Последовательное соединение светодиодных светильников - ELSTROIKOMPLEKT.RU

Последовательное соединение светодиодных светильников

Последовательное и параллельное подключение светодиодов

При конструировании различных электронных устройств часто возникает необходимость в последовательном, параллельном или комбинированном включении элементов. Не стали исключением и светодиоды. Учитывая их небольшие размеры, а также с целью повышения яркости, в одном корпусе осветительного прибора можно разместить несколько LED-чипов.

Как правильно собрать электрическую цепь, чтобы надёжность схемы была на высоком уровне? Что нужно знать о светодиодах, соединяя их параллельно или последовательно?

Параллельное соединение

Необходимость в параллельном включении возникает в случае, когда напряжения источника питания недостаточно для запитки нескольких последовательно соединённых светодиодов. Теоретически, в самом простом варианте можно было бы отдельно объединить все аноды и все катоды излучающих диодов. После чего подключить их к источнику напряжения с соблюдением полярности. Но такая схема не работоспособна, так как дифференциальное сопротивление открытого светодиода чрезмерно мало, что провоцирует режим короткого замыкания. В результате все светодиоды в цепи единожды вспыхнут и навсегда погаснут.

Но как говорят: «Правило без исключений не бывает». В китайских игрушках и зажигалках с подсветкой можно увидеть, что светодиоды запитаны прямо от батареек без каких-либо промежуточных элементов. Почему они не перегорают? Дело в том, что ток в цепи ограничен внутренним сопротивлением круглых батареек типа AG1. Их мощности недостаточно, чтобы нанести вред светодиоду.

Ограничить резкое нарастание тока в нагрузке можно с помощью резистора. О том, как это грамотно сделать с одним светодиодом, подробно написано в данной статье. Для цепи из нескольких параллельно подключенных LED с одним резистором схема примет следующий вид. Но и этот вариант не пригоден для конструирования осветительных устройств с высокой надёжностью. Почему? Ответ на этот вопрос кроется в особенностях строения полупроводников. В процессе производства полупроводниковых элементов невозможно получить два абсолютно одинаковых прибора. Даже у светодиодов из одной партии будет разное дифференциальное (внутреннее) сопротивление, от которого зависит величина прямого напряжения. Это касается не только светодиодов, но и других полупроводников. Среди диодов, транзисторов и тиристоров тоже не найти двух приборов с равными электрическими параметрами.

Из второй схемы видно, что резистор R1 ограничивает только суммарный ток цепи, который затем распределяется по ветвям со светодиодами в зависимости от их сопротивления. По закону Ома светодиод с наименьшим сопротивлением p-n-перехода получит наибольшую порцию тока. И скорее всего он будет больше номинального значения, что ускорит деградацию кристалла. Работа светодиода в режиме перегрузки по току рано или поздно приведёт к выходу из строя на обрыв. Оставшиеся в работе светодиоды распределят между собой ток сгоревшего элемента, что также приведёт к резкой потере яркости.

Как и в первом варианте, китайцы не стесняются конструировать светильники на базе «полурабочих» схем. Схему с одним резистором часто можно встретить в дешёвых фонариках и маломощных светильниках на пальчиковых батарейках. А чтобы светодиоды проработали хотя бы год, сопротивление резистора умышленно завышают, как бы, исключая возможные перегрузки.

Ниже приведен единственно верный вариант параллельного включения светодиодов. Здесь последовательно с каждым светодиодом подключен ограничительный резистор. Такое схемотехническое решение позволяет выровнять токи в каждой отдельной ветви, не позволяя им превышать рабочее значение.

Подключать светодиоды через резистор рекомендуется только от стабилизированного источника постоянного напряжения.

Пример расчета

Для закрепления теоретических знаний параллельное соединение светодиодов рассмотрим на конкретном примере. В схеме включены два светодиода: слаботочный красный и мощный одноваттный белый, которые для удобства можно запитать от разных выключателей.

  • источник напряжения U = +5 В;
  • LED1 – красного свечения с ULED1 = 1,8 В и ILED1 = 0,02 А;
  • LED2 – белого свечения с ULED2 = 3,2 В и ILED2 = 0,35 А.

Требуется рассчитать параметры и выбрать резисторы R1 и R2.

При параллельном включении к обеим ветвям (R1-LED1 и R2- LED2) прикладывается одинаковое напряжение, равное 5 В. Сопротивление каждого резистора определим по формуле: Округляем полученное значение R2 до ближайшего большего значения из стандартного ряда E24 – 5,1 Ом. Подставив его обратно в формулу, находим реальный ток во второй ветви: С учетом возможного отклонения сопротивления выбранного резистора, которое для ряда Е24 может достигать 5%, ток 0,33 А является оптимальным. Снижение рабочего тока примерно на 4% сильно не повлияет на яркость, но позволит светодиоду работать без перегрузок.

Мощность, которую должны рассеивать резисторы, определим с учетом пересчёта тока LED2 по формуле: Резистор R1 подойдёт любой как планарный, так и с выводами сопротивлением 160 Ом и мощностью 0,125 Вт. Корпус резистора R2 должен эффективно отводить тепло в течение длительной работы светильника. Поэтому его выбираем с двойным запасом по мощности, а именно: 5,1 Ом – 1 Вт.

Последовательное соединение

В последовательном включении светодиодов нужно соблюдать правило: «Напряжение источника питания должно быть больше суммы падений напряжений на светодиодах». Остаток напряжения в неравенстве гасится одним единственным резистором R, правильное включение которого показано на схеме. Все светодиоды подключаются поочередно от анода к катоду. Сопротивление резистора задаёт ток цепи. Это значит, что соединять последовательно можно светодиоды только с одинаковым рабочим током.

Пример расчета

Расчет сопротивления и мощности резистора проведём на примере включения трёх белых светодиодов из серии Cree XM-L, для которых характерным является ток ILED = 0,7 А и прямое напряжение ULED = 2,9 В. Взяв за основу цветовую температуру и требуемую яркость, можно последовательно подключать светодиоды из разных групп в пределах серии XM-L. Например, один Cree XM-L-T6 с ТС=5000°K и два Cree XM-L-T2 с ТС=2600°K, которые в итоге дадут мощный поток нейтрального света. Питание на схему поступает от блока стабилизированного напряжения U = +12 В. Сопротивление резистора находим по закону Ома: Ближайший стандартный номинал – 4,7 Ом, при котором ток теоретически будет равен 0,702 А. Это не критично, но следует быть уверенным, что сопротивление резистора не изменится под влиянием температуры во время работы. Поэтому устанавливать нужно либо прецизионный резистор с допуском менее 1%, либо последовательно с R1 = 4,7 Ом запаять ещё одно сопротивление 0,1-0,2 Ом такой же мощности.

Найдём мощность резистора: По аналогии с расчётами для первой схемы устанавливать нужно резистор примерно с двойным запасом по мощности, то есть один на 5 Вт. Можно его заменить на два штуки по 2 Вт, но тогда придётся пересчитать сопротивление.

Два важных момента

В момент первого включения желательно измерить мультиметром ток в цепи и падение напряжения на каждом светодиоде. Если полученные данные будут отличаться от расчётных, то нужно пересчитать сопротивление резистора. Иначе, ток в схеме может оказаться слишком заниженным (с потерей яркости) или завышенным (с перегревом чипа светодиода).

Как в последовательном, так и в параллельном включении светодиодов нельзя делать расчеты, ссылаясь исключительно на способность источника питания обеспечить нужный ток или напряжение. Важны оба этих параметра, произведение которых даёт мощность. Мощность блока питания всегда должна быть больше мощности потребления, чтобы гарантировать стабильную и продолжительную работу всего устройства.

Последовательное соединение светодиодов

При разработке электрических схем, в которых задействовано более одного светодиода, возникает вопрос какое соединение светодиодов лучше выбрать: последовательное или параллельное? Забегая вперед отметим, что последовательное включение всегда более эффективно, но не всегда легко реализуемо. Разберемся почему?

Вольтамперная характеристика светодиода (ВАХ)

Светодиод – нелинейный элемент электрической цепи, его ВАХ по форме практически идентична обычному кремниевому диоду. На рисунке 1 приведена ВАХ мощного белого светодиода, одного из ведущих мировых производителей.

По графику видно, что при увеличении напряжения всего на 0,2 В (например, участок 2,9…3,1 В), сила тока увеличивается более чем в два раза (с 350 мА до 850 мА). Справедливо и обратное: при изменении тока в достаточно широких пределах, падение напряжения изменяется весьма незначительно. Это очень важно.

Второй важный момент – падение напряжения от образца к образцу в одной партии может отличаться на несколько десятых долей вольта (технологический разброс). По этой причине источник питания светодиодов должен иметь стабилизацию по току, а не по напряжению. Световой поток, кстати, нормируется также в зависимости от прямого тока. Теперь посмотрим, как эта информация пригодится при выборе схемы подключения.

Последовательное соединение (рисунок 2).

На схеме показано последовательное включение трех светодиодов HL1…HL3 к источнику постоянного тока J. Для простоты возьмем идеальный источник тока, т.е. источник, обеспечивающий постоянный ток одинаковой величины, независимо от нагрузки. Поскольку сила тока в замкнутом контуре одинакова, через каждый элемент, последовательно включенный в этот контур, протекает ток одинаковой величины I1=I2=I3=J. Соответственно обеспечивается одинаковая яркость свечения. Разница в падениях напряжения на отдельных светодиодах не имеет в этом случае никакого значения и отражается только на величине разности потенциалов между точками 1 и 2.

Рассмотрим конкретный пример расчета подобной схемы. Пусть требуется обеспечить питание трех последовательно включенных светодиодов током 350 мА. Падение напряжения при этом токе по данным производителя может составлять значение от 2,8 В до 3,2 В.

Рассчитаем требуемый диапазон выходного напряжения источника тока:

Максимальная мощность потребляемая светодиодами составит P=9,6×0,35=3,4 Вт.

Таким образом источник должен иметь следующие параметры:

Читайте также  Принцип действия электролизера

Выходной стабильный ток – 350 мА;

Выходное напряжение – 9 В ±0,6В (или ±7%);

Выходная мощность – не менее 3,5 Вт.

Все предельно просто.

Серийно выпускающиеся источники питания для светодиодов (драйверы) обычно имеют более широкий диапазон выходного напряжения, чтобы разработчик светотехнического устройства не был привязан к конкретному количеству излучающих диодов, а имел некоторую свободу действий. В таком случае можно к одному и тому же источнику подключать последовательно, например, от 1-го до 8-ми светодиодов.

Тем не менее, последовательная схема включения имеет свои недостатки.

  1. Во-первых, при выходе из строя одного из диодов в цепи – по понятным причинам гаснут и все остальные. Исключение – короткое замыкание светодиода – в этом случае цепь не обрывается.
  2. Во-вторых, при большом количестве светодиодов, сложнее реализовать низковольтное питание.

Например, в случае если стоит задача запитать 10 светодиодов последовательно (это падение напряжения порядка 30 В) от автомобильного аккумулятора, то без повышающего преобразователя не обойтись. А это уже дополнительные затраты, габариты и снижение КПД.

Параллельное соединение (рисунок 3).

Рассмотрим теперь параллельное соединение тех же светоизлучающих диодов.

Согласно первому закону Кирхгофа:

Чтобы обеспечить каждому светодиоду одноваттный режим (I=350мА), источник тока должен выдавать 1050 мА при выходном напряжении порядка 3 В.

Как уже говорилось выше, светодиоды имеют некоторый технологический разброс параметров, поэтому на самом деле токи поделятся не поровну, а пропорционально своим дифференциальным сопротивлениям.

К примеру, если прямое падение напряжения, измеренное на этих светодиодах при токе 350 мА, составляло 2,9 В, 3 В, 3,1 В для HL1, HL2 и HL3 соответственно. То при включении по представленной схеме токи распределятся следующим образом:

Это значит, что и яркость свечения будет разная. Для выравнивания токов в такие цепи обычно последовательно светодиодам включают резисторы (рисунок 4).

Выравнивающие резисторы увеличивают потребляемую мощность общей схемы, а следовательно снижают эффективность.

Такой способ соединения чаще всего применяют с низковольтными источниками питания, например в портативных устройствах с электрохимическими источниками тока (аккумуляторами, батарейками). В других случаях рекомендуется соединить светодиоды последовательно.

Последовательно-параллельное соединение

Если необходимо соединить большое кол-во светодиодов может быть применено последовательно-параллельное соединение. В этом случае несколько ветвей с последовательно соединенными светодиодами соединяются параллельно.

Схемы и нюансы подключения светодиодных светильников к сети 220 В

За последние годы многие люди стали гораздо охотнее переходить с обычных ламп накаливания и улучшенных галогенок на экономичные и качественные светодиоды. Такие источники света позволяют существенно сократить расходы на электроэнергию. И это неудивительно, ведь при одинаковой интенсивности свечения лампа накаливания в 8-10 раз мощнее светодиодной. Аналогичная ситуация наблюдается при сравнении led-диодов и галогенок.

В процессе монтажа могут возникнуть определенные трудности. Далеко не все люди понимают, как подключить светодиодный светильник к 220 В своими руками.

Основы подключения к 220 В

Светодиод – полупроводник, пропускающий электрический ток исключительно в одном направлении. Большинство светильников оснащаются специальными драйверами, преобразующими переменное электричество в постоянное 12, 24, 36 или 48 В. Что касается промышленной сети, то она выдает синусоидальное напряжение 220 В (среднее значение, всегда имеются небольшие перепады) с частотой 50 Гц.

При таком раскладе светодиод будет работать на определенных полуволнах – мигать с частотой 50 Гц. Впрочем, человек не способен заметить мерцание. При подаче электричества в обратном направлении элемент прекратит светиться, но без должной защиты может выйти из строя.

Методы подключения

Простейшим методом подключения светильника к сети на 220 В является использование гасящего сопротивления, расположенного последовательно светодиоду. Напряжение постоянно изменяется, амплитудное значение может достигать 310 В. Данная величина должна обязательно учитываться при расчетах сопротивления.

Также следует обеспечить защиту диода от обратного напряжения, равного прямому. Рассмотрим основные способы.

Последовательное подключение диода с высоким напряжением обратного пробоя (400 В и более)

В данном случае правильно подключить к схеме выпрямительный диод 1N4007, обратное напряжение которого составляет 1000 В. Если будет изменена полярность и напряжение пойдет в обратном направлении, то оно будет сглажено выпрямительным диодом, защищающим светодиод от пробоя.

Шунтирование светодиода обычным диодом

Этот способ подразумевает использование простого маломощного полупроводника, подключаемого по встречно-параллельному курсу со светодиодом. Обратное напряжение будет воздействовать на гасящее сопротивление, поскольку диод включен в прямом направлении.

Встречно-параллельное подключение двух светодиодов

Способ схож с предыдущим методом, за исключением того, что светодиоды будут гореть только на своем отрезке синусоиды, обеспечивая друг для друга защиту от пробоя.

Существенным недостатком подключения светодиодов к сети 220 В через гасящий резистор является то, что на сопротивлении выделяется огромная мощность.

Рассмотрим пример. Предположим, что используется гасящий резистор сопротивлением 24 кОм при подключении светодиодов к сети 220 В с выходящим током 9 мА. Рассчитаем мощность на гасящем сопротивлении: 9*9*24=1944 мВт (около 2 Вт). Таким образом, чтобы обеспечить оптимальную эксплуатацию, нужно взять резистор мощностью не ниже 3 Вт.

Когда используется несколько led-диодов, потребляющих ток большего значения, то мощность будет расти пропорционально квадрату выходного тока, из-за чего использовать гасящий резистор будет просто нецелесообразно. В случае применения сопротивления меньшей мощности, чем требуется по регламенту, резистор быстро выйдет из строя и произойдет короткое замыкание.

Поэтому роль токоограничивающего элемента должен играть конденсатор, на котором не рассеивается мощность, поскольку сопротивление является реактивным.

В простейшей схеме подключения светодиодного осветительного прибора через конденсатор наблюдается следующая картина: после прекращения питания в конденсаторе сохраняется остаточный заряд – источник угрозы для безопасности человека, который должен разряжаться с помощью сопротивления. Второй резистор требуется при включении питания для защиты схемы от тока, идущего через конденсатор. Выпрямительный диод служит для защиты led-диода от обратного напряжения. Выбирайте конденсатор неполярного типа, рассчитанный для эксплуатации в сети с напряжением не ниже 400 В.

Категорически запрещено использовать полярные конденсаторы в сети переменного тока, поскольку проходящий в обратном направлении ток приведет к разрушению конструкции.

Для расчета нужной емкости конденсатора используют эмпирическую формулу, где производное 4,45 и тока, проходящего через светодиоды, нужно разделить на разницу между амплитудной величиной тока (указана выше – 310 В) и падением напряжения на светодиоде после прямого прохождения.

Например, если нужно подключить led-диод с падением напряжения 3 В и током 9 мА, то по формуле выше емкость конденсатора будет равна 0,13 мкФ. На данную величину в большей степени влияет сила тока, меньшей – падение напряжения.

Эмпирическая формула может использоваться при расчетах емкости конденсатора для сети частотой 50 Гц, поскольку в остальных случаях коэффициент 4,45 требует перерасчета.

Нюансы подключения

Есть некоторые нюансы, связанные со значением проходящего тока при подключении светодиодов к сети 220 В. Рассмотрим простейшую схему подключения светодиодной подсветки в выключателе.

Параллельно выключателю подсоединяются сопротивление (гасящий резистор) и светодиод, после чего размещается лампочка. Схема работает без защитных диодов, а значение гасящего резистора подбирается таким образом, чтобы ограничить ток на величине около 1 мА. Лампочка выполняет функцию нагрузки, также ограничивающей ток. Led-диод будет светиться блекло, но этого достаточно для того, чтобы ночью найти выключатель и включить свет. При смене полярности напряжение станет падать на сопротивление, поэтому светодиод будет полностью защищен от потенциального пробоя.

При необходимости подключения ряда светодиодов можно использовать последовательную схему с одним гасящим конденсатором, которая была описана выше. Важным условием такого подхода является выбор светодиодов, рассчитанных на одинаковое значение ограниченного тока.

При встречно-параллельном подключении используется шунтирующий диод. Параллельное подключение применять нельзя, поскольку если выйдет из строя одна цепь, то весь ток потечет через вторую, из-за чего полупроводники перегорят и произойдет короткое замыкание.

Безопасность при подключении

В случае подключения светодиодов к сети 220 В нужно учитывать тот факт, что выключатель светильника полностью размыкает фазный провод. Ноль прокладывается общий на комнату. Часто в электрической сети нет заземления, поэтому угрозу представляет нулевой провод, имеющий определенное напряжение относительно земли.

Иногда заземляющий провод соединяется с батареями отопления или трубами, поэтому, если человек прикоснется одновременно к батарее и фазе, то может попасть под напряжением.

По данной причине при монтаже к сети желательно отключать и нулевой, и фазный провода, используя специальную автоматику, что позволяет избежать поражения током.

Главные нюансы при построении цепи с подключением светодиодных осветительных приборов к сети 220 В связаны с выбором подходящего по параметрам гасящего резистора или конденсатора. Переменный ток в розетке может оказывать разрушительное действие на все полупроводники, пропускающие электричество исключительно в одном направлении. При грамотном ограничении амплитуды тока и расчете нужного амортизационного запаса цепь будет полностью защищена от выгорания и короткого замыкания, что обеспечит долговечность и надежность.

Особенности параллельного и последовательного соединений светодиодов

Соединение светодиодов – несложная процедура даже для человека без профессиональных навыков.

Соединение в LED цепочку компонентов может быть нескольких видов – последовательное и параллельное.

Эти схемы могут выполняться в различных вариациях, каждая из которых имеет свои положительные и отрицательные стороны.

Принципы подключения

Светоизлучающие диоды активно применяются в подсветке, индикации. Своими руками можно создать устройства, поэтому важно знать, как производить соединение светодиодов.

Читайте также  Как поменять автомат в щитке под напряжением?

К основным способам подключения относятся:

  • параллельное;
  • последовательное;
  • комбинированное.

Основные причины выхода из строя светодиодных цепочек:

  • неправильное соединение;
  • некачественные диоды или блоки питания.

Конструкция излучающего диода подразумевает его подключение к источнику постоянного тока. При соединении важно соблюдать полярность компонента – если перепутать катод и анод, диод не будет излучать световой поток.

Важно! Любой компонент имеет техдокументацию, в которой указывается полярность. Ее узнать можно по маркировке компонента или визуально.

Полярность

Определить, какой из электродов является плюсом, а какой – минусом, можно несколькими способами.

Первый – конструктивно. Обычный LED компонент имеет две ножки, длинная является плюсом (анодом), а короткая – катодом.

При помощи тестера. Для этого нужно взять мультиметр, перевести его в положение «Прозвонка» и прикладывать щупы к электродам. Когда красный щуп коснется анода, а черный катода – светодиод загорится. Если при перестановке на шкале высвечивается и не меняется «бесконечное» сопротивление, есть неполадка с элементом. Так что мультитестер используется и для проверки работоспособности излучающих приборов.

Визуальный осмотр. Можно посмотреть внутрь колбы. Широкая часть – это катод, а узкая – анод. Мощные светодиоды сверхъяркого типа имеют маркировку выводов «+» и «–». Компоненты для поверхностного монтажа обычно имеют специальный скос, который указывает на катод.

Включение в источник питания. Диод можно подключить к аккумулятору, батарее или другому блоку. Нужно постепенно повышать электропитание, которое вызовет свечение. Если компонент не горит, полярность следует поменять. Собирается такая схема проверки обязательно с использованием токоограничивающего резистора.

По технической документации. В паспорте прибора будет написано, какая полярность.

После определения плюса и минуса электродов нужно разобраться с методом подсоединения.

Способы подключения

Этапы соединения:

  • определение полярности;
  • составление схемы подключения;
  • подбор драйвера и блока питания;
  • расчет резистора;
  • сбор цепи;
  • тестирование подключенной системы.

Можно выделить 2 метода соединения – к электросети 220 Вольт и 12 Вольт. Осуществить подключение можно последовательно или параллельно. Наилучшим способом считается последовательное соединение светодиодов.

Подключение к напряжению 220 В

Чтобы светодиод загорелся, через него должен проходить ток в 20 мА и выше, а падение напряжения не должно превышать 2,2 – 3 В в зависимости от материалов кристалла. С учетом указанных параметров выбирается токоограничивающий резистор по закону Ома. Его формула:

R=(Uпит-Uпад)/(I*0,75), где R – номинал резистора, Uпит – напряжение источника, Uпад – падение на диоде, I – номинальный ток, 0,75 – коэффициент надежности.

Падением напряжения называют уровень напряжения, которое светодиод преобразует в свечение.

Также требуется знать мощность резистора. Она вычисляется как P=I*I*R=(Uпит-Uпад)*(Uпит-Uпад)/R.

Таким образом, для тока в 20 мА, сети 220 В и падения напряжения на диоде 2,2-3 В номинал сопротивления должен быть равен 30 кОм. Мощность сопротивления равняется 2 Вт.

Упрощенная схема подключения будет состоять из светодиода, диода, конденсатора и резисторов.

Но такое соединение используется все реже. Чтобы подключить светодиоды к электросети, используются специальные устройства – драйверы. Они преобразуют переменное напряжение 220 В в постоянное, пригодное для работы элемента. В большинстве светодиодных лент драйверы уже имеются в конструкции. В основе драйвера находятся диодный мост, делитель напряжения и стабилизатор. Основное преимущество – простота исполнения и надежность эксплуатации.

Как выбрать нужный драйвер, зависит от трех параметров:

  • выходной ток;
  • максимальное и минимальное напряжение на выходе;

Рабочий ток является важнейшей характеристикой. Ток драйвера должен быть чуть меньше или равен току светодиода.

Подключение к сети 12 в

Напряжение 12 В является оптимальным для работы светоизлучающего диода. Оно безопасно, и используется для включения в особо опасных помещениях (ванная, смотровые ямы гаража, бани).

Для подключения к 12 В нужен резистор. Он рассчитывается по той же формуле, что и для 220 В.

Важное преимущество 12 В – оно постоянное. Это позволяет упростить схему соединения.

Последовательное подключение

Чтобы подключить светодиоды последовательно, нужно к катоду одного устройства припаять анод другого, и так до нужной длины цепочки. Соединение производится через токоограничивающий резистор. По схеме будет протекать один и тот же ток через все элементы. Уровень напряжения будет суммой падений на каждом участке.

Так, для подключения к источнику питания с напряжением 12 Вольт потребуется не более четырех светодиодов 3 Вольт (3*4=12). Для большего числа диодов нужен более мощный аккумулятор.

Преимущества и недостатки

  • одинаковый уровень тока;
  • простота.
  • количество светодиодов ограничено падением напряжения;
  • если сломается один элемент, непригодной становится вся цепочка.

Схема раньше использовалась в гирляндах для елки. Сейчас ее вытеснило смешанное соединение.

Параллельное подключение

При параллельном подключении уровень напряжения на каждом светодиоде одинаков. Сила тока наоборот состоит из суммы токов, проходящих через элементы. Подключаются диоды так же через резисторы, но для каждого устройства он свой. Это связано с тем, что любой светоизлучающий диод имеет различные характеристики. Если поставить один резистор, через светодиоды будет пропускаться разный ток, и некоторые могут выйти из строя.

Параллельное подключение может использоваться для реализации двухцветного свечения ламп.

Плюсы и минусы

  • можно использовать большее количество диодов;
  • если перегорит один светодиод, цепь продолжит работу.
  • требуется много резисторов;
  • если сломается один элемент, на другие увеличится нагрузка.

Смешанное подключение

Смешанный тип соединения является самим оптимальным. Он используется во всех LED лентах, гирляндах, светодиодных панелях и представляет собой смесь параллельного и последовательного включений.

Так, параллельно включаются не отдельные элементы, а группы светодиодов. В группах диоды подключаются последовательно через один резистор для каждой цепи.

  • при поломке элемента из одной цепочки вся гирлянда будет светить дальше;
  • нужно не так много резисторов.

В этом способе учтены и исправлены все недостатки из параллельного и последовательного соединений.

Как подключить мощный светодиод

Для мощного светодиода потребуется источник питания с большим номиналом. Так, диод 1 В будет загораться, если по нему будет протекать ток величиной не менее 350 мА. Для 5 В элемента потребуется источник тока с нагрузкой не менее 1,4 А.

Схема соединения также будет включать токоограничивающий резистор и интегральный стабилизатор напряжения. Он помогает обезопасить светодиод от скачков электричества. Чаще всего используется интегральная микросхема LM317 для стабилизации. Подключить мощный светодиод можно параллельно, последовательно и комбинированным способом.

Распространенные ошибки при подключении

Самые часто встречающиеся ошибки при соединении светодиодов:

  1. Выбор резистора не того номинала – если подобрать слишком маленькое сопротивление, светодиод может перегореть. При большом значении светить диод будет не в полную силу.
  2. Подключение напрямую к источнику питания без токоограничивающего резистора. Излучающий компонент сразу сгорит.
  3. Соединение по параллельной схеме с одним резистором для всех диодов. Компоненты начнут выходить из строя, так как рабочий ток у каждого различный.
  4. Соединение по последовательной схеме светодиодов, рассчитанных на разный ток. В таком случае часть диодов перегорит, а часть будет светить тусклее.
  5. Подключение напрямую к сети 220 В без защиты.

Важно! Совершение описанных ошибок повлечет за собой негативные последствия в виде поломки диода или нанесения себе травм.

Основные выводы

Все светодиоды, в не зависимости от их рабочего напряжения или силы тока, подключаются последовательно или параллельно. Способ включения может быть и комбинированным – в таком случае устраняются недостатки последовательного и параллельного соединений. Важно уметь правильно собирать цепь, подбирать источник питания, считать номиналы токоограничивающих резисторов и нужное количество светодиодов, чтобы схема функционировала. Соединение без токоограничивающего резистора и других защитных элементов приведет к поломке диода.

Схемы подключения точечных светильников

После того как составили план расположения точечных светильников на потолке, в подсветке шкафа, приходится задуматься об их электрическом подключении. Как подключить точечные светильники, по каким схемам, какими проводами и кабелями — обо всем этом дальше.

Последовательное соединение

Подключить точечные светильники можно последовательно, хотя это — не лучший выход. Несмотря на то, что этот тип соединения требует минимального количества проводов, в быту он практически не используется. Все потому что имеет два существенных недостатка:

    Лампы светятся не в полную силу, так как на них подается пониженное напряжение. Насколько пониженное — зависит от количества подключенных лампочек. Например, подключено к 220 В три лампы — делить надо на 3. Это значит, что на каждый светильник приходит по 73 В. Если подключено 5 ламп, делим на 5 и т.д.

Принцип последовательного соединения

Именно по этим причинам такой тип подключения применяется исключительно в елочных гирляндах, где собрано большое количество маломощных источников света. Можно, конечно, первый недостаток использовать: подключить последовательно к сети 220 В лампочки на 12 В в количестве 18 или 19 штук. В сумме они дадут 220 В (при 18 штуках 216 В, при 19 — 228 В). В этом случае не понадобиться трансформатор и это плюс. Но при перегорании одной из них (или даже ухудшении контакта), искать причину придется долго. И это большой минус, который сводит на нет все положительные моменты.

Схема последовательного соединения лампочек (точечных светильников)

Если вы решили подключить точечные светильники последовательно, сделать это просто: фаза обходит все светильники один за другим, ноль подается на второй контакт последней лампочки в цепи.

Читайте также  Самое дешевое электроотопление частного дома

Если говорить о фактической реализации, то фаза от распределительной коробки подается на выключатель, оттуда — на первый точечный светильник, со второго его контакта — на следующий…. и так до конца цепочки. Ко второму контакту последнего светильника подключается нулевой провод (нейтраль).

Схема последовательного подключения точечных светильников через одноклавишный выключатель

У этой схемы есть одно практическое применение — в подъездах домов. Можно параллельно подключить две лампочки накаливания к обычной сети 220 В. Они будут светиться в пол накала, но перегорать будут крайне редко.

Параллельное соединение

В большинстве случаев используется параллельная схема подключения точечных светильников (ламп). Даже несмотря на то что требуется большое количество проводов. Зато напряжение на все осветительные приборы подается одинаковое, при перегорании не работает одна, все остальные — в работе. Соответственно, никаких проблем с поиском места поломки.

Схема параллельного подключения точечных светильников

Как подключить точечные светильники параллельно

Есть два способа параллельного соединения:

  • Лучевой. На каждый осветительный прибор идет отдельный кабель (двух или трехжильный — зависит от того, есть у вас заземление или нет).
  • Шлейфное. Пришедшая от выключателя фаза и нейтраль со щитка заходят на первый светильник. От этого светильника идет кусок кабеля на второй, и так далее. В результате к каждому светильнику, кроме последнего, оказывается подключенным по четыре куска кабеля.

Способы реализации параллельного подключения

Лучевая

Лучевая схема подключения более надежна — если проблемы случаются, то не горит только эта лампочка. Есть два минуса. Первый — большой расход кабеля. С ним можно смириться, так как делается проводка один раз и надолго, а надежность такой реализации высокая. Второй минус — в одной точке сходится большое количество проводов. Качественное их соединение — непростая задача, но решаемая.

Соединить большое количество проводов можно при помощи обычной клеммной колодки. В этом случае с одной стороны подается фаза, при помощи перемычек она разводится на нужное число контактов. С противоположной стороны подключаются провода, идущие к лампочкам.

Способы соединения проводов при лучевом исполнении

Практически так же можно использовать клеммники Ваго на соответствующее число контактов. Выбрать надо модель для параллельного соединения. Лучше — чтобы они были заполнены пастой, предотвращающей окисление. Этот способ хорош — легок в исполнении (зачистить провода, вставить в гнезда и все), но очень много низкокачественных подделок, а оригиналы стоят дорого (и то не факт, что вам продадут оригинал). Потому многие предпочитают пользоваться обычной клеммной колодкой. Кстати, есть они нескольких видов, но более надежными считаются карболитовые с защитным экраном (на рисунке выше они черного цвета).

И последний приемлемый способ — скрутка всех проводников с последующей сваркой (пайка тут не пойдет, так как проводов слишком много, обеспечить надежный контакт очень сложно). Минус в том, что соединение получается неразъемным. В случае чего, придется удалять сваренную часть, потому нужен «стратегический» запас проводов.

Пример исполнения лучевого подключения точечных светильников

Чтобы уменьшить расход кабеля при лучевом способе соединения, от выключателя до середины потолка тянут линию, там ее закрепляют, и от нее разводят провода к каждому светильнику. Если надо сделать две группы, ставят двухклавишный (двухпозиционный) выключатель, от каждой клавиши тянут отдельную линию, потом расключают светильники по выбранной схеме.

Шлейфное соединение

Шлейфное соединение применяют тогда, когда светильников очень много и тянуть к каждому отдельную магистраль очень уж накладно. Проблема при таком способе реализации в том, что при проблеме соединения в одном месте, все остальные тоже оказываются неработоспособны. Зато локализация повреждения проста: после нормально работающего светильника.

Фактическая реализация параллельного соединения шлейфным способом

В этом случае также можно разделить светильники на две или больше группы. В этом случае понадобиться выключатель с соответствующим количеством клавиш. Схема подключения в этом случае выглядит не очень сложно — добавиться еще одна ветка.

Как подключить точечные светильники к двойному выключателю

Собственно, схема справедлива для обоих способов реализации параллельного подключения. При необходимости можно сделать и три группы. Такие — трехпозиционные — выключатели тоже есть. Если же нужны четыре группы — придется ставить два двухпозиционных.

Подключение встроенных потолочных светильников со светодиодными лампами на 12 в

Точечные светильники могут работать и от пониженного напряжения 12 В. В них тогда ставят светодиодные лампочки. Подключатся они по параллельной схеме, питание подается с трансформатора (преобразователя напряжения). Его ставят после выключателя, с его выходов подают напряжение на светильники.

Схема подсоединения точечных светильников на 12 В через общий трансформатор

В этом случае мощность трансформатора находят как суммарная мощность подключенной к нему нагрузки, с запасом в 20-30%. Например, установить надо 8 точек освещения по 6 ватт (это мощность светодиодных лампочек). Общая нагрузка — 48 Вт, запас берем 30% (для того чтобы транс не работал на пределе возможностей и служил дольше). Получается надо искать преобразователь напряжения мощностью не ниже 62,4 Вт.

Если хочется источники света разбить на несколько групп, нужны будут несколько трансформаторов — по одному на каждую группу. Также нужен будет многопозиционный выключатель (или несколько обычных).

Подключение светильников на 12 В через двойной выключатель

Обе эти схемы имеют один недостаток — при выходе из строя адаптера не работает группа лам или даже все. При желании можно подключить точечные светильники на 12 вольт так, чтобы повысить надежность их работы. Для этого к каждому источнику света устанавливают свой трансформатор.

Подключение точечных светильников на 12 В с персональным трансформатором

С точки зрения эксплуатации практически идеальная схема подключения светильников на 12 вольт — с трансформатором на каждый элемент освещения.

Схема подключения точечных светильников на 12 В с персональным трансформатором

В этом случае параллельно подключаются трансформаторы, а к их выходам — сами светильники. Такой способ получается более затратный. Но при выходе из строя трансформатора не горит только одна лампа и никаких проблем с выявлением участка повреждения.

Выбор сечения проводов

При подаче низкого напряжения ток на светильники идет большой и потери по длине будут значительные. Потому для подключения точечных светильников на 12 В важно выбрать правильное сечение кабеля. Проще всего это сделать по таблице, ориентируясь на длину кабеля, прокладываемого к каждому светильнику и потребляемый ток.

Таблица для определения сечения кабеля при подключении точечных светильников на 12 В

Ток можно высчитать: разделить мощность на напряжение. Например, подключаем четыре точечных светильника со светодиодными лампами по 7 Вт. Напряжение — 12 В. Суммарная мощность — 4*7 = 28 Вт. Ток — 28 Вт/12 В = 2,3 А. В таблице берем ближайшее большее значение силы тока. В данном случае это 4 А. При длине линии до 8,5 метров можно брать медный кабель сечением 0,75 мм 2 . Такое малое сечение получается исключительно из-за малой мощности светодиодных ламп. При использовании экономок, галогенок или ламп накаливания, сечение будет намного больше, так как токи значительно возрастают.

Этот способ расчета сечения кабеля подходит для шлейфного типа параллельного соединения с одним трансформатором. При лучевом те же самые действия приходится производить для каждого светильника.

Особенности монтажа

Монтируют точечные светильники обычно в подвесные или натяжные потоки. Еще вариант — подсветка шкафов. В любом случае, согласно ПУЭ, прокладка получается скрытой, и рекомендовано использовать кабель в негорючей оболочке. Наиболее популярный вариант — подключить точечные светильники кабелем ВВГнг. По желанию можно выбрать еще более безопасную его версию — ВВГнг Ls, которая во время пожара выделяет мало дыма.

Использование кабелей или проводов, не содержащих в маркировке буквы НГ — только на ваш страх и риск. Так как при работе освещения выделяется тепло, что может привести к возгоранию.

Если точечные светильники монтируются в подвесной потолок, кабель можно уложить в поперечные профили, к которым гипсокартон не крепится. В продольные его класть не стоит, так как высок шанс повредить саморезом изоляцию при монтаже гипсокартонных листов. Еще один вариант — крепить кабели на профили сбоку, притягивая их пластиковыми стяжками.

Укладывать кабель для подключения точечных светильников можно в поперечные профили, которые находятся повыше

В таком случае сначала собирают каркас, затем растягивают провода, оставляя концы в 20-30 см для удобства монтажа. При использовании светильников на 12 В трансформаторы располагают в непосредственной близости от одного из отверстий. При повреждении или необходимости обслуживания к нему можно добраться вытащив светильник.

Если планируется натяжной потолок, кабели крепят в первую очередь, непосредственно к потолку. В этом случае их часто укладывают в гофрошланг — для повышения пожарной безопасности. Использовать можно любой подходящий крепеж для кабеля — стяжки, дюбель-стяжки, клипсы подходящего размера, проволочные лотки и др.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: