Полумостовой инвертор принцип работы - ELSTROIKOMPLEKT.RU

Полумостовой инвертор принцип работы

Полумостовой импульсный стабилизированный преобразователь напряжения, источник питания. Преимущества, недостатки, применение. Принцип работы. Примеры схем. Расчет

Как работает полу-мостовой стабилизатор напряжения. Где он применяется. Описание принципа действия. Пошаговая инструкция по разработке и расчету (10+)

Полумостовой преобразователь напряжения. Схема, принцип работы, расчет

Идея прямоходового преобразователя с исключением излишних скачков напряжения на силовых элементах, описанная здесь, может быть усовершенствована до мостовой и полумостовой топологий. Полумостовую топологию мы рассмотрим здесь.

С помощью конденсаторов C3, C4 создана казисредняя точка источника питания. Работа схемы основана на попеременном пропускании тока через верхнее и нижнее плечо. При этом через первичную обмотку трансформатора проходит симметричный ток. Напряжение в точке соединения конденсаторов C3, C4 формируется немного отличным от половины напряжения питания как раз так, чтобы компенсировать некоторую асимметрию плеч.

Вашему вниманию подборки материалов:

Конструирование источников питания и преобразователей напряжения Разработка источников питания и преобразователей напряжения. Типовые схемы. Примеры готовых устройств. Онлайн расчет. Возможность задать вопрос авторам

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

В схеме исключено возникновение на силовых ключах напряжения больше питающего, так как обратные диоды немедленно отведут такое напряжение в цепи питания. Платой за это является то, что амплитуда напряжения, приложенного к первичной обмотке равно только половине напряжения питания. В результате для формирования выходного тока понадобится двойной ток через силовые ключи по сравнению с пушпульной схемой.

На картинке я показал контуры, по которым идет электрический ток, когда замкнут нижний ключ (контур S1), и когда оба ключа разомкнуты (контур S2). Когда оба ключа разомкнуты, накопленная в трансформаторе энергия сбрасывается в цепи питания через шунтирующий диод верхнего плеча. Нарисовать направление движения токов при замыкании верхнего ключа и после его размыкания Вы легко сможете сами по аналогии.

Типичные схемы полумостовых преобразователей


Схема 1


Схема 2

На этих схемах изображен вариант, когда контроллер и силовая часть питаются одним напряжением. Тут вариант питания от разного напряжения. Он используется, например, в источниках питания, работающих от сети.

В схемах может применяться ШИМ — контроллер 1156ЕУ2 (D1) и драйвер верхнего плеча полумоста IR2125 (D2).

Для этих схем подходит только контроллер с двухтактными каскадами на выходе, то есть предназначенный для управления полевыми транзисторами. Хотя во второй схеме применены биполярные транзисторы, в такой схеме управления контроллер нужен именно для полевых. Контроллер с открытыми эмиттерами на выходе здесь не годится.

Применение

Полумостовая схема лучше всего подходит для относительно маломощных (до 500 Вт) источников питания с высоковольтным входом и низковольтным выходом. Большинство компьютерных блоков питания и импульсных зарядных устройств, построено по такой схеме. Примером может быть следующее зарядное устройство. Применение полумостовой схемы при низком входном напряжении ограничено тем, что в этом случае получаются высокие потери на силовых ключах, и нужны конденсаторы C10, C11 большой емкости, рассчитанные на большие токи.

Расчет управляющего трансформатора L7, L8, L9

[Коэффициент трансформации управляющего трансформатора] = 3 * [Напряжение насыщения база — эмиттер VT2, В] / [Минимальное входное напряжение, В]

[Сопротивление резистора R6, Ом] = 4 / 3 * [Минимальное входное напряжение, В] / [Пиковый ток коллектора VT2, А] / [Коэффициент трансформации управляющего трансформатора]

Расчет прочих номиналов

Элементы управления верхним плечом описаны в статье о понижающем преобразователе.

В целом расчет аналогичен расчету для пушпульной схемы. Так что я приведу только те формулы, которые отличаются.

Как и для пушпульной схемы, мы рекомендуем выбирать максимальный коэффициент заполнения около 80%

[Коэффициент трансформации] = [Минимальная амплитуда напряжения на вторичной обмотке, В] / [Минимальное входное напряжение, В] * 2

Двойка появилась потому, что к первичной обмотке приложена только половина напряжения питания.

Силовые транзисторы

[Максимальное напряжение коллектор — эмиттер VT2, VT9, В] = [Максимальное входное напряжение, В].

Защита по току

Защиту от перегрузок и короткого замыкания выходной цепи для полумостовых схем лучше всего делать на основе трансформатора тока, так как простого и надежного варианта схемы со считывающим резистором нет.

Элементы обратной связи по напряжению

[Усиление при разомкнутом контуре обратной связи на частоте резонанса] ≤ 2 * ПИ * ([Максимальное входное напряжение, В] * [Коэффициент трансформации] / 2 — [Выходное напряжение, В]) / ([Размах напряжения для сравнения, В] * sqrt(([Емкость конденсатора C8, Ф] + [Емкость конденсатора C9, Ф]) * [Индуктивность дросселя L1, Гн]) * [Частота работы контроллера D1, Гц])

Конденсаторы C10, C11

[Емкость конденсатора С10, Ф] = [Емкость конденсатора С11, Ф] = 2.5 * [Максимальная средняя сила тока через дроссель L1, А] * [Коэффициент трансформации] / [Минимальное входное напряжение, В] / [Частота работы контроллера D1, Гц] * [Максимальный коэффициент заполнения]

Такой выбор емкости обеспечит изменение напряжения в точке соединения этих конденсаторов в пределах 10% от минимального входного.

Конденсаторы С10, C11 лучше выбирать рассчитанные на максимальное входное напряжение. Это обеспечит надежный запас.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

В онлайн-калькуляторе полумостового преобразователя, при введении значения 0 в поле ‘Напряжение насыщения коллектор — эмиттер VT2, VT9’ для расчета с полевым транзистором, выскакивает сообщение об ошибке с текстом ‘Значение ‘Напряжение насыщения коллектор — эмиттер VT2, VT9 (для полевого тр-ра введите в поле `0`), В’ должно быть больше нуля’. Читать ответ.

Добрый день! А как самому рассчитать управляющий трансформатор полумостового преобразователя? Сколько нужно витков первичной, чтобы индукция не превысила заданную — это понятно, а какие принимать напряжения для базовых цепей транзисторов, токи? Какой типоразмер можно применить? Читать ответ.

Добрый день! Я собрал на макетной плате полумостовой источник с питанием от сети по Вашей схеме. Мощность источника — 24 Вт. Питание контроллера осуществляется с помощью гасящего конденсатора, диодного моста и стабилитрона, при этом цепи питания контроллера и собственно моста разделены, контроллер управляет транзисторами через управляющий трансформатор, поэтому удалось обойтис Читать ответ.

(1) А использовать умножитель напряжения на выходе полумостового преобразователя тоже нельзя? Емкость конденсаторов в умножителе будет около 5-10 нФ, это намного меньше емкости обычных конденсаторов фильтра. А если использовать мостовой выпр. и далее дроссель, то при выходном напряжении 700 В обратное напряж-ие на диодах будет примерно 1200 В. Может, хотя бы подскажете, какие Читать ответ.

(1) Здравствуйте! Я писал по поводу большой мощности, выделяемой на силовых ключах, которая получается в результате расчета. В исходных данных питающее напряжение 310 В, выходное — 40 В, ток нагрузки — 1,1 А. Если задать времена включения и выключения транзисторов, как в примере — 20 нс и 300 нс, то рассеиваемая мощность — в разумных пределах. Но реально эти значения у биполяр Читать ответ.

Обратноходовый импульсный преобразователь напряжения, источник питания.
Как работает обратноходовый стабилизатор напряжения. Где он применяется. Описани.

Пушпульный импульсный источник питания. Онлайн расчет. Форма. Подавлен.
Как рассчитать пуш-пульный импульсный преобразователь напряжения. Как подавить п.

Инвертор, преобразователь, чистая синусоида, синус.
Как получить чистую синусоиду 220 вольт от автомобильного аккумулятора, чтобы за.

Двухполярный, двухполупериодный бестрансформаторный источник питания, .
Примеры схем двуполярного и двухполупериодного бестрансформаторного источника пи.

Преобразователь однофазного напряжения в трехфазное. Принцип действия.
Принцип действия, сборка и наладка преобразователя однофазного напряжения в трех.

Двухтактный полумостовой преобразователь

Изучим принципиальную схему двухтактного полумостового преобразователя, носящего международное называние «half bridge» (рис. 1).

Читайте также  Величина резисторов при последовательном соединении бумажных конденсаторов

Рис.1. Двухтактный полумостовой преобразователь

Пока на затворы транзисторов не поступило напряжение, они закрыты. Напряжение в средней точке емкостного делителя, выполненного на конденсаторах С1 и С2 одинаковой емкости, составляет половину от постоянного напряжения, питающего преобразователь.

Подадим от задающего генератора на затвор транзистора VT2 отпирающее напряжение. По цепи +Uвх, конденсатор С1, обмотка трансформатора TV1, транзистор VT2, -Uвх потечет ток. На вторичной обмотке трансформатора TV1 возникнет напряжение, которое будет выпрямлено диодной сборкой VD1 и сглажено конденсатором С3. Транзистор VT1 все это время был закрыт.

Подадим запирающее напряжение на затвор транзистора VT2 и опирающее напряжение на затвор транзистора VT1. Ток потечет по цепи +Uвх,транзистор VT1, обмотка трансформатора TV1, конденсатор С3, -Uвх. На вторичной обмотке трансформатора TV1 появится напряжение противоположной полярности относительно предыдущего такта, которое выпрямит диодная сборка VD1 и сгладит конденсатор С3. Затем постоянное напряжение с конденсатора С3 будет приложено к нагрузке. Транзистор VT2 в течение второго такта закрыт.

Как видим, ток через нагрузку протекает в течение обоих тактов. Частота пульсации выходного напряжения в два раза выше частоты преобразования, что позволяет использовать конденсатор С3 сглаживающего фильтра с небольшой номинальной емкостью. Частная петля гистерезиса магнитопровода трансформатора полумостового преобразователя близка к предельной петле гистерезиса.

Пока нагрузка не соединена с ИИП, к каждому конденсатору емкостного делителя напряжения приложена половина от постоянного напряжения, питающего преобразователя. Если емкость конденсаторов делителя напряжения будет недостаточно велика, то при максимальной нагрузке в течение каждого полупериода конденсаторы будут существенно разряжаться, и напряжение на них превысит половину напряжения питания преобразователя.

Напряжение, приложенное к первичной обмотке импульсного трансформатора полумостового преобразователя, можно вычислить по формуле:

Где Uп – постоянное напряжение, питающее преобразователь;

Uнас – напряжение насыщения одного ключевого транзистора.

Емкость каждого конденсатора делителя напряжения можно вычислить по следующей формуле:

Где С – емкость конденсатора, Ф;

Iперв.макс – амплитуда полного тока через первичную обмотку трансформатора;

F — частота преобразования, Гц;

ΔUс – изменение напряжения на конденсаторе за длительность времени прохождения через него импульса полного тока Iперв.макс.

Величина приложенной к конденсатору переменной составляющей напряжения не должна превышать максимально допустимую справочную величину для компонента данной марки и типа. Важно помнить, что номинальная емкость многих конденсаторов на высокой частоте и при низкой температуре окружающей среды существенно уменьшается.

Полумостовые преобразователи нашли широкое применение при выходной мощности от нескольких ватт до нескольких киловатт.

Достоинство полумостового преобразователя заключается в низком обратном напряжении, приложенном к каждому ключевому транзистору в состоянии отсечки, примерно равном постоянному напряжению питания преобразователя.

Это позволяет использовать полумостовые преобразователи при высоком питающем напряжении. Полумостовые преобразователи могут быть включены без нагрузки, и при этом не будет опасного повреждения компонентов. Частота пульсации равна удвоенной частоте преобразования.

Если емкости конденсаторов делителя напряжения строго одинаковы, ключевые транзисторы идентичны друг другу, и петля гистерезиса материала магнтопровода не содержит дефектов, то можно полагать, что подмагничивание сердечника импульсного трансформатора отсутствует. Такая картина возможна только в идеале. Так, например, в реальном полумостовом преобразователе емкости конденсаторов в делителе напряжения всегда отличны друг от друга и, следовательно, несимметрично перемагничивание трансформатора. Однако степень несимметрии обычно много меньше, чем в магнитопроводах трансформаторов однотактных преобразователей. Одним из простейших способов уменьшения подмагничиванмя сердечника полумостового преобразователя является включение неполярного конденсатора между импульсным трансформатором и средней точкой емкостного делителя напряжения.

К недостаткам относят наличие двух конденсаторов в делителе напряжения, разрушение компонентов ИИП при перегрузке по току в нагрузке при отсутствии системы защиты, меньший КПД, чем достижимый в мостовом преобразователе.

Источник: Источники питания. Москатов Е.А.

Полумостовая схема блока питания

Вообще, преобразователи напряжения могут классифицироваться по многим признакам и иметь различные схемы и принципы работы.

Когда речь заходит о полумостовой схеме, обязательно подразумеваются двухтактные импульсные преобразователи напряжения (ПН).

Для понимания приведём классификацию наиболее распространённых преобразователей:

  • Трансформаторные (работают на низких частотах);
  • Симисторные или тиристорные (объединены, потому что принцип работы основных элементов во многом схож);
  • Инверторные (преобразуют постоянные напряжения в переменные);
  • Импульсные. Здесь возможны производные варианты:
    • Дроссельные;
    • Однотактные (по сути, работают в режиме дросселя)
      • С прямоходовой схемой;
      • С обратноходовой схемой.
    • Двухтактные
      • С выводом средней точки первичной обмотки (часто называется Push-Pull или «Тяни-толкай»);
      • С мостовой схемой;
      • С полумостовой схемой.

Два такта работы подразумевают возбуждение обмоток импульсного трансформатора в обоих направлениях.

Один такт – только в одном направлении.

Все варианты имеют свои преимущества и недостатки.

Теперь перейдём непосредственно к двухтактным блокам питания.

Для наглядности лучше всего привести их простейшие схемы.

Рис. 1. Простейшие схемы двухтактных блоков питания

Принцип работы двухтактных ПН отлично иллюстрирует Push-Pull схема:

1. Возникающее магнитное поле в первичной обмотке возбуждает ток во вторичной. При поступлении положительного импульса/колебания на выход первой обмотки, транзистор срабатывает и пропускает ток.

2. При поступлении отрицательного импульса срабатывает уже вторая обмотка со своим транзистором. В этот момент первый транзистор и его обмотка простаивают. То есть они меняются местами.

Это и есть два такта работы «тяни-толкай».

Но схему можно усложнить, используя больше управляющих переключателей (транзисторов). Тогда можно обойтись только одной вторичной обмоткой, что существенно упрощает намотку импульсного трансформатора. Нагляднее всего это видно на схеме «Мост». И положительные, и отрицательные колебания подаются на одну обмотку.

Если заменить половину транзисторов на конденсаторы, получится тот самый «полумост». Конденсаторы выполняют роль сглаживающего фильтра и способствуют стабилизации напряжения.

Примеры принципиальных схем

Первый, достаточно распространённый вариант.

Рис. 2. Принципиальная схема

Ключами управляет таймер, здесь он построен на базе очень популярного ШИМ-контроллера TL-494. Чтобы импульсы маломощного генератора стали достаточными для силовых ключей VT3 и 4, они предварительно усиливаются каскадом из VT1, 2 и трансформатора TR1.

Выпрямление тока происходит уже почти на выходе схемы. За эту задачу отвечают диоды Шоттки и простые сглаживающие фильтры – конденсаторы.

В качестве 1 и 2 транзисторов могут использоваться мосфеты IRFZ34, 3 и 4-го — IRFP460.

Основная сложность – импульсные трансформаторы. Если вы хотите рассчитать свой, лучше всего воспользоваться специальным ПО.

  • Первый. Каждая обмотка по 50 витков проводом 0,5 мм.
  • Второй. 1 – 110 витков 0,8 мм, 2 – рассчитывается исходя из требуемого напряжения (1 виток – 2 В), 3 – 12 витков 0,8 мм.

Такая конфигурация может обеспечить питание мощностью до 500 Вт. Номинальное значение – около 300 Вт.

Второй вариант – более сложный. Но здесь предусмотрены:

  • Защита от КЗ и перегрузок;
  • Мягкий (софт) старт;
  • Фильтры помех на входе и выходе.

Рис. 3. Принципиальная схема

В качестве драйвера здесь была выбрана микросхема IR2153.

Мнения читателей

Нет комментариев. Ваш комментарий будет первый.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Косой мост принцип работы

Наиболее часто применяемые высокочастотные преобразователи в сварочных инверторах

Для построения сварочного инвертора применяют три типа высокочастотных преобразователей, а именно преобразователи включенные по схемам: асимметричный или косой мост, полумост, а также полный мост. Резонансные преобразователи являются подвидами схем полумоста и полного моста.

По системе управления данные устройства можно поделить на:

— ШИМ (широтно-импульсной модуляцией);

— ЧИМ (регулирование частоты);

Могут существовать комбинации всех трех систем.

Типы высокочастотных преобразователей:

  • Система полумост с ШИМ
  • Резонансный полумост
  • Ассиметричный или «косой» мост
  • Полный мост с ШИМ
  • Резонансный мост
  • Полный мост с дросселем рассеивания
Читайте также  Освещение детских площадок нормы

Система полумост с ШИМ

Блок схема показана ниже:

Один из самых простых и надежных преобразователей семейства двухтактных.

«Раскачка» напряжения первичной обмотки трансформатора силового будет равна половине напряжения питания – это недостаток данной схемы. Но плюсом является то, что можно применить трансформатор с меньшим сердечником, не опасаясь захода в зону насыщения. Для сварочных инверторов имеющих мощность порядка 2-3 кВт такой силовой модуль вполне перспективен.

Для нормальной работы силовых транзисторов необходимо ставить драйверы. Это связано с тем, что при работе в режиме жёсткого переключения транзисторам необходим высококачественный управляющий сигнал. Также обязательно наличие безтоковой паузы, чтоб не допустить одновременное открытие транзисторов, иначе они выйдут из строя.

Резонансный полумост

Довольно перспективный вид полумостового преобразователя, его схема показана ниже:

Простота резонансного полумоста в сравнении с полумостом с ШИМ обусловлена тем, что здесь присутствует индуктивности резонансной. Она ограничивает максимальный ток транзисторов, а коммутация транзисторов происходит в нуле тока или напряжения.

Протекающий по силовой цепи ток будет иметь форму синусоиды. Это снимет нагрузку с конденсаторных фильтров. В этом случае драйверы необязательны. Переключение можно выполнить импульсным трансформатором. Качество управляющих импульсов не существенно. Но должна присутствовать бестоковая пауза.

Здесь можно обойтись без токовой защиты, а форма вольт-амперной характеристики ВАХ будет иметь падающий вид, что не требует ее параметрического формирования.

Выходной ток будет ограничиваться только индуктивностью намагничивания трансформатора и сможет достигать значительных величин, если возникнет короткое замыкание КЗ. Это свойство положительно влияет на поджиг и горение дуги, но его необходимо учитывать при подборе выходных диодов.

Выходные параметры регулируются изменением частоты. Но фазное регулирование является более перспективным для сварочных инверторов. Благодаря ему можно избежать неприятного явления в виде совпадения режима короткого замыкания с резонансом. Кроме этого, он увеличивает диапазон регулирования выходных параметров. Применение фазовой регулировки может позволить изменять выходной ток в диапазоне от 0 до Imax.

Ассиметричный, или «косой» мост

Это однотактный, прямоходовой преобразователь, блок-схема которого приведена ниже:

Он популярен у радиолюбителей и у производителей сварочных инверторов. Первые сварочные инверторы строились по таким схемам – асимметричный или «косой» мост. Их качества — помехозащищенность, широкий диапазон регулирования выходного тока, надежность и простота.

— довольно высокие токи, проходящие через транзисторы;

— повышенное требование к качеству управляющего импульса. Возникает необходимость использовать мощные драйвера для управления транзисторами;

— высокие требования к выполнению монтажных работ;

— наличие больших импульсных токов, что повышает требования к конденсаторным фильтрам.

Для поддерживания нормальной работы транзисторов необходимо добавление RCD цепочек – снабберов.

Несмотря на указанные недостатки и низкий КПД устройства по схеме, асимметричный или «косой» мост до сих пор применяется в сварочных инверторах.

Полный мост с ШИМ

Представляет собой классический двухтактный преобразователь, блок-схема которого показана ниже:

По этой схеме можно получать мощность в 2 раза больше, чем при включении типа полумост, и в 2 раза больше, чем при включении типа «косой» мост, при этом величины токов и соответственно потери во всех трех случаях будут равны. Это можно объяснить тем, что напряжение питания будет равным напряжению «раскачки» первичной обмотки трансформатора силового.

Для того, чтоб получить одинаковые мощности с полумостом (напряжение раскачки 0,5Uпит.) необходим ток в 2 раза! меньше чем для случая полумоста. В схеме полного моста с ШИМ транзисторы будут работать поочередно – Т1, Т3 включены, а Т2, Т4 выключены и соответственно наоборот при изменении полярности. Через трансформатор тока отслеживают и контролируют значения амплитудное тока протекающего через эту диагональ. Для его регулирования есть два наиболее часто применяемые способы:

  • Оставить неизменным напряжение отсечки, а изменять только длину импульса управления;
  • Проводить изменения уровня отсекающего напряжения по данным с трансформатора тока при этом оставляя неизменным длительность импульса управления;

Оба способа могут позволить проводить изменения выходного тока в довольно больших пределах. У полного моста с ШИМ недостатки и требования такие же, как и у полумоста с ШИМ.

Резонансный мост

Является наиболее перспективной схемой высокочастотного преобразователя для сварочного инвертора, блок-схема которого показана ниже:

Резонансный мост не сильно отличается от полного моста с ШИМ. Разница в том, что при резонансном подключении последовательно с обмоткой трансформатора подключают резонансную LC цепочку. Но ее появление полностью меняет процесс перекачки мощности. Уменьшатся потери, увеличится КПД, снизится нагрузка на входные электролиты и электромагнитные помехи уменьшатся. Драйверы нужно применять только тогда, когда используются MOSFET транзисторы, имеющие емкость затвора более 5000 pF. IGBT могут обойтись лишь наличием импульсного трансформатора.

Управление выходным током может производится двумя способами – частотным и фазовым.

Полный мост с дросселем рассеивания

Схема идентична схеме резонансного моста или полумоста, только вместо резонансной цепи LC последовательно с трансформатором включают не резонансную LC цепь. Емкость С, примерно С≈22мкф х 63В, работает как симметрирующий конденсатор, а индуктивное сопротивление дросселя L как реактивное сопротивление, величина которого будет линейно изменятся в зависимости от изменения частоты. Преобразователь управляется частотным способом. При увеличении частоты напряжения сопротивление индуктивности возрастет. А это уменьшит ток в силовом трансформаторе. Поэтому довольно большое количество промышленных инверторов строят по такому принципу ограничения выходных параметров.

Двухтактный повышающий преобразователь: развитие топологии

Известно большое количество конвертеров повышающего типа, в том числе и двухтактных: мостовой конвертер с дросселем постоянного тока на входе, нулевая топология

Рис. 1. Двухтактный полумостовой повышающий конвертер:
а) исходная топология;
б) базовая топология с дополнительными размагничивающими обмотками дросселей;
в) с общим магнитосвязанным дросселем

(push-pull) с дросселем постоянного тока в цепи питания и др. Рассматриваемый в данной статье конвертер и его основные разновидности были предложены в работе [1]. В зарубежной литературе за ним закрепилось название two inductor current-fed boost half-bridge converter — полумостовой повышающий конвертер с двумя дросселями на входе и гальванической развязкой между входом и выходом (далее — 2ДППК).

На рис. 1 показаны основные разновидности 2ДППК. Исходная топология приведена на рис. 1а. Питание первичной обмотки силового трансформатора Tr1 осуществляется от «источников тока» в виде дросселей постоянного тока Dr1 и Dr2. Обязательным условием нормального функционирования схемы, приведенной на рис. 1а, является управление ключами VT1, VT2 с коэффициентом заполнения D > 0,5.

Иными словами, должно быть исключено состояние, при котором оба ключа одновременно выключены, так как в этом случае возникают высоковольтные импульсы напряжения на стоках ключей из-за отсутствия у дросселей Dr1 и Dr2 путей сброса тока, накопленного в течение замкнутого состояния ключей. На практике выбирается величина Dmin = 0,52–0,55. Данная топология обладает следующими положительными свойствами:

  • В конвертере 2ДППК принципиально отсутствуют сквозные токи между ключами.
  • Конвертер «не боится» насыщения магнитопровода силового трансформатора — в случае «замагничивания» магнитопровода каждый ключ коммутирует токи обоих дросселей, которые линейно по времени увеличиваются в течение периода коммутации. Но этот процесс существенно более медленный из-за большей индуктивности дросселей, чем при экспоненциальном росте тока намагничивания силового трансформатора при его насыщении в конвертерах с питанием от источника напряжения. Это обстоятельство предоставляет ШИМ-контроллеру достаточное время для «принятия решения» и ограничения тока через ключи.
  • Конвертер имеет высокий коэффициент передачи по напряжению: V = 2/(1 – D) × Vinn, где Vin — напряжение питания конвертера, n — коэффициент трансформации силового трансформатора, V — выходное напряжение.
  • Конвертер обеспечивает гальваническую развязку между входом и выходом.
Читайте также  Аксиальный генератор на постоянных магнитах своими руками

Практически, конвертер с исходной топологией может использоваться либо в регулируемом режиме с D > 0,5, либо как нерегулируемый с фиксированным коэффициентом заполнения D = 0,52–0,55 и в таком виде не представляет особого интереса, но тем не менее применяется в качестве, например, входного преобразователя напряжения солнечных панелей [2].

Возможно преобразование исходного варианта 2ДППК в регулируемый при фиксированном значении D. Для этого вводится резонансный формирующий контур, что позволяет использовать в качестве регулирующего выходное напряжение параметра частоту коммутации ключей. Одновременно с этим появляется возможность реализовать режим «мягкой» коммутации силовых транзисторов [2, 3].

Чтобы устранить основной недостаток исходной топологии — невозможность использования ШИМ-регулирования в широком диапазоне изменения 0 0,5 возможна, но в данной статье не рассматривается. В связи с низким питающим напряжением и малой выходной мощностью конвертера цепи снижающие коммутационные потери не применялись. При изготовлении дросселей использовались магнитопроводы из феррита из соображений удобства работы с разборным сердечником. Для минимизации массогабаритных показателей дросселей следует использовать магнитопроводы с максимальной доступной индукцией насыщения, такие как Kool-Mu, High Flux, XFlux, Molypermalloy, порошковое железо.

Бестрансформаторный вариант 2ДППК может применяться и при высоком питающем напряжении, например в устройствах с питанием от промышленной сети 220 В/ 50 Гц. В этом случае потребуется использовать высоковольтные транзисторы с максимальным рабочим напряжением не менее 800 В, что может рассматриваться как минус данной топологии. Однако этот недостаток можно преодолеть, включив силовые транзисторы последовательно по питанию, а не параллельно, как в базовой схеме. Пример такого «высоковольтного» 2ДППК с мостовым вторичным выпрямителем показан на рис. 9а. На рис. 9б представлен способ замены мостового вторичного выпрямителя на двухполупериодный. Диоды VD1 и VD2 на рис. 9а являются рекуперационными.

Рис. 9. «Высоковольтный» вариант 2ДППК с двумя вариантами вторичных выпрямителей

Заключение

Предложенная в статье модификация двухтактного повышающего преобразователя может найти применение в тех же приложениях, что и преобразователи повышающего типа традиционной топологии: в качестве входного преобразователя в системах электрогенерации с использованием возобновляемых ресурсов, в электроприводе постоянного тока, в переносном оборудовании с питанием от химических источников тока и в других областях. «Высоковольтный» вариант 2ДППК может быть использован, например, в качестве источника тока в составе зарядных станций.

Следует отметить, что переход от базовой схемы 2ДППК (рис. 1б) к бестрансформаторной (рис. 2) позволяет сократить количество моточных изделий, но суммарный вес магнито­проводов и обмоточной «меди» при этом практически не уменьшается, так как исключенный из схемы силовой трансформатор фактически интегрируется в состав дросселей постоянного тока. Тем не менее предложенная топология может оказаться оптимальной в одной из областей применения.

Транзисторные инверторы напряжения с внешним управлением

Двухтактные транзисторные инверторы напряжения

Мостовая схема инвертора напряжения

Мостовая схема инвертора напряжения применяется на больших мощностях при повышенном уровне напряжения источника питания. Сигналы управления X1…X4 поступают таким образом, что в каждом полупериоде два транзистора включены, а два других выключены.

Существует два алгоритма управления ключевыми элементами инвертора напряжения: симметричный и несимметричный. На рисунке приведены временные зависимости токов и напряжений для этих двух алгоритмов. Рассмотрим принцип действия инвертора при симметричном управлении .

При подаче управляющих импульсов X1, X4 на транзисторы VT1, VT4 на интервале времени [t 3 ;t 4 ] ток протекает по контуру: “+” U 1 ; коллектор- эмиттер VT1; обмотка трансформатора (T) в первичной цепи; коллектор- эмиттер VT4; “-“ U 1 . На этом же интервале накапливается реактивная энергия в цепи намагничивания трансформатора T, происходит плавное нарастание тока в первичной цепи по экспоненциальному закону.

На интервале [t 4 ; t 5 ] осуществляется рекуперация энергии в источник U 1 через обратные диоды по контуру: “+” ЭДС (E 1 ); VD3; противоположное направление по отношению к U 1 ; VD2; “–“ E 1 . Тока источника спадает до нуля.

В плече моста инвертора напряжения достаточно управлять одним ключом для осуществления стабилизации напряжения на выходе инвертора (U 2 ), другой ключ можно удерживать в открытом состоянии, что исключает воздействие инвертора на входной источник. Рассмотрим принцип действия инвертора при несимметричном алгоритме управления .

На интервале времени [t 0 ; t 2 ] за период работы второго и третьего ключей в цепи намагничивания трансформатора T накопилась реактивная энергия. На интервале [t 2 ; t 3 ] происходит рекуперация энергии в нагрузку по контуру: “+” ЭДС (E 1 ); VD1; коллектор- эммитер VT3; “-” E 1 . Если на данном интервале ток I 1 не снизился до нуля (т.е. ток не поменял свой знак), то на интервале [t 3 ; t 4 ] энергия передается в источник по контуру: “+” ЭДС (E 1 ); VD1; противоположное направление по отношению к U 1 ; VD4; “–“ E 1 , при этом образуется “полочка” в форме напряжения U 2 .

Полумостовой транзисторный инвертор напряжения

Принцип работы схемы заключается в поочередном подключении транзисторами VT1, VT2 первичной обмотки трансформатора к конденсаторам С1 и С2. На интервале времени [t 2 ; t 3 ] происходит заряд кондесатора С 1 по цепи: “+”; U 1 ; С1; обмотка трансформатора первичной цепи W1; коллектор- эмиттер VT2; “-” U 1 . На этом же интервале происходит разряд конденсатора С2 по цепи: “+” С2; обмотка трансформатора первичной цепи W1; коллектор- эмиттер VT2; “-” U 1 .

К достоинствам схемы инвертора можно отнести: малые потери в силовой цепи за счет коммутации одного ключа на каждом такте работы схемы. За счет кондесаторов поддерживается баланс токов в схеме за период работы, что исключает возникновение асимметричного режима намагничивания трансформатора. Кроме того, в этой схеме малый уровень обратного напряжения на ключах, поэтому схема может использоваться при высоких входных напряжениях.

Однотактный транзисторный инвертор напряжения с прямым включением выпрямительного диода

При подаче управляющего сигнала (U УПР ) на базу транзистора VT1 в первичной цепи трансформатора появляется ток. Контур его протекания: “+” U вх ; обмотка трансформатора в первичной цепи; коллектор- эмиттер VT1;

”–“ U 1 . На интервале импульса происходит передача энергии в нагрузку через выпрямительный диод VD 1 и накопление реактивной энергии в дросселе сглаживающего фильтра L . На интервале паузы (1-K З )T осуществляется разряд дросселя L через обратный диод VD2 в нагрузку, конденсатор С дополнительно сглаживает пульсации.

К достоинствам схемы относятся: простота силовой цепи и системы управления, дешевизна конструкции. отсутствие режима сквозных токов.

Недостатки : ограничения на максимальное значение коэффициента заполнения импульсов K З , большие габариты сглаживающего фильтра, одностороннее намагничивание сердечника трансформатора. В таком виде схема неработоспособна – требуются цепи восстановления магнитного состояния сердечника (размагничивания).

Однотактный транзисторный инвертор с обратным включением выпрямительного диода

При подаче управляющего сигнала на базу транзистора VT1 происходит накопление реактивной энергии в цепи намагничивания трансформатора T1. Ток в цепи намагничивания трасформатора протекает по контуру: “+” U вх ; обмотка трансформатора первичной цепи; коллектор- эмиттер VT1;”–“ U 1 . При этом выпрямительный диод VD1 закрыт, конденсатор фильтра разряжается в нагрузку. На интервале паузы происходит передача энергии намагничивания в нагрузку через выпрямительный диод VD1.

К достоинствам схемы относятся: простота силовой цепи и системы управления, дешевизна конструкции, отсутствие режима сквозных токов.

Недостатки : ограничения на максимальное значение коэффициента заполнения импульсов K З , большие габариты сглаживающего фильтра, одностороннее намагничивание сердечника трансформатора.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: