Параллельное соединение дросселей - ELSTROIKOMPLEKT.RU

Параллельное соединение дросселей

Параллельное, последовательное соединение дросселей. Расчет индуктивности. Включение. Соединить, включить. Формулы. Вычисление. Ток

Вычисление индуктивности и тока при параллельном и последовательном соединении дросселей. (10+)

Расчет параллельно / последовательно соединенных резисторов, конденсаторов и дросселей — Соединение индуктивностей

Дроссели (катушки индуктивности) обычно соединяют, когда необходимо получить нужную индуктивность, обеспечив работу катушек без насыщения. Чаще всего катушки соединяют параллельно.

Катушки индуктивности (дроссели)

Соединяем последовательно

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

[Индуктивность последовательно соединенных дросселей, мГн] = [Индуктивность первого дросселя, мГн] + [Индуктивность второго дросселя, мГн]

Включаем параллельно

[Индуктивность параллельно соединенных дросселей, мГн] = 1 / (1 / [Индуктивность первого дросселя, мГн] + 1 / [Индуктивность второго дросселя, мГн])

Это соотношение понятно, так как ток через дроссель пропорционален напряжению на нем, умноженному на время действия этого напряжения. А ток через дроссели, соединенные параллельно, равен сумме токов.

Соединяя катушки индуктивности параллельно, нужно обязательно помнить, что постоянный ток распределяется между катушками совсем по другому закону, чем переменный. Он распределяется обратнопропорционально омическому сопротивлению катушек. Чтобы учесть этот эффект, представим электрический ток, проходящий через дроссель, как сумму постоянного и переменного.

[Постоянный ток через первый дроссель, А] = [Суммарный постоянный ток, А] * [Омическое сопротивление второго дросселя, Ом] / ([Омическое сопротивление второго дросселя, Ом] + [Омическое сопротивление первого дросселя, Ом])

[Постоянный ток через второй дроссель, А] = [Суммарный постоянный ток, А] * [Омическое сопротивление первого дросселя, Ом] / ([Омическое сопротивление второго дросселя, Ом] + [Омическое сопротивление первого дросселя, Ом])

[Амплитуда переменного тока через первый дроссель, А] = [Амплитуда суммарного переменного тока, А] * [Индуктивность второго дросселя, мГн] / ([Индуктивность второго дросселя, мГн] + [Индуктивность первого дросселя, мГн])

[Амплитуда переменного тока через второй дроссель, А] = [Амплитуда суммарного переменного тока, А] * [Индуктивность первого дросселя, мГн] / ([Индуктивность второго дросселя, мГн] + [Индуктивность первого дросселя, мГн])

[Максимально возможный ток через первый дроссель, А] = [Постоянный ток через первый дроссель, А] + [Амплитуда переменного тока через первый дроссель, А]

[Максимально возможный ток через второй дроссель, А] = [Постоянный ток через второй дроссель, А] + [Амплитуда переменного тока через второй дроссель, А]

Получается, что из четырех одинаковых катушек индуктивности на 10 мГн на ток 10 А можно сделать одну на 10 мГн, 20 А, соединив их попарно параллельно, а полученные блоки последовательно.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Расчет дросселя, катушки индуктивности. Рассчитать, посчитать онлайн, .
Форма для онлайн расчета дросселя, катушки индуктивности. Для изготовления индук.

Проверка дросселя, катушки индуктивности, трансформатора, обмотки, эле.
Как проверить дроссель, обмотки трансформатора, катушки индуктивности, электрома.

Изготовление дросселя, катушки индуктивности своими руками, самому, са.
Расчет и изготовление катушки индуктивности, дросселя. Типовые электронные схемы.

Преобразователь однофазного напряжения в трехфазное. Принцип действия.
Принцип действия, сборка и наладка преобразователя однофазного напряжения в трех.

Составной транзистор. Схемы Дарлингтона, Шиклаи. Расчет, применение.
Составной транзистор — схемы, применение, расчет параметров. Схемы Дарлингтона, .

Параллельное включение дросселей для запуска ДРЛ и пр

Автор: Гость Навуходоносор, 18 сентября 2017 в Песочница (Q&A)

  • Ответить в тему
  • Создать тему

Рекомендованные сообщения

Присоединяйтесь к обсуждению

Вы оставляете комментарий в качестве гостя. Если у вас есть аккаунт, войдите в него для написания от своего имени.
Примечание: вашему сообщению потребуется утверждение модератора, прежде чем оно станет доступным.

Объявления

Сообщения

Похожие публикации

Продаю трансформаторы и дроссели для импульсных блок питаний и преобразователей.
Трансформатор 100гр.Намотан медной шиной 0,4мм*25мм,по программе старичка с него можно снять 3кВт.
Дроссель 30-45грн,росчитан на 1,5квт
Есть количество!
Находится в Украине.

Здравствуйте уважаемые пользователи данного форума.
Подскажите решение по данной проблеме.
Имеется 2 кварцевые горелки добытые из ДРЛ 250.
Имеем 2 дросселя 250w 3 A
Конденсатор 250v на 32 МРФ
дросселя подключены параллельно..
Горелки последовательно.
Конденсатор последовательно после дросселя.
Горелки часто включается и включается, но проблема в том что иногда они не загораются пока не подкину конденсатор параллельно для розжига после его откилываю.

2 задачи. Сделать включение стабильным и сделать регулятор мощности.
Подскажите на «пальцах» что куда и как сделать правильно.

Предлагаю к продаже:
Микросхемы
Микросхема AT45DB161D-SU — 1080 шт — 60 руб
Микросхема ADG3308BRUZ — 360 шт — 60 руб
Микросхема AM3TW-2405SZ — 20 шт — 300 руб
Микросхема ADUM5240BRZ — 460 шт — 140 руб
Микросхема ADUM1401CRW — 58 шт — 100 руб
Микросхема AM1L-2412S-N — 64 шт — 80 руб
Микросхема ADUM1300CRW — 40 шт — 140 руб
Микросхема ADM202EARN — 600 шт — 15 руб
Микросхема MAX1490BEPG — 11шт — 250 руб
Микросхема PIC18LF4680-I/PT — 800 шт — 80 руб
Преобразователи
Преобразователь FKC05-24S05W — 800 шт — 150 руб
Преобразователь FKC05-24S12W — 83 шт — 150 руб
Преобразователь TEN4-2411 — 399 шт — 300 руб
Преобразователь CP2102-GM — 3300 шт — 30 руб
Дроссели
Дроссель LQH66SN680M03L 68 мкГн 20% — 7700 шт — 22 руб

Оплата: наличный и безналичный расчёт
Доставка: самовывоз (Москва), курьерская по Москве, почтой по предоплате, на радиорынке в Митино
Минимальный заказ: 1000 рублей без учета доставки.
Помимо данного списка есть большое количество диодов, разъемов, микросхем, дросселей, SMD резисторов, конденсаторов. Список будем пополнять на форуме, а так спрашивайте, скинем в ЛС.
В случае опта торг уместен.
Основные производители — Murata, Vishay, Bourns, Epcos, NXP, Ramtron, ATmel, Maxim, Microchip, Micrel

Имеется БП Corsair CX750M схема построена на синхронном выпрямителе.
У трансформатора только одна вторичная обмотка 12V.
Все остальные напряжения получаются с помощью DC-DC конверторов.
Описание БП по ссылке ниже.
https://club.dns-shop.ru/hardware/Обз…750-Вт/

Вскрытие показало что у него сгорел дроссель стабилизации 12V
(таким достался)
На нем 13 витков +12В линии четырьмя проводами сразу сечением 1,25 мм и 13 витков -12 линии одним проводом 1мм

Собственно есть пара вопросов:

— Почему это могло произойти, понятно что он перегрелся, но почему пока не ясно.
— Можно ли его оставить? если нет то чем его можно заменить? (желательно с несколько большим запасом)
— Может кто подскажет материал дросселя если знает?
— Какова должна быть его индуктивность и сопротивление?
У меня есть другое ферритовое кольцо по размерам такое же, но не уверен что подойдет т.к. оно легче по весу чем то что сгорело.

Добротность и энергия катушки индуктивности. Варианты соединения.

Продолжаем обсуждение катушек индуктивности! В первой статье (ссылка) мы обсудили все основные аспекты, а именно устройство катушек, принцип работы и их поведение при использовании в цепях постоянного и переменного тока. Но некоторые моменты остались незатронутыми, собственно, их мы и обсудим в этой статье И начнем с очень важной характеристики, а именно добротности катушки индуктивности.

Читайте также  Зачем нужен резистор в электрической цепи?

Активное сопротивление и добротность катушки индуктивности.

Итак, начнем мы с того, что обсудим некоторые характеристики катушек индуктивности, с которыми мы не успели познакомиться в предыдущей статье. И для начала рассмотрим активное сопротивление катушки.

Рассматривая примеры включения катушек в различные цепи мы считали их активное сопротивление равным 0 (такие катушки называют идеальными). Но на практике любая катушка обладает ненулевым активным сопротивлением. Таким образом реальную катушку индуктивности можно представить как идеальную катушку и последовательно включенный резистор:

Идеальная катушка, как вы помните, не оказывает никакого сопротивления постоянному току, и напряжение на ней равно 0. В случае с реальной катушкой ситуация несколько меняется. При протекании по цепи постоянного тока напряжение на катушке будет равно:

Ну а поскольку частота тока равна 0 (постоянный ток), то реактивное сопротивление будет равно:

А что же будет происходить при включении реальной катушки индуктивности в цепь переменного тока? Давай разбираться. Представим, что по данной цепи течет переменный ток i , тогда общее напряжение на цепи будет складываться из следующих компонент:

Напряжение на идеальной катушке, как вы помните, выражается через ЭДС самоиндукции:

И мы получаем для напряжения на реальной катушке индуктивности:

Отношение реактивного (индуктивного) сопротивления к активному называется добротностью и обозначается буквой Q :

Раз активное сопротивление R идеальной катушки равно 0, то значит ее добротность Q будет бесконечно большой. Соответственно, чем выше добротность катушки индуктивности, тем она ближе к идеальной. Итак, активное сопротивление катушки мы рассмотрели, давайте перейдем к следующему вопросу.

Энергия катушки индуктивности.

Электрический ток, протекающий через катушку способствует накоплению энергии в магнитном поле катушки. При пропадании/отключении тока эта энергия будет возвращена в электрическую цепь. С этим мы и столкнулись при рассмотрении катушек индуктивности в цепях постоянного тока. Больше тут добавить особо нечего, просто приведу формулу, по которой можно определить величину накопленной энергии катушки индуктивности:

Давайте переходить к вариантам соединения катушек между собой… Все расчеты мы будем производить для идеальных катушек индуктивности, то есть их активные сопротивления равны 0. К слову, в большинстве теоретических задач и примеров, рассматриваются именно идеальные катушки. Но не стоит забывать о том, что в реальных цепях активное сопротивление не равно 0 и его необходимо учитывать при проведении любых расчетов.

Последовательное соединение катушек индуктивности.

При последовательном соединении катушек индуктивности их можно заменить одной катушкой с величиной индуктивности, равной:

Вроде бы все просто, проще некуда, но тут есть один важный момент. Данная формула справедлива только в том случае, если катушки расположены на на таком расстоянии друг от друга, что магнитное поле одной катушки не пересекает витков другой:

Если же катушки расположены близко друг к другу и часть магнитного поля одной катушки пронизывает вторую, то тут ситуация совсем другая. Возможно два варианта:

  • магнитные потоки катушек имеют одинаковое направление
  • магнитные потоки направлены навстречу друг другу

Первый случай называется согласным включением катушек – начало второй катушки подключается к концу первой. А второй вариант называют встречным включением – конец второй катушки подключается к началу первой. На схемах начало катушки обозначают символом “ * “. Таким образом, на схеме, которая представлена на рисунке мы имеем согласное включение катушек индуктивности. Для этого случая общая индуктивность определяется так:

Где M – взаимная индуктивность катушек. При встречном включении последовательно соединенных катушек индуктивности:

Можно заметить, что если потоки имеют одинаковое направление (согласное включение), то общая индуктивность увеличивается на двойную величину взаимной индуктивности. А если потоки направлены навстречу друг другу – уменьшается на ту же самую величину.

Параллельное соединение катушек индуктивности.

При параллельном соединении катушек индуктивности также возможны три варианта:

  • Магнитное поле одной катушки не пересекает витков второй катушки, тогда: frac<1>= frac<1>+frac<1>или L_0 = frac
  • Часть магнитного потока одной катушки пронизывает витки второй и катушки включены согласно (как изображено на рисунке – то есть начала обеих катушек подключены к одному узлу). В этом случае: L_0 = frac
  • Часть магнитного потока одной катушки пронизывает витки второй и катушки включены встречно. В этом случае: L_0 = frac

Также как и в случае с последовательным соединением, при согласном включении общая индуктивность будет больше, чем при встречном включении, поскольку знаменатель дроби будет меньше.

Собственно, на этом мы и заканчиваем рассмотрение катушек индуктивности. Ранее мы изучили конденсаторы и резисторы, а в будущих статьях нам предстоит работать с цепями, включающие все эти элементы в разных комбинациях Так что подписывайтесь на обновления и не пропускайте новые статьи на нашем сайте!

Конвертер величин

  • x
  • TranslatorsCafe.com
  • Онлайн-конвертеры единиц измерения
  • Популярные
  • Механика
  • Теплота
  • Жидкости
  • Звук
  • Свет
  • Электротехника
  • Магнетизм
  • Радиация
  • Другие
  • Калькуляторы
  • Russian (Russia)
  • Калькуляторы
  • Электротехнические и радиотехнические калькуляторы

Калькулятор параллельных индуктивностей

Калькулятор определяет индуктивность нескольких параллельно соединенных катушек индуктивности.

Пример. Рассчитать эквивалентную индуктивность двух соединенных параллельно катушек индуктивности 10 мкГн и 5 мкГн.

Введите величины индуктивностей в поля L1, L2 и т.д., добавляя при необходимости нужное количество полей для ввода, выберите единицы индуктивности в генри (Гн), миллигенри (мГн), микрогенри (мкГн) или пикогенри (пГн) и нажмите кнопку Рассчитать.

1 мГн = 0,001 Г. 1 мкГн = 0,000001 = 10⁻⁶ Гн. 1 нГн = 0,000000001 = 10⁻⁹ Гн. 1 пГн = 0,000000000001 = 10⁻¹² Г. Подробнее о единицах измерения индуктивности.

Индуктивность характеризует способность электрического проводника преобразовывать электрический ток в изменение электрического потенциала в данном проводнике (самоиндукция) и в расположенных рядом проводниках (взаимоиндукция). Индуктивность обычно обозначается символом L в честь русского физика немецкого происхождения Эмилия Христиановича Ленца (Heinrich Lenz).

По определению самоиндукции напряжение v(t) и ток i(t) в катушке индуктивности связаны выражением

На всех соединенных параллельно катушках индуктивности имеется одно и то же напряжение V. В соответствии с правилом Кирхгофа для тока общий ток I равен сумме токов, протекающих через отдельные катушки:

Общая индуктивность Leq соединенных параллельно трех катушек индуктивности, расположенных далеко друг от друга и не имеющих общего магнитного поля равна величине, обратной сумме величин, обратных их индуктивностям:

Или для n несвязанных катушек индуктивности:

Эта формула для Leq используется для расчетов в этом калькуляторе. Например, общая индуктивность трех катушек индуктивности 10, 15 and 20 мкГн, соединенных параллельно, будет равна

Отметим, что если одна или несколько величин индуктивности равны нулю, то Leq стремится к нулю. Представьте себе очень короткий прямой проводник, шунтирующий катушку индуктивности — он и будет иметь почти нулевую индуктивность. Отметим также, что невозможно создать схему с нулевой индуктивностью.
Если параллельно соединены только две катушки индуктивности, имеем:

Эквивалентная индуктивность n одинаковых соединенных параллельно катушек индуктивности L равна

Отметим, что формула для расчета общей индуктивности нескольких катушек индуктивности, соединенных параллельно, используется и для расчета сопротивления группы резисторов, соединенных параллельно.

Отметим также, что для группы из любого количества соединенных параллельно катушек индуктивности эквивалентная индуктивность всегда будет меньше самой малой индуктивности в группе катушек индуктивности, а добавление еще одной катушки всегда будет уменьшать эквивалентную индуктивность группы.

Если индукторы расположены в магнитном поле друг друга, эти формулы работать не будут из-за явления взаимоиндукции (взаимной индукции), которое рассматривается в нашем калькуляторе взаимной индукции. Эффект взаимоиндукции может уменьшить или увеличить общую индуктивность катушек в зависимости от того как работает магнитная связь между катушками. Величина взаимной индукции зависит от расстояния между катушками и их ориентации. При этом взаимоиндукция может увеличивать или уменьшать общую индуктивность.

Если несколько катушек индуктивности соединены последовательно, их эквивалентная индуктивность определяется простым сложением индуктивностей отдельных катушек.

Для n соединенных последовательно катушек индуктивности имеем

Возможно, вы уже заметили, что катушки индуктивности ведут себя точно так же, как резисторы: если катушки соединены последовательно, их эквивалентные индуктивности всегда будет выше, чем индуктивности отдельных катушек, соединенных последовательно, а при параллельном соединении эквивалентная индуктивность всегда будет меньше индуктивностей отдельных катушек.

Зачем соединять катушки последовательно, если можно просто намотать большую катушку индуктивности? Вот один из примеров.

В микроэлектронике для реализации довольно больших индуктивностей на единицу площади интегральной микросхемы используется комбинирование спиральных катушек в нескольких слоях металлизации. Для этой цели используется многослойная пакетная конфигурация катушек индуктивности. Несколько слоев металлизации со спиральными катушками располагают точно один над другим. Катушки соединяют последовательно, чтобы индуктивности складывались для получения одной большой катушки индуктивности. Без такого пакетного расположения при использовании планарной технологии было бы невозможно создать большие индуктивности. Благодаря такому пакетному расположению коэффициент связи катушек k ≈ 1.

В этом калькуляторе мы рассматриваем только идеальные катушки индуктивности. Однако мы живем в реальном мире, где реальные катушки обладают как активным сопротивлением, так и емкостью. В другом калькуляторе мы рассмотрим характеристики неидеальных катушек индуктивности, обладающих сопротивлением, которые описываются эквивалентной схемой из последовательно соединенных индуктивности и сопротивления, в частности их временные характеристики.

Примеры расчетов

Вас могут заинтересовать и другие калькуляторы из группы «Электротехнические и радиотехнические калькуляторы»:

Электротехнические и радиотехнические калькуляторы

Электроника — область физики и электротехники, изучающая методы конструирования и использования электронной аппаратуры и электронных схем, содержащих активные электронные элементы (диоды, транзисторы и интегральные микросхемы) и пассивные электронные элементы (резисторы, катушки индуктивности и конденсаторы), а также соединения между ними.
Радиотехника — инженерная дисциплина, изучающая проектирование и изготовление устройств, которые передают и принимают радиоволны в радиочастотной области спектра (от 3 кГц до 300 ГГц), также обрабатывают принимаемые и передаваемые сигналы. Примерами таких устройств являются радио- и телевизионные приемники, мобильные телефоны, маршрутизаторы, радиостанции, кредитные карточки, спутниковые приемники, компьютеры и другое оборудование, которое передает и принимает радиосигналы.
В этой части Конвертера физических единиц TranslatorsCafe.com представлена группа калькуляторов, выполняющих расчеты в различных областях электротехники, радиотехники и электроники.

На этих страницах размещены конвертеры единиц измерения, позволяющие быстро и точно перевести значения из одних единиц в другие, а также из одной системы единиц в другую. Конвертеры пригодятся инженерам, переводчикам и всем, кто работает с разными единицами измерения.

Мы работаем над обеспечением точности конвертеров и калькуляторов TranslatorsCafe.com, однако мы не можем гарантировать, что они не содержат ошибок и неточностей. Вся информация предоставляется «как есть», без каких-либо гарантий. Условия.

Если вы заметили неточность в расчётах или ошибку в тексте, или вам необходим другой конвертер для перевода из одной единицы измерения в другую, которого нет на нашем сайте — напишите нам!

Катушка индуктивности

Что такое катушка индуктивности

Что вы себе представляете под словом “катушка” ? Ну… это, наверное, какая-нибудь “фиговинка”, на которой намотаны нитки, леска, веревка, да что угодно! Катушка индуктивности представляет из себя точь-в-точь то же самое, но вместо нитки, лески или чего-нибудь еще там намотана обыкновенная медная проволока в изоляции.

Изоляция может быть из бесцветного лака, из ПВХ-изоляции и даже из матерчатой. Тут фишка такая, что хоть и провода в катушке индуктивности очень плотно прилегают к друг другу, они все равно изолированы друг от друга. Если будете мотать катушки индуктивности своими руками, ни в коем случае не вздумайте брать обычный медный голый провод!

Индуктивность

Любая катушка индуктивности обладает индуктивностью. Индуктивность катушки измеряется в Генри (Гн), обозначается буковкой L и замеряется с помощью LC – метра.

Что такое индуктивность? Если через провод пропустить электрический ток, то он вокруг себя создаст магнитное поле:

В – магнитное поле, Вб

А давайте возьмем и намотаем в спиральку этот провод и подадим на его концы напряжение

И у нас получится вот такая картина с магнитными силовыми линиями:

Грубо говоря, чем больше линий магнитного поля пересекут площадь этого соленоида, в нашем случае площадь цилиндра, тем больше будет магнитный поток (Ф). Так как через катушку течет электрический ток, значит, через нее проходит ток с Силой тока (I), а коэффициент между магнитным потоком и силой тока называется индуктивностью и вычисляется по формуле:

С научной же точки зрения, индуктивность – это способность извлекать энергию из источника электрического тока и сохранять ее в виде магнитного поля. Если ток в катушке увеличивается, магнитное поле вокруг катушки расширяется, а если ток уменьшается , то магнитное поле сжимается.

Самоиндукция

Катушка индуктивности обладает также очень интересным свойством. При подаче на катушку постоянного напряжения, в катушке возникает на короткий промежуток времени противоположное напряжение.

Это противоположное напряжение называется ЭДС самоиндукции. Эта ЭДС зависит от значения индуктивности катушки. Поэтому, в момент подачи напряжения на катушку сила тока в течение долей секунд плавно меняет свое значение от 0 до некоторого значения, потому что напряжение, в момент подачи электрического тока, также меняет свое значение от ноля и до установившегося значения. Согласно Закону Ома:

I – сила тока в катушке , А

U – напряжение в катушке, В

R – сопротивление катушки, Ом

Как мы видим по формуле, напряжение меняется от нуля и до напряжения, подаваемого в катушку, следовательно и ток тоже будет меняться от нуля и до какого то значения. Сопротивление катушки для постоянного тока также постоянное.

И второй феномен в катушке индуктивности заключается в том, что если мы разомкнем цепь катушка индуктивности – источник тока, то у нас ЭДС самоиндукции будет суммироваться к напряжению, которое мы уже подали на катушку.

То есть как только мы разрываем цепь, на катушке напряжение в этот момент может быть в разы больше, чем было до размыкания цепи, а сила тока в цепи катушки будет тихонько падать, так как ЭДС самоиндукции будет поддерживать убывающее напряжение.

Сделаем первые выводы о работе катушки индуктивности при подаче на нее постоянного тока. При подаче на катушку электрического тока, сила тока будет плавно увеличиваться, а при снятии электрического тока с катушки, сила тока будет плавно убывать до нуля. Короче говоря, сила тока в катушке мгновенно измениться не может.

Типы катушек индуктивности

Катушки индуктивности делятся в основном на два класса: с магнитным и немагнитным сердечником. Снизу на фото катушка с немагнитным сердечником.

Но где у нее сердечник? Воздух – это немагнитный сердечник :-). Такие катушки также могут быть намотаны на какой-нибудь цилиндрической бумажной трубочке. Индуктивность катушек с немагнитным сердечником используется, когда индуктивность не превышает 5 миллигенри.

А вот катушки индуктивности с сердечником:

В основном используют сердечники из феррита и железных пластин. Сердечники повышают индуктивность катушек в разы. Сердечники в виде кольца (тороидальные) позволяют получить большую индуктивность, нежели просто сердечники из цилиндра.

Для катушек средней индуктивности используются ферритовые сердечники:

Катушки с большой индуктивностью делают как трансформатор с железным сердечником, но с одной обмоткой, в отличие от трансформатора.

Дроссель

Также есть особый вид катушек индуктивностей. Это так называемые дроссели. Дроссель – это катушка индуктивности, задача которой состоит в том, чтобы создать в цепи большое сопротивление для переменного тока, чтобы подавить токи высоких частот.

Постоянный ток через дроссель проходит без проблем. Почему это происходит, можете прочитать в этой статье. Обычно дроссели включаются в цепях питания усилительных устройств. Дроссели предназначены для защиты источников питания от попадания в них высокочастотных сигналов (ВЧ-сигналов). На низких частотах (НЧ) они используются в фильтрах цепей питания и обычно имеют металлические или ферритовые сердечники. Ниже на фото силовые дроссели:

Также существует еще один особый вид дросселей – это сдвоенный дроссель. Он представляет из себя две встречно намотанных катушки индуктивности. За счет встречной намотки и взаимной индукции он более эффективен. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания, а также в звуковой технике.

Что влияет на индуктивность?

От каких факторов зависит индуктивность катушки? Давайте проведем несколько опытов. Я намотал катушку с немагнитным сердечником. Ее индуктивность настолько мала, что LC – метр мне показывает ноль.

Имеется ферритовый сердечник

Начинаю вводить катушку в сердечник на самый край

LC-метр показывает 21 микрогенри.

Ввожу катушку на середину феррита

35 микрогенри. Уже лучше.

Продолжаю вводить катушку на правый край феррита

20 микрогенри. Делаем вывод, самая большая индуктивность на цилиндрическом феррите возникает в его середине. Поэтому, если будете мотать на цилиндрике, старайтесь мотать в середине феррита. Это свойство используется для плавного изменения индуктивности в переменных катушках индуктивности:

1 – это каркас катушки

2 – это витки катушки

3 – сердечник, у которого сверху пазик под маленькую отвертку. Вкручивая или выкручивая сердечник, мы тем самым изменяем индуктивность катушки.

Экспериментируем дальше. Давайте попробуем сжимать и разжимать витки катушки. Для начала ставим ее в середину и начинаем сжимать витки

Индуктивность стала почти 50 микрогенри!

А давайте-ка попробуем расправим витки по всему ферриту

13 микрогенри. Делаем вывод: для максимальной индуктивности мотать катушку надо “виток к витку”.

Убавим витки катушки в два раза. Было 24 витка, стало 12.

Совсем маленькая индуктивность. Убавил количество витков в 2 раза, индуктивность уменьшилась в 10 раз. Вывод: чем меньше количество витков – тем меньше индуктивность и наоборот. Индуктивность меняется не прямолинейно виткам.

Давайте поэкспериментируем с ферритовым кольцом.

Отдалим витки катушки друг от друга

Хм, также 15 микрогенри. Делаем вывод: расстояние от витка до витка не играет никакой роли в катушке индуктивности тороидального исполнения.

Мотнем побольше витков. Было 3 витка, стало 9.

Офигеть! Увеличил количество витков в 3 раза, а индуктивность увеличилась в 12 раз! Вывод: индуктивность меняется не прямолинейно виткам.

Если верить формулам для расчета индуктивностей, индуктивность зависит от “витков в квадрате”. Эти формулы я здесь выкладывать не буду, потому как не вижу надобности. Скажу только, что индуктивность зависит еще от таких параметров, как сердечник (из какого материала он сделан), площадь поперечного сечения сердечника, длина катушки.

Обозначение на схемах

Последовательное и параллельное соединение катушек индуктивности

При последовательном соединении индуктивностей, их общая индуктивность будет равняться сумме индуктивностей.

А при параллельном соединении получаем вот так:

При соединении индуктивностей должно выполняться правило, чтобы они были пространственно разнесены на плате. Это связано с тем, что при близком расположении друг друга их магнитные поля будут влиять с друг другом, и поэтому показания индуктивностей будут неверны. Не ставьте на одну железную ось две и более тороидальных катушек. Это может привести к неправильным показаниям общей индуктивности.

Резюме

Катушка индуктивности играет в электронике очень большую роль, особенно в приемопередающей аппаратуре. На катушках индуктивности строятся также различные фильтры для электронной радиоаппаратуры, а в электротехнике ее используют также в качестве ограничителя скачка силы тока.

Ребята из Паяльника забабахали очень неплохой видос про катушку индуктивности. Советую посмотреть в обязательном порядке:

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: