Однофазный однополупериодный выпрямитель принцип действия - ELSTROIKOMPLEKT.RU

Однофазный однополупериодный выпрямитель принцип действия

Однофазные выпрямители — схемы и принцип действия

Выпрямитель — это устройство, предназначенное для преобразования входною переменного напряжения в постоянное. Основным блоком выпрямителя является вен пильный комплект, который непосредственно выполняет преобразования переменного напряжения в постоянное.

При необходимости согласования параметров сети с параметрами нагрузки, выпрямительный комплект подключается к сети через согласующий трансформатор. По числу фаз питающей сети выпрямители бывают однофазные и трехфазные. Подробнее смотрите здесь — Классификация полупроводниковых выпрямителей. В этой статье рассмотрим работу однофазных выпрямителей.

Однофазный однополупериодный выпрямитель

Простейшей схемой выпрямителя является однофазный однополупериодный выпрямитель (рис. 1).

Рис. 1. Схема однофазного управляемого однополупериодного выпрямителя

Диаграммы работы выпрямителя на R- нагрузку показаны на рисунке 2.

Рис. 2. Диаграммы работы выпрямителя на R-нагрузку

Для того, чтобы открыть тиристор, необходимо выполнение двух условий:

1) потенциал анода должен быть выше потенциала катода;

2) на управляющий электрод должен быть подан открывающий импульс.

Для данной схемы одновременное выполнение этих условий возможно лишь в положительные полупериоды питающего напряжения. Система импульсно-фазового управления ( СИФУ ) должна формировать открывающие импульсы лишь в положительные п олунериоды питающего напряжения.

При подаче на тиристор VS1 открывающего импульса в момент времени θ = α тиристор VS1 открывается и к нагрузке прикладывается напряжение питания U 1 в течение оставшейся части положительного полупериода (прямое падение напряжения на вентиле Δ U в пренебрежимо мало по сравнению с напряжением U 1 ( Δ U в = 1 — 2 В )). Поскольку нагрузка R — активная, то ток в нагрузке повторяет форму напряжения.

В конце положительного полупериода ток нагрузки i и вентиля VS1 уменьшатся до нуля ( θ = n π) , а напряжение U 1 изменит свой знак. Таким образом, к тиристору VS1 прикладывается обратное напряжение, под действием которого он закрывается и восстанавливает свои управляющие свойства.

Такая коммутация вентиля под действием напряжения источника питания, периодически изменяющего свою полярность, называется естественной .

Из диаграмм видно, что изменение а приводит к изменению части положительного полупериода, в течение которого напряжение питания приложено к нагрузке, и, следовательно, это приводит к регулированию потребляемой мощности. Угол α характеризует задержку момента открывания тиристора по отношению к моменту его естественного открывания и называется углом открывания (управления) вентиля .

ЭДС выпрямителя и ток представляют собой следующие друг за другом отрезки положительных полусинусоид, постоянных по направлению, но непостоянных по величине, т.е. выпрямленные ЭДС и ток имеют периодический пульсирующий характер. А каждую периодическую функцию можно разложить в ряд Фурье:

где Е — постоянная составляющая выпрямленной ЭДС, en( t ) — переменная составляющая, равная сумме всех гармонических составляющих.

Таким образом, можно считать, что к нагрузке приложено постоянная ЭДС искаженная переменной составляющей en(t). Постоянная составляющая ЭДС Е является основной характеристикой выпрямленной ЭДС.

Процесс регулирования напряжения на нагрузке путем изменения называется фазовым регулированием . Данная схема имеет ряд недостатков:

1) высокое содержание высших гармонических в выпрямленной ЭДС;

2) большие пульсации ЭДС и тока;

3) прерывистый режим работы схемы;

4) низкий коэффициент использования схемы по напряжению ( k схе =0,45).

Режимом прерывистого тока работы выпрямителя называется такой режим, при котором ток в цепи нагрузки выпрямителя прерывается, т.е. становится равным нулю.

Однофазный однонополупериодный выпрямитель при работе на активно-индуктивную нагрузку

Временные диаграммы работы однополупериодного выпрямителя на RL-нагрузку представлены на рис. 3.

Рис. 3. Диаграммы работы однополупериодного выпрямителя на RL-нагрузку

Для анализа процессов, протекающих в схеме, выделим три интервала времени.

1. α . Схема замещения, соответствующая этому интервалу, приведена на рис. 4.

Согласно схеме замещения:

На этом интервале времени eL (ЭДС самоиндукции) направлена встречно напряжению сети U1 и препятствует резкому нарастанию тока. Энергия из сети преобразуется в тепловую на R и накапливается в электромагнитном поле индуктивности L.

2. α π. Схема замещения, соответствующая этому интервалу, приведена на рис. 5.

На этом интервале ЭДС самоиндукции eL поменяла свой знак (в момент времени θ = δ ).

При θ δ eL меняет свой знак и стремится поддержать ток в цепи. Она направлена согласно с U1. На этом интервале энергия из сети и накопленная в поле индуктивности L преобразуются в тепловую в R.

3. π θ α + λ . Схема замещения, соответствующая этому интервалу, приведена на рис. 6.

Рис. 6 Схема замещения

В момент времени θ = π напряжение сети U1 меняет свою полярность, но тиристор VS1 остается в проводящем состоянии, так как eL превышает U 1 и на тиристоре сохраняется прямое напряжение. Ток под действием eL будет протекать по нагрузке в том же направлении до тех пор, пока энергия, накопленная в поле индуктивности L , полностью не израсходуется.

На этом интервале часть энергии, накопленной в поле индуктивности, преобразуется в тепловую в сопротивлении R, а часть отдается в сеть. Процесс передачи энергии из цепи постоянного тока в цепь переменного тока называется инвертированием . Об этом свидетельствуют разные знаки е и i.

Длительность протекания тока на участке отрицательной полярности U 1 зависит от соотношения между величинами L и R (XL = ω L). Чем больше отношение — ω L /R , тем больше продолжительность протекания тока λ .

Если в цепи нагрузки есть индуктивность L , то форма тока становится более гладкой и ток протекает даже на участках отрицательной полярности U 1 . Тиристор VS1 при этом закрывается не в момент перехода напряжения U1 через 0, а в момент спадания тока до нуля. Если ω L /R → оо, то при α = 0 λ→2π.

Принцип действия однофазного мостового выпрямителя в непрерывном режиме при работе на активную и активно-индуктивную нагрузки

Силовая схема однофазного мостового выпрямителя представлена на рис. 7, а временные диаграммы его работы на активную нагрузку — на рис. 8.

Вентильный мост (рис. 7) содержит две группы вентилей — катодную (нечетные вентили) и анодную (четные вентили). В мостовой схеме ток проводят одновременно два вентиля — один из катодной группы и один из анодной.

Как видно из рис. 7 вентили включаются так, что в положительные полупериоды напряжения U2 ток протекает через вентили VS1 и VS4, а в отрицательные полупериоды — через вентили VS2 и VS3. Принимаем допущения, что вентили и трансформатор идеальные, т.е. Lтp = Rтp = 0, Δ U B = 0.

Рис. 7. Схема однофазного мостового выпрямителя

Рис. 8. Диаграммы работы однофазного мостового управляемого выпрямителя на активную нагрузку

В данной схеме в каждый момент времени проводит ток одна пара тиристоров VS1 и VS4 в положительные полупериоды U2 и VS2 и VS3 в отрицательные. Когда все тиристоры закрыты, то к каждому из них прикладывается половина напряжения питания.

При θ = α открываются VS1 и VS4 и по нагрузке начинает протекать ток через открывшееся VS1 и VS4. К работавшим ранее VS2 и VS3 прикладывается полное напряжение сети в обратном направлении. При в = л-, U2 меняет свой знак и поскольку нагрузка активная, то ток становится равным нулю, а к VS1 и VS4 прикладывается обратное напряжение и они закрываются.

При θ = π + α открываются тиристоры VS2 и VS3 и ток по нагрузке продолжает протекать в том же направлении. Ток в данной схеме при L=0 имеет прерывистый характер и лишь при α =0 ток будет гранично-непрерывным.

Гранично-непрерывным режимом называется режим, при котором ток в некоторые моменты времени снижается до нуля, но не прерывается.

U пр.мах = U обр.мах = √2 U2 (с трансформатором),

U пр.мах = U обр.мах = √2 U 1 (без трансформатора).

Работа схемы на активно-индуктивную нагрузку

R-L нагрузка типична для обмоток электрических аппаратов и обмоток возбуждения электрических машин, или когда на выходе выпрямителя установлен индуктивный фильтр. Влияние индуктивности сказывается на форме кривой тока нагрузки, а также на среднем и действующем значениях тока через вентили и трансформатор. Чем больше индуктивность цепи нагрузки, тем меньше переменная составляющая тока.

Для упрощения расчетов полагают, что ток нагрузки идеально сглажен ( L → оо). Это правомерно, когда ωп L > 5R, где ωп — круговая частота пульсаций на выходе выпрямителя. При выполнении данного условия ошибка в расчётах незначительна и может не приниматься во внимание.

Временные диаграммы работы однофазного мостового выпрямителя на активно-индуктивную нагрузку представлены на рис. 9.

Рис. 9. Диаграммы работы однофазного мостового выпрямителя при работе на RL-нагрузку

Для рассмотрения процессов, протекающих в схеме, выделим три участка работы.

1. α . Схема замещения, соответствующая этому интервалу, приведена на рис. 10.

На рассматриваемом интервале энергия из сети преобразуется в тепловую в сопротивлении R, а часть накапливается в электромагнитном поле индуктивности.

2. α π . Схема замещения, соответствующая этому интервалу, приведена на рис. 11.

В момент времени θ = δ ЭДС самоиндукции eL = 0, т.к. ток достигает максимального значения.

На этом интервале энергия, накопленная в индуктивности и потребляемая из сети преобразуется в тепловую в сопротивлении R.

3. π θ α + λ . Схема замещения, соответствующая этому интервалу, приведена на рис. 12.

На этом интервале часть энергии, накопленная в поле индуктивности, преобразуется в тепловую в сопротивлении R, а часть возвращается в сеть.

Действие ЭДС самоиндукции на 3-м участке приводит к появлению участков отрицательной полярности в кривой выпрямленной ЭДС, а разные знаки е и i свидетельствуют о том, что на этом интервале происходит возврат электрической энергии в сеть.

Если к моменту времени θ = π + α энергия, накопленная в индуктивности L, полностью не израсходована, то ток i будет иметь непрерывный характер. При подаче в момент времени θ = π + α открывающих импульсов на тиристоры VS2 и VS3, к которым со стороны сети приложено прямое напряжение, они открываются и через них к работавшим VS1 и VS4 прикладывается обратное напряжение со стороны сети, вследствие чего они закрываются, такой вид коммутации называется естественной.

Читайте также  Соединение подземного кабеля

Однополупериодный выпрямитель тока. Схема и принцип работы.

Выпрямитель тока – это устройство, позволяющее выполнить преобразование тока переменного направления в ток постоянного направления. И сегодня мы рассмотрим базовую схему выпрямителя – однополупериодный выпрямитель. Разберем схему, принцип работы, а также достоинства и недостатки.

Однополупериодный выпрямитель.

Схема однополупериодного выпрямителя выглядит следующим образом:

Пусть на входе у нас переменное напряжение, меняющееся по синусоидальному закону:

Резистор же R_н играет роль нагрузки. То есть мы должны обеспечить протекание через него постоянного тока. Давайте разберемся как эта простейшая схема сможет решить нашу задачу!

Итак, диод D_1 пропускает ток только в одном направлении, в те моменты, когда к нему приложено прямое смещение, что соответствует положительным полупериодам ( U_<вх>gt0 ) входного сигнала. Когда к диоду будет приложено обратное смещение (отрицательные полупериоды), он будет закрыт и по цепи будет протекать только незначительный обратный ток. И в результате сигнал на нагрузке будет выглядеть так:

Обратным током обычно можно пренебречь, поэтому в итоге мы получаем, что ток через нагрузку протекает только в одном направлении. Но назвать его постоянным не представляется возможным Ток через нагрузку хоть и является выпрямленным (протекает только в одном направлении), но носит пульсирующий характер.

Для сглаживания этих пульсаций в схему выпрямителя тока обычно добавляется конденсатор:

Идея заключается в том, что во время положительного полупериода, конденсатор заряжается (запасает энергию). А во время отрицательного полупериода конденсатор, напротив, разряжается (отдает энергию в нагрузку).

Таким образом, за счет накопленной энергии конденсатор обеспечивает протекание тока через нагрузку и в отрицательные полупериоды входного сигнала. При этом емкость конденсатора должна быть достаточной для того, чтобы он не успевал разряжаться за время, равное половине периода.

Проверяем напряжение на нагрузке для этой схемы:

В точке 1 конденсатор заряжен до напряжения U_1 . Далее входное напряжение понижается, а конденсатор, в свою очередь, начинает разряжаться на нагрузку. Поэтому выходное напряжение не падает до нуля вслед за входным.

В точке 2 конденсатор успел разрядиться до напряжения U_2 . В то же время значение входного сигнала также становится равным этой же величине, поэтому конденсатор снова начинает заряжаться. И эти процессы в дальнейшем циклически повторяются.

А теперь поэкспериментируем и используем в схеме однополупериодного выпрямителя конденсатор меньшей емкости:

И здесь мы видим, что конденсатор из-за меньшей емкости успевает разрядиться гораздо сильнее, и это приводит к увеличению пульсаций, а следовательно к ухудшению работы всей схемы.

На промышленных частотах 50 – 60 Гц однополупериодный выпрямитель практически не применяется из-за того, что для таких частот потребуются конденсаторы с очень большой емкостью (а значит и внушительными габаритами).

Смотрите сами, чем ниже частота, тем больше период сигнала (а вместе с тем, и длительности положительного и отрицательного полупериодов). А чем больше длительность отрицательного полупериода, тем дольше конденсатор должен быть способен разряжаться на нагрузку. А это уже требует большей емкости.

Таким образом, на более низких частотах в силу своих ограничений эта схема не нашла широкого применения. Однако, на частотах в несколько десятков КГц однополупериодный выпрямитель используется вполне успешно.

Рассмотрим преимущества и недостатки однополупериодного выпрямителя:

  • К основным достоинствам схемы, в первую очередь, конечно же, можно отнести простоту и, соответственно, небольшую себестоимость – используется всего один диод.
  • Кроме того, снижено падение напряжения. Как вы помните, при протекании тока через диод на нем самом падает определенное напряжение. По сравнению с мостовой схемой (которую мы разберем в следующей статье), ток протекает только через один диод (а не через два), а значит и падение напряжения меньше.

Основных недостатков также можно выделить несколько:

  • Схема использует энергию только положительного полупериода входного сигнала. То есть половина полезной энергии, которую также можно было бы использовать, уходит просто в никуда. В связи с этим КПД выпрямителя крайне низок.
  • И даже с использованием сглаживающих конденсаторов величина пульсаций довольно-таки значительна, что также является очень серьезным недостатком.

Итак, давайте резюмируем! Мы разобрали схему и принцип работы однофазного однополупериодного выпрямителя тока, а в следующей статье перейдем к более сложным схемам выпрямителей, не пропустите!

Однофазный однополупериодный выпрямитель

Классификация и основные параметры выпрямителей

Применение полупроводниковых диодов. Однофазные выпрямители

Выпрямитель — это устройство, предназначенное для преобразования переменного напряжения в постоянное.

Основными элементами выпрямителя являются трансформатор и диоды, с помощью которых обеспечивается одностороннее протекание тока в цепи нагрузки, в результате чего переменное напряжение преобразуется в пульсирующее. С помощью трансформатора в выпрямителях производится преобразование величины напряжения, электрическое разделение отдельных цепей, преобразование числа фаз.

В зависимости от числа фаз питающего напряжения различают схемы однофазного и трехфазного выпрямления.

Основными величинами, характеризующими эксплуатационные свойства выпрямителей, являются:

— коэффициент полезного действия h;

— коэффициент мощности c;

— внешняя характеристика — зависимость напряжения в нагрузке от тока нагрузки Ud = f(Id);

— коэффициент пульсаций Кп — отношение амплитуды пульсаций выходного напряжения к среднему значению выпрямленного напряжения (постоянной составляющей).

В зависимости от характера нагрузки изменяется режим работы трансформатора и диодов. Различают режимы работы выпрямителя на чисто активную, активно-индуктивную и активно-ёмкостную нагрузки.

Рассмотрим работу различных схем однофазных выпрямителей на активную нагрузку.

Схема однофазного однополупериодного выпрямителя представлена на рис. 3.1.

Рис. 3.1. Однофазный однополупериодный выпрямитель

На схеме приняты следующие обозначения напряжений и токов:

— U1, U2 – действующие значения напряжений первичной и вторичной обмоток трансформатора;

— I1, I2 – действующие значения токов первичной и вторичной обмоток трансформатора;

— Ud – среднее значение выпрямленного напряжения;

— Id – среднее значение выпрямленного тока.

Анализ работы схемы проведём по упрощённой методике, без учёта потерь напряжения на активном сопротивлении обмоток трансформатора и динамическом сопротивлении открытого диода.

Рассмотрим временную диаграмму работы схемы (рис. 3.2).

Рис. 3.2. Временная диаграмма работы однофазного однополупериодного выпрямителя

Под действием переменного напряжения u2 = U2m sinwt вторичной обмотки ток в цепи нагрузки может проходить только в течение нечётных полупериодов, когда анод диода имеет положительный потенциал относительно катода. В чётные полупериоды, когда потенциал анода становится отрицательным, ток в цепи равен нулю.

Мгновенное значение выпрямленного тока:

, при 0

Среднее значение выпрямленного напряжения:

. (3.1)

Среднее значение выпрямленного тока (а также тока диода):

. (3.2)

Действующее (эффективное) значение тока диода:

. (3.3)

Максимальное обратное напряжение на диоде достигает амплитудного значения напряжения вторичной обмотки:

. (3.4)

По найденным величинам Ia, Ia.эф и Ub.max выбирается диод для работы в схеме. Согласно полученным результатам диод должен допускать максимальное обратное напряжение в 3,14 раза превышающее напряжение в нагрузке, или в Ö2 раз больше напряжения вторичной обмотки трансформатора. Переменная составляющая выпрямленного напряжения и тока для данной схемы, как следует из временных диаграмм для u и i, велика, причем основная гармоника пульсаций имеет частоту, равную частоте питающей сети.

Рассмотрим режим работы трансформатора. Действующее значение тока вторичной обмотки:

.

Отношение действующего значения фазного тока I2 к его среднему значению I2cp называется коэффициентом формы тока D (или Кф):

. (3.5)

Постоянная составляющая фазного тока:

, (3.6)

где m2 – число фаз вторичной обмотки трансформатора. В рассматриваемой схеме m2 = 1.

Следовательно, для рассматриваемой схемы коэффициент формы тока:

. (3.7)

Действующее значение напряжения вторичной обмотки трансформатора:

.

Расчетная мощность вторичной обмотки трансформатора:

, (3.8)

Действующее значение тока в первичной обмотке трансформатора можно определить из уравнения магнитного равновесия трансформатора, если пренебречь током намагничивания и учесть, что постоянная составляющая тока в первичную обмотку не трансформируется. Уравнение магнитного равновесия трансформатора по переменному току

.

Мгновенное значение тока первичной обмотки

,

где n – коэффициент трансформации.

Действующее значение тока первичной обмотки трансформатора:

. (3.9)

Расчетная мощность первичной обмотки:

. (3.10)

Расчетная (типовая) мощность трансформатора:

. (3.11)

Коэффициент использования трансформатора по мощности:

.

Коэффициент мощности выпрямителя в общем виде определяется как:

,

где — активная мощность первичной обмотки, представляющая собой среднее значение мощности переменного тока за период и определяющаяся как сумма активных мощностей отдельных гармонических составляющих тока;

— полная мощность первичной обмотки.

Если полагать, что напряжение питающей сети синусоидально, то . Следовательно, коэффициент мощности

, (3.12)

где — коэффициент искажений;

j1 – угол сдвига фаз между напряжением питающей сети и первой гармоникой тока первичной обмотки.

В рассматриваемом случае j1 = 0, но коэффициент мощности меньше единицы, так как n = 0,9

Как устроен однополупериодный выпрямитель и где применяется

Однополупериодный выпрямитель – это самый простой вид выпрямителя напряжения. Он берет на себя ровно половину от синусоидального переменного напряжения. По своим техническим характеристикам и принципам работы такой тип выпрямителя не подходит для очень многих сфер электрики и электроники.

В сигнале на выходе слишком много гармоник, которые трудно технически и практически отфильтровать. В настоящей статье будет рассмотрено строение, структура этого типы выпрямителя, а также где они могут быть использованы. Дополнением служат два ролика по данной теме, а также она подробная техническая лекция по данным типам выпрямления напряжения.

Схема однополупериодного выпрямителя

При подаче переменного sin-идального напряжения на первичную обмотку трансформатора напряжение на зажимах вторичной его обмотки также будет переменным синусоидальным и будет равноU2=U2msinwt. Диод проводит электрический ток только в том случае, когда его анод относительно катода будет иметь положительный потенциал. Поэтому ток в цепи – вторичная обмотка, диод и нагрузка – будет протекать только в одном направлении, то есть в течение одной половины периода переменного напряженияU2. В результате этого ток, протекающий в цепи нагрузки, оказывается пульсирующим. Максимальное значение тока:

Читайте также  Соединение зигзагом в трехфазного трансформатора

Im=U2m/RH, гдеRH– сопротивление потребителя постоянного тока.

Кривая получаемого в процессе однополупериодного выпрямления пульсирующего тока может быть разложена в гармонический ряд Фурье:

Пульсирующий ток, как видно из выражения, кроме переменных составляющих содержит также и постоянную I =Im/π. Отсюда постоянная составляющая напряжения

Через действующее значение напряжения: U =√2 ∙U2/π.

Переменные составляющие характеризуют величину пульсаций тока и напряжения.

Для оценки пульсаций при какой-либо схеме выпрямления вводится понятие коэффициента пульсаций q, под которым понимается отношение амплитуды Am наиболее резко выраженной гармонической составляющей, входящей в кривые выпрямленного тока или напряжения, к постоянной составляющей Aв токанапряжения в выходной цепи выпрямителя:q=Am/AB.

Для схемы однополупериодного выпрямителя: q=0.5Im/(1/π ∙Im)=π/2. В течение половины периода, когда анод диода имеет отрицательный относительно катода потенциал, диод тока не проводит. Напряжение, воспринимаемое диодом в непроводящий полупериод, называется обратным напряжением Uобр. Обратное напряжение на диоде будет определяться напряжением на вторичной обмотке. Максимальное значение напряженияUобрm=U2m. Значит, вентиль надо выбирать так, чтобы [Umax обр]>=U2m.

Недостатки такой схемы выпрямления: большие пульсации выпрямленного тока и напряжения, а также плохое использование трансформатора, поскольку по его вторичной обмотке протекает ток только в течение половины периода. Такую установку используют в маломощных системах, когда выпрямленный ток мал.

Как устроен выпрямитель

Напряжение с вторичной обмотки силового трансформатора подаётся на один единственный диод. Поэтому выпрямитель и назван однополупериодным. Выпрямляется только один полупериод и на выходе получается импульсное напряжение. Схема проста и не требует большого количества элементов. Это и сказывается на качестве выпрямленного напряжения. При низких частотах переменного напряжения (например, как в электросети – 50 Гц) выпрямленное напряжение получается сильно пульсирующим. А это очень плохо.

Для того чтобы снизить величину пульсации выпрямленного напряжения приходится брать величину конденсатора С1 очень большую, порядка 2000 – 5000 микрофарад, что увеличивает размер блока питания, так как электролиты на 2000 – 5000 мкф имеют довольно большие размеры. Поэтому на низких частотах эта схема практически не используется. Зато однополупериодные выпрямители прекрасно зарекомендовали себя в импульсных блоках питания работающих на частотах 10 – 15 кГц (килогерц).

Примером использования однополупериодного выпрямителя может служить простой зарядник от сотового телефона. Так как зарядник сам по себе маломощный, то в нём применяется однополупериодная схема, причём как во входном сетевом выпрямителе 220V (50Гц), так и в выходном, где требуется выпрямить переменное напряжение высокой частоты со вторичной обмотки импульсного трансформатора. К несомненным достоинствам такого выпрямителя следует отнести минимум деталей, низкую стоимость и простые схемные решения. В обычных (не импульсных) блоках питания многие десятилетия успешно работают двухполупериодные выпрямители.

Двухполупериодные выпрямители

Они бывают двух схемных решений: выпрямитель со средней точкой и мостовая схема, известная, как схема Гретца. Выпрямитель со средней точкой требует более сложного в исполнении силового трансформатора, хотя диодов там используется в два раза меньше чем в мостовой схеме. К недостаткам двухполупериодного выпрямителя со средней точкой можно отнести то, что для получения одинакового напряжения, число витков во вторичной обмотке трансформатора должно быть в два раза больше, чем при использовании мостовой схемы. А это уже не совсем экономично с точки зрения расходования медного провода.

Далее на рисунке показана типовая схема двухполупериодного выпрямителя со средней точкой. Величина пульсаций выпрямленного напряжения меньше чем у однополупериодного выпрямителя и величину конденсатора фильтра так же можно использовать гораздо меньшую. Как видим, на выходе выпрямителя уже в два раза меньше “провалов” напряжения – тех самых пульсаций.

Активно применяется схема выпрямителя со средней точкой в выходных выпрямителях импульсных блоков питания для ПК. Так как во вторичной обмотке высокочастотного трансформатора требуется меньшее число витков медного провода, то гораздо эффективнее применять именно эту схему. Диоды же применяются сдвоенные, т.е. такие, у которых общий корпус и три вывода (два диода внутри). Один из выводов – общий (как правило катод). По виду сдвоенный диод очень похож на транзистор.

Наибольшую популярность приобрела в бытовой и промышленной аппаратуре мостовая схема. Можно без преувеличения сказать, что это самая распространённая схема. На практике вы с ней ещё не раз встретитесь. Она содержит четыре полупроводниковых диода, а на выходе, как правило, ставится RC-фильтр или только электролитический конденсатор для сглаживания пульсаций напряжения. О данной схеме уже рассказывалось на странице про диодный мост. Стоит отметить, что и у мостовой схемы есть недостатки. Как известно, у любого полупроводникового диода есть так называемое прямое падение напряжения (Forward voltage drop – VF).

Для обычных выпрямительных диодов оно может быть 1 – 1,2 V (зависит от типа диода). Так вот, при использовании мостовой схемы на диодах теряется напряжение, равное 2 x VF, т.е. около 2 вольт. Это происходит потому, что в выпрямлении одной полуволны переменного тока участвуют 2 диода (затем другие 2). Получается, что на диодном мосте теряется часть напряжения, которое мы снимаем со вторичной обмотки трансформатора, а это явные потери. Поэтому в некоторых случаях в составе диодного моста применяются диоды Шоттки, у которых прямое падение напряжения невелико (около 0,5 вольта). Правда, стоит учесть, что диод Шоттки не рассчитан на большое обратное напряжение и очень чувствителен к его превышению.

Наиболее распространенные схемы

Выпрямителем называется электронное устройство, предназначенное для преобразования электрической энергии переменного тока в постоянный. В основе выпрямителей лежат полупроводниковые приборы с односторонней проводимостью – диоды и тиристоры. При небольшой мощности нагрузки (до нескольких сотен ватт) преобразование переменного тока в постоянный осуществляют с помощью однофазных выпрямителей. Такие выпрямители предназначены для питания постоянным током различных электронных устройств, обмоток возбуждения двигателей постоянного тока небольшой и средней мощности и т.д.

Для упрощения понимания работы схем выпрямления будем исходить из расчета, что выпрямитель работает на активную нагрузку. Схема содержит один выпрямительный диод, включенный между вторичной обмоткой трансформатора и нагрузкой. Напряжение u2 изменяется по синусоидальному закону, т.е. содержит положительные и отрицательные полуволны (полупериоды). Ток в цепи нагрузки проходит только в положительные полупериоды, когда к аноду диода VD прикладывается положительный потенциал. При обратной полярности напряжения u2 диод закрыт, ток в нагрузке не протекает, но к диоду прикладывается обратное напряжение Uобр.

Выпрямленные напряжения и ток содержат постоянную (полезную) составляющую и переменную составляющую (пульсации). Качественная сторона работы выпрямителя оценивается соотношениями между полезной составляющей и пульсациями напряжения и тока. Коэффициент пульсаций данной схемы составляет 1,57. Среднее за период значение выпрямленного напряжения Uн = 0,45U2. Максимальное значение обратного напряжения на диоде Uобр.max = 3,14Uн.

Достоинством данной схемы является простота, недостатки: плохое использование трансформатора, большое обратное напряжение на диоде, большой коэффициент пульсации выпрямленного напряжения. Состоит из четырех диодов, включенных по мостовой схеме. В одну диагональ моста включается вторичная обмотка трансформатора, в другую – нагрузка. Общая точка катодов диодов VD2, VD4 является положительным полюсом выпрямителя, общая точка анодов диодов VD1, VD3 – отрицательным полюсом.

Выпрямитель электрического тока

Его электронная схема, предназначенная для преобразования переменного электрического тока в постоянный (одно полярный) электрический ток. В полупроводниковой аппаратуре выпрямители исполняются на полупроводниковых диодах. В более старой и высоковольтной аппаратуре выпрямители исполняются на электровакуумных приборах – кенотронах. Раньше широко использовались – селеновые выпрямители.

Для начала вспомним, что собой представляет переменный электрический ток. Это гармонический сигнал, меняющий свою амплитуду и полярность по синусоидальному закону. В переменном электрическом токе можно условно выделить положительные и отрицательные полупериоды. Всё то, что больше нулевого значения относится к положительным полупериодам (положительная полуволна – красным цветом), а всё, что меньше (ниже) нулевого значения – к отрицательным полупериодам (отрицательная полуволна – синим цветом).

Выпрямитель, в зависимости от его конструкции «отсекает», или «переворачивает» одну из полуволн переменного тока, делая направление тока односторонним. Схемы построения выпрямителей сетевого напряжения можно поделить на однофазные и трёхфазные, однополупериодные и двухполупериодные.

Для удобства мы будем считать, что выпрямляемый переменный электрический ток поступает с вторичной обмотки трансформатора. Это соответствует истине и потому, что даже электрический ток в домашние розетки квартир домов приходит с трансформатора понижающей подстанции. Кроме того, поскольку сила тока – величина, напрямую зависящая от нагрузки, то при рассмотрении схем выпрямления мы будем оперировать не понятием силы тока, а понятием – напряжение, амплитуда которого напрямую не зависит от нагрузки.

Из сземы видно, что диод отсекает отрицательную полуволну. Если мы перевернём диод, поменяв его выводы – анод и катод местами, то на выходе окажется, что отсечена не отрицательная, а положительная полуволна. Среднее значение напряжения на выходе однополупериодного выпрямителя соответствует значению:

Uср = Umax / π = 0,318 Umax

где: π — константа равная 3,14.

Однополупериодные выпрямители используются в качестве выпрямителей сетевого напряжения в схемах, потребляющих слабый ток, а также в качестве выпрямителей импульсных источников питания. Они абсолютно не годятся в качестве выпрямителей сетевого напряжения синусоидальной формы для устройств, потребляющих большой ток. Наиболее распространёнными являются однофазные двухполупериодные выпрямители. Существуют две схемы таких выпрямителей – мостовая схема и балансная.

Однофазный однополупериодный выпрямитель

Выпрямители бывают однополупериодными или двухполупериодными в зависимости от того сколько полупериодов переменного тока используется — один или два. По однополупериодной схеме выполняют выпрямители, от которых требуется небольшой ток.

Читайте также  Как проверить рабочий ли генератор?

Рис.3.2. Однофазный однополупериодный выпрямитель (рисунок выполнен авторами)

(а — схема однополупериодного выпрямителя; б — диаграмма входного напряжения; в — диаграмма и среднее значение напряжения на нагрузке; г — диаграмма и среднее значение тока в нагрузке)

Во время положительной полуволны (в интервале 0 ÷ π ) плюс напряжения на вторичной обмотке трансформатора приложен к аноду диода, а минус — к катоду (рис.3.2,а). Диод открывается, и ток проходит от плюса вторичной обмотки трансформатора через диод и сопротивление нагрузки Rн на минус вторичной обмотки трансформатора.

Во время отрицательной полуволны (в интервале π ÷ 2π) на анод диода поступает минус, а на катод — плюс входного напряжения, т.е. к диоду прикладывается обратное напряжение, и он закрыт.

На графике в этот момент на сопротивлении нагрузки нет падения напряжения (рис.3.2, в). Трансформатор Т играет двойную роль: он служит для подачи на вход выпрямителя ЭДС е2 соответствующей заданной величине выпрямленного напряжения Ed и обеспечивает гальваническую развязку цепи нагрузки и питающей сети. Параметры, относящиеся к цепи постоянного тока, то есть к выходной цепи выпрямителя, принято обозначать с индексом d (от английского словаdirect — прямой): Rd — сопротивление нагрузки; ud — мгновенное значение выпрямленного напряжения; id — мгновенное значение выпрямленного тока. Для однополупериодного выпрямителя имеются следующие соотношения.

ЭДС обмотки трансформатора синусоидадьна —

θ=ωt, E2 — действующее значение ЭДС.

Постоянная составляющая выпрямленного напряжения:

Постоянная составляющая выпрямленного тока:

Для данной схемы выпрямления среднее значение анодного тока вентиля Iаср = Id . Максимальное значение анодного тока:

Максимальное значение обратного напряжения на вентиле:

Коэффициент пульсаций, равный отношению амплитуды низшей (основной) гармоники пульсаций к среднему значению выпрямленного напряжения равен:

Эта схема применяется редко из-за большого коэффициента пульсаций.

Однофазный двухполупериодный выпрямитель со средней точкой

Рис.3.3. Однофазный двухполупериодный выпрямитель со средней точкой (рисунок выполнен авторами)

(а — схема двухполупериодного выпрямителя со средней точкой; б — диаграмма входного напряжения на диодах VD1 и VD2; в — диаграмма и среднее значение напряжения на нагрузке; г — диаграмма и среднее значение тока в нагрузке; д — ток в первичной обмотке трансформатора)

Эта схема представляет собой два однополупериодных выпрямителя, работающих на общую нагрузку Rd и питающихся от находящихся в противофазе ЭДС (рис.3.3,б) e2a и e2b.

Схема обеспечивает прохождение тока через нагрузку в течение обоих полупериодов. Во время положительного полупериода работает первая половина вторичной обмотки (2а). Ток идёт от плюса вторичной обмотки трансформатора через диод VD1, нагрузку Rd и на среднюю точку вторичной обмотки. В это время к аноду диода VD2 приложен минус, а к катоду — плюс, и диод закрыт. Во время отрицательного полупериода картина меняется: будет открыт диод VD2, а диод VD1 — закрыт. В этот полупериод ток протекает за счёт напряжения на обмотке 2b. На рис. 3.3, б, в, г, д представлены временные диаграммы для двухполупериодной схемы выпрямителя со средней точкой. В случае активной нагрузки для рассматриваемой схемы действуют следующие соотношения:

Однофазная мостовая схема

Рис.3.4. Однофазный мостовой выпрямитель (рисунок выполнен авторами)

(а — схема двухполупериодного выпрямитель, мостовая схема; б — диаграмма входного напряжения на диодах мостовой схемы; в — диаграмма и среднее значение напряжения на нагрузке; г — диаграмма и среднее значение тока в нагрузке)

Мостовая схема является наиболее распространённой. Она также двухполупериодная. Во время положительного полупериода ток проходит от плюса вторичной обмотки трансформатора через диод VD1, сопротивление нагрузки Rd, диод VD3 на минус вторичной обмотки. В это время ко второй паре диодов VD2, VD4 приложено обратное напряжение. Они закрыты. Во время отрицательного полупериода ток протекает через диод VD2, нагрузку Rd, диод VD4. В случае чисто активной нагрузки, пренебрежении индуктивностью обмотки трансформатора и идеальных диодах эта схема имеет следующие основные соотношения:

Если сравнить мостовую схему и схему со средней точкой, то для получения одинакового напряжения в схеме со средней точкой вторичная обмотка должна иметь большее количество витков, чем в мостовой схеме. Это увеличивает размеры трансформатора. В этой же схеме к диодам прикладывается вдвое большее напряжение, чем в мостовой. Учитывая это, предпочтение отдаётся мостовой схеме, хотя здесь и требуется больше диодов. При выборе диодов для выпрямителя выбирают диоды, у которых значения выпрямленного тока и допустимого обратного напряжения равны или превышают расчетные.

Сглаживающие фильтры

Рассмотрим следующую схему сглаживания выпрямленного напряжения.

Рис.3.5. Сглаживание пульсаций с помощью емкостного фильтра (рисунок выполнен авторами)

(а — схема однополупериодного выпрямителя; б — диаграмма входного напряжения; в — диаграмма и среднее значение напряжения на нагрузке (пунктирной линией — без сглаживающего фильтра, красной линией — с емкостным фильтром)

На сопротивлении нагрузки выделяется пульсирующее напряжение, форма которого значительно отличается от формы постоянного напряжения. Для сглаживания пульсирующего напряжения используются сглаживающие фильтры, которые состоят в большинстве случаев из конденсатора и дросселя. Конденсатор сглаживает пульсирующее напряжение, а дроссель задерживает переменную составляющую сглаженного напряжения от попадания в нагрузку. В настоящее время функции дросселя выполняют стабилизаторы напряжения. Принцип сглаживания можно проследить по графику (рис.3.5,в). Красной линией показано напряжение на конденсаторе (или сопротивлении нагрузки). Сглаживание напряжения происходит за счёт того, что во время уменьшения пульсирующего напряжения ток в нагрузке, а, следовательно, и напряжение на Rн, поддерживаются напряжением зарядившегося конденсатора. При возрастании пульсирующего напряжения конденсатор снова подзаряжается и так далее. Конденсатор хорошо сглаживает пульсации, если его емкость такова, что выполняется условие:

Xc= 1/mωC, где m — пульсность схемы, т.е. количество пульсаций за период.

Для однофазного однополупериодного выпрямителя m = 1, для однофазного двухполупериодного со средней точкой и мостового выпрямителя m = 2.

Режим работы выпрямителя в значительной степени определяется типом сглаживающего фильтра, включенного на его выходе. В маломощных выпрямителях, питающихся от однофазной сети переменного тока, применяются простейшие ёмкостные фильтры, в выпрямителях средней и большой мощности используются Г-образные LC и RC-фильтры и П-образные СLC и СRC-фильтры. Основным параметром сглаживающих фильтров является коэффициент сглаживания:

где kпсх — коэффициент пульсаций на входе фильтра; kпн — коэффициент пульсаций на нагрузке. Ёмкостный фильтр является наиболее простым из всех видов сглаживающих фильтров. Применение ёмкостного фильтра рационально при достаточно больших значениях сопротивления нагрузки и коэффициента пульсаций на нагрузке. Фильтр состоит из конденсатора, включенного параллельно нагрузке (рис. 3.5,а). Коэффициент пульсаций напряжения на выходе выпрямителя с ёмкостным фильтром находят по выражению:

Индуктивно-ёмкостные фильтры (Г-образный LC-фильтр и П-образный CLC-фильтр) широко применяются при повышенных токах нагрузки, поскольку падение напряжения на них можно сделать сравнительно небольшим. КПД у таких фильтров достаточно высокий. Недостатки индуктивно-ёмкостных фильтров: большие габаритные размеры и масса, повышенный уровень электромагнитного излучения от элементов фильтра, сравнительно высокая стоимость и трудоемкость изготовления.

Наиболее широко используется Г-образный LC-фильтр (рис. 3.6). Для эффективного сглаживания пульсаций таким фильтром необходимо выполнение следующих условий:

Рис.3.6. Индуктивно-ёмкостный сглаживающий фильтр —

Г — образный при учитывании только LC1 и П — образный C LC1 (рисунок выполнен авторами)

При их выполнении, пренебрегая потерями в дросселе L, для коэффициента сглаживания можно записать:

Для того, чтобы избежать резонансных явлений в фильтре необходимо выбирать q>3. Кроме этого, одним из основных условий является обеспечение явно выраженной индуктивной реакции фильтра на выпрямитель, необходимой для большей стабильности внешней характеристики выпрямителя. Для обеспечения индуктивной реакции необходимо, чтобы:

П-образный CLC-фильтр отличается от описанного LC-фильтра наличием еще одной ёмкости C, включаемой на входе фильтра. Расчет таких фильтров производят в два этапа, сначала рассчитывают ёмкость конденсатора C, исходя из допустимой величины пульсации напряжения на нем, затем по приведенным выше формулам рассчитывают Г-образное звено. Наибольший коэффициент сглаживания в П-образном фильтре достигается при C = C1.

При выборе конденсаторов фильтра следует следить за тем, чтобы они были рассчитаны на напряжение на 15. 20% превышающее напряжение холостого хода выпрямителя при максимальном напряжении сети (чтобы учесть перенапряжения, возникающие при включении выпрямителя). Необходимо также, чтобы амплитуда переменной составляющей напряжения на них не превышала предельно допустимого значения.

Резистивно-ёмкостные фильтры целесообразно применять при малых токах нагрузки (менее 10. 15 мА) и небольших требуемых коэффициентах сглаживания. Достоинства этих фильтров — малые габариты и масса, низкая стоимость. Недостаток — сравнительно большое падение напряжения на фильтре (что снижает КПД устройства выпрямления в целом).

Простейший Г-образный RC-фильтр (рис. 3.7) состоит из балластного резистора Rф и конденсатора С1. Коэффициент сглаживания такого фильтра вычисляется по формуле:

Рис. 3.7. Резистивно-ёмкостный сглаживающий фильтр — Г — образный при учитывании только RФ C1 и П — образный C RФ C1 (рисунок выполнен авторами)

Сопротивление фильтра Rф выбирают из условия допустимого падения напряжения на фильтре или исходя из заданного КПД η по формуле:

Комбинированные фильтры применяются при необходимости получения больших коэффициентов сглаживания на выходе выпрямителя. Они представляют собой последовательное включение нескольких фильтров. При каскадном включении LC-фильтров можно считать, что суммарный коэффициент сглаживания (qф) равен произведению коэффициентов сглаживания составляющих фильтр звеньев:

(Петрович В. П., 2008). Для нахождения оптимального числа звеньев такого фильтра nопт при заданном qф можно воспользоваться формулой:

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: