к неферромагнитным материалам, и МУ в этом случае фактически неуправляем (это есть режим максимальной отдачи).

Таким образом, при увеличении тока управления (тока входа) 1у увеличивается напряженность магнитного поля Я, уменьшается магнитная проницаемость ц и абсолютная магнитная проницаемость ца. Это приводит к уменьшению индуктивности Ь и индуктивного сопротивления Х[, а следовательно, к увеличению рабочего тока (тока выхода) 1р. Индуктивность Ь, как известно, не зависит от направления тока управления 1у, поэтому характеристика управления МУ (рис. 16) симметрична относительно оси 1р

Когда ток управления равен нулю, сердечник МУ не намагничен н его рабочие обмоткн имеют большое индуктивное сопротивление. Поэтому рабочий ток будет мал; его называют током холостого хода МУ (/хх). Прн увеличении тока управления происходит подмагничи-вание сердечника, и рабочий ток МУ увеличивается. Средняя часть характеристики, близкая к прямолинейной, является рабочей. Даже небольшое изменение тока управления вызывает резкое изменение рабочего тока.

МУ имеет две рабочие обмотки для того, чтобы исключить индуцирование переменной э. д. с. в обмотках управления от рабочего тока. При встречном включении рабочих обмоток с равным числом витков индуцируемые в обмотках управления э. д. с. от каждой из рабочих обмоток будут компенсировать друг друга. Естественно, что каждая из рабочих обмоток должна быть смонтирована на отдельном сердечнике, так как при встречном включении рабочих обмоток с равным числом витков на общем сердечнике результирующая индуктивность МУ равнялась бы нулю.

Магнитный усилитель может иметь несколько обмоток управления, и тогда подмагничивание сердечника будет определяться результирующей магнитодвижущей силой (м. д. с.) этих обмоток 2/»у.

Изменение частоты переменного тока 1 меняет индуктивное сопротивление рабочих обмоток [см. формулу (2) ]. Поэтому применение в МУ переменного тока повышенной частоты позволяет при том же индуктивном сопротивлении XI иметь меньшую индуктивность Ь, т. е. меньшее число витков рабочей обмотки и площадь поперечного сечения сердечников. С другой стороны, для МУ повышение частоты питающего тока увеличивает крутизну наклона характеристики управления, так как в общем сопротивлении 1 = =д/ #н + (2л/1)2 увеличивается индуктивная составляющая. Повышение частоты переменного тока увеличивает быстродействие МУ.

Параметры МУ подбирают таким образом, чтобы его характеристики мало зависели от изменения в достаточно широких пределах питающего напряжения и сопротивлений нагрузочных резисторов. Так, у тепловозных МУ индуктивное сопротивление обмоток делают намного больше активного, поэтому характеристики тепловозных МУ мало зависят от позиции контроллера (от частоты вращения коленчатых валов дизеля). В этом можно убедиться, проанализировав формулы (1) — (3). Если Хь намного больше 1?н, то последним можно пренебречь и тогда формула (1) примет вид

Напряжение II и частота 1 пропорциональны частоте вращения ротора синхронного подвозбудителя, приводимого от вала дизеля. Поэтому ток 1 от частоты вращения ротора синхронного подвозбудителя не зависит, а полностью определяется индуктивностью обмоток: 1 = 1 1Ь.

Основными параметрами МУ являются его коэффициенты усиления: тока и мощности. Коэффициент усиления тока Кг представляет отношение изменения рабочего тока А/р к соответствующему изменению тока управления А/у. При работе простейшего МУ на прямолинейной части характеристики управления можно, пренебрегая весьма малым током холостого хода 1хх, коэффициент усиления тока рассматривать как отношение токов:

Коэффициент усиления мощности Кр представляет собой отношение выходной мощности в цепи рабочего тока Р„ых к мощности, потребляемой обмотками управления Рвх, т. е. КР =

= Рвых/Рвх- Коэффициенты уСИЛвНИЯ

простейших МУ находятся в пределах от нескольких десятков до нескольких сотен единиц. Чем больше коэффициенты усиления, тем круче характеристика МУ.

Важным параметром МУ с точки зрения использования его в системах автоматического управления является кратность изменения рабочего тока:

Сердечники МУ выполняют из холоднокатаной электротехнической стали или из тонкой ленты пермаллоя (железоникелевый сплав с примесью молибдена, хрома, меди, и марганца). Эти материалы имеют узкую петлю гистерезиса и кривую намагничивания, близкую к прямоугольной, т. е. с резко выраженным насыщением. Желательно, чтобы насыщение наступало при возможно меньшей напряженности магнитного поля, так как это позволит достичь максимального тока в рабочей цепи при малом токе управления. При малой напряженности магнитного поля (слабых магнитных полях) магнитная проницаемость ц. должна быть возможно большей, ибо прн этом будет меньшим ток холостого хода.

При высоком качестве материала сердечника и диодов рабочая часть характеристики управления МУ с самоподмагничиванием (см. п. 2.2) имеет большую крутизну (больший коэффициент усиления) и близка к прямолинейной. При большой индуктивности нагрузки форма характеристики МУ может несколько искажаться.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: