Расчет электрических цепей со смешанным соединением конденсаторов - ELSTROIKOMPLEKT.RU

Расчет электрических цепей со смешанным соединением конденсаторов

Практическая работа №1 по Электротехнике и электронике
методическая разработка

Практическая работа №1 Расчет смешанного соединения конденсаторов по дисциплине Электротехника и электроника

Скачать:

Вложение Размер
prakticheskaya_rabota_no1.docx 116.51 КБ

Предварительный просмотр:

Практическая работа №1

Тема: «Расчет смешанного соединения конденсаторов»

Цель: закрепить знания методов расчета электрической емкости и зарядов конденсаторов при их смешанном соединении.

В результате выполнения практической работы обучающийся должен

знать: основные законы параллельного и последовательного соединения конденсаторов;

уметь: производить расчет эквивалентной емкости и заряд конденсаторов.

Оборудование и инструменты: карандаш, линейка.

Краткие теоретические сведения

Электрический конденсатор —это система из двух проводников (обкладок, пластин), разделенных диэлектриком.

Конденсаторы обладают свойством накапливать на своих обкладках электрические заряды, равные по величине и противоположные по знаку.

Электрический заряд q каждой из обкладок пропорционален напряжению U между ними:

Величину С, равную отношению заряда одной из обкладок конденсатора к напряжению между ними, называют электрической емкостью конденсатора и выражают в фарадах (Ф).

Емкость конденсатора зависит от геометрических размеров, формы, взаимного расположения и расстояния между обкладками, а также от свойств диэлектрика.

Конденсаторы могут быть соединены последовательно, параллельно и смешанно (последовательно-параллельно).

При таком соединении на обкладках всех конденсаторов будут одинаковые по величине заряды:

Напряжения на конденсаторах будут различны, так как они зависят от их емкостей: ;

Общее напряжение:

Общая, или эквивалентная, емкость

или

При параллельном соединении напряжение на всех конденсаторах одинаковое. Заряды на обкладках отдельных конденсаторов при различной их емкости: , ….

Заряд, полученный всеми параллельно соединенными конденсаторами:

Общая (эквивалентная) емкость: С=С 1 +С 2 +С 3

Задание для практической работы

  1. Определить эквивалентную емкость батареи конденсаторов, соединенных по схеме, при соответствующих положениях ключей.

Практическая работа по дисциплине Электротехника и электроника на тему «Расчет электрической цепи при смешанном соединении конденсаторов»

Новые аудиокурсы повышения квалификации для педагогов

Слушайте учебный материал в удобное для Вас время в любом месте

откроется в новом окне

Выдаем Удостоверение установленного образца:

магистр психологии, клинический психолог. .

психолог-консультант, клинический психолог. .

«IQ и EQ как основа успешного обучения»

  • для учителей, репетиторов и родителей
  • свидетельство + скидки на курсы для всех!

Практическая работа №1

Тема: Расчет электрической цепи при смешанном соединении конденсаторов.

Цель: Изучить методы соединения конденсаторов в электрических цепях постоянного тока. Рассчитать эквивалентную емкость, напряжение и заряд батареи конфденсаторов при смешанном соединении конденсаторов.

Изучить свойства конденсаторов, способы соединения, формулы для определения основных величин.

Рассчитать эквивалентную емкость, напряжение и заряд батареи конденсаторов при смешанном соединении конденсаторов по заданному варианту.

Теоретическая часть:

Сообщение электрического заряда проводнику называется электризацией. Чем больший заряд принял проводник, тем больше его электризация, или, иначе говоря, тем выше его электрический потенциал.

Между количеством электричества и потенциалом данного уединенного проводника существует линейная зависимость: отношение заряда проводника к его потенциалу есть величина постоянная:

Для какого-либо другого проводника отношение заряда к потенциалу есть также величина постоянная, но отличная от этого отношения для первого проводника.

Одной из причин, влияющих на эту разницу, являются размеры самого проводника. Один и тот же заряд, сообщенный различным проводникам, может создать различные потенциалы. Чтобы повысить потенциал какого-либо проводника на одну единицу потенциала, необходим определенный заряд.

Свойство проводящих тел накапливать и удерживать электрический заряд, измеряемое отношением заряда уединенного проводника к его потенциалу, называется электрической емкостью, или просто емкостью, и обозначается буквой С.

Приведенная формула позволяет установить единицу емкости.

Практически заряд измеряется в кулонах , потенциал в вольтах, а емкость в фарадах:

Емкостью в 1 фараду обладает проводник, которому сообщают заряд в 1 кулон и при этом потенциал проводника увеличивается на 1 вольт.

Единица емкости — фарада (обозначается ф или F) очень велика. Поэтому чаще пользуются более мелкими единицами — микрофарадой (мкф или ), составляющей миллионную часть фарады:

Устройство, предназначенное для накопления электрических зарядов, называется электрическим конденсатором. Конденсатор состоит из двух металлических пластин (обкладок), разделенных между собой слоем диэлектрика. Чтобы зарядить конденсатор, нужно его обкладки соединить с полюсами электрической машины. Разноименные заряды, скопившиеся на обкладках конденсатора, связаны между собой электрическим полем. Близко расположенные пластины конденсатора, влияя одна на другою, позволяют получить на обкладках большой электрический заряд при относительно невысокой разности потенциалов между обкладками. Емкость конденсатора есть отношение заряда конденсатора к разности потенциалов между его обкладками:

Следовательно, при параллельном соединении конденсаторов общая емкость равна сумме емкостей отдельных конденсаторов. При параллельном соединении каждый конденсатор окажется включенным на полное напряжение сети.
Рассмотрим последовательное соединение конденсаторов:

Практическое задание:

Определить заряд, напряжение, энергию электрического поля каждого конденсатора, эквивалентную емкость цепи.

Смешанное соединение конденсаторов

Соединение конденсаторов в батарею

В электротехнике иногда требуется соединение нескольких конденсаторов. При параллельном соединении выводы каждого конденсатора присоединяются к выводам цепи. При последовательном соединении к выводам цепи подсоединяются только выводы первого и последнего конденсаторов. Из остальных же конденсаторов создается «цепочка», так, чтобы первый вывод очередного конденсатора подсоединялся ко второму выходу предыдущего.

Большое число конденсаторов можно соединить в несколько последовательных цепей, эти цепи могут быть соединены параллельно, образующиеся новые цепи можно опять соединять последовательно — и так из большого числа конденсаторов можно создать большую параллельно-последовательную батарею. Как найти характеристики такой батареи?

Поскольку в такой батарее существуют только конденсаторы, следовательно, в ней не происходит ни потерь энергии, ни ее преобразования. Электрический заряд, проходящий по батарее, лишь распределяется между ее элементами. То есть батарея, состоящая из одних конденсаторов, с точки зрения внешней цепи представляет собой конденсатор некоторой емкости.

Емкость соединенных конденсаторов

Для расчета смешанного соединения конденсаторов требуется знать две формулы: емкость чисто параллельного и чисто последовательного соединения. При чисто параллельном соединении конденсаторов их емкость складывается:

Рис. 1. Пример параллельного соединения конденсаторов.

Если конденсаторы соединяются последовательно, то складывается напряжение на них, зарядить их труднее, следовательно, емкость уменьшается. Величина, обратная суммарной емкости, равна сумме обратных величин отдельных емкостей конденсаторов:

Рис. 2. Пример последовательного соединения конденсаторов.

Анализ схемы смешанного соединения

Теперь можно приступать к анализу схемы смешанного соединения.

Рис. 3. Пример смешанного соединения конденсаторов.

В схеме необходимо выделить узлы — точки цепи, к которым присоединены три и более звеньев. Даже в очень сложной схеме найдутся такие узлы, между которыми соединение конденсаторов будет только последовательным или только параллельным. Эти конденсаторы в схеме заменяются одним эквивалентным, имеющим емкость, для определения которой используется соответствующая формула.

После замены схема снова анализируется. В ней снова выделяются узлы, между которыми конденсаторы соединены только одним из двух способов. Снова проводится замена конденсаторов эквивалентом.

Так делается до тех пор, пока схема максимально не упростится. Чаще всего при этом остается только один эквивалентный конденсатор, емкость которого и будет равна емкости всей батареи конденсаторов в смешанном соединении.

Иногда, в сложных случаях, невозможно упростить схему до одного эквивалентного конденсатора с помощью указанных двух преобразований. В этом случае для расчета смешанного соединения конденсаторов используются более сложные методы, например, метод узловых потенциалов. Кроме того, существуют особые эквивалентные преобразования, например, преобразование треугольника конденсаторов в трехлучевую звезду и обратно. Все эти методы изучаются в вузовском курсе теории цепей.

Что мы узнали?

Для нахождения эквивалентной емкости смешанного соединения конденсаторов в схеме выделяются узлы, звенья между соседними узлами заменяются эквивалентными элементами с помощью формул последовательного или параллельного соединения. В результате схема упрощается. Такие упрощения проводятся, пока не останется один эквивалентный конденсатор, имеющий емкость, равную емкости исходного соединения.

Схемы соединения конденсаторов — расчет емкости

В данной статье приведены различные схемы соединения конденсаторов, а так же формулы их расчета с примером.

Последовательное соединение конденсаторов

Если условно разделить выводы каждого из конденсаторов на первый и второй выводы последовательное соединение конденсаторов будет выполняется следующим образом: второй вывод первого конденсатора соединяется с первым выводом второго конденсатора, второй вывод второго конденсатора, соединяется с первым выводом третьего и так далее. Таким образом мы получим группу (блок) последовательно соединенных конденсаторов с двумя свободными выводами — первым выводом первого конденсатора в блоке и вторым выводом последнего конденсатора, через которые данный конденсаторный блок и подключается в электрическую цепь.

Схема последовательного соединения конденсаторов будет иметь следующий вид:

Фактически последовательное соединение конденсаторов имеет следующий вид:

При данной схеме соединения заряды на конденсаторах будут одинаковы:

где: Q1, Q2, Q3 — соответственно заряд на первом, втором, третьем и т.д. конденсаторах

Напряжение на каждом конденсаторе при такой схеме зависит от его емкости:

  • U 1, U2, U3 — соответственно напряжение на первом, втором, третьем конденсаторах
  • C 1, C2, C3 — соответственно емкости первого, второго, третьего конденсаторов

При этом общее напряжение составит:

Рассчитать общую емкость конденсаторов при последовательном соединении можно по следующим формулам:

  • При последовательном соединении двух конденсаторов:
  • При последовательном соединении трех и более конденсаторов:

Параллельное соединение конденсаторов

Если условно разделить выводы каждого из конденсаторов на первый и второй выводы параллельное соединение конденсаторов будет выполняется следующим образом: первые выводы всех конденсаторов соединяются в одну общую точку (условно — точка №1) вторые выводы всех конденсаторов соединяются в другую общую точку (условно — точка №2). В результате получается группа (блок) параллельно соединенных конденсаторов подключение которой к электрической цепи производится через условные точки №1 и №2.

Схема параллельного соединения конденсаторов будет иметь следующий вид:

Таким образом параллельное соединение конденсаторов будет иметь следующий вид:

При данной схеме напряжение на всех конденсаторах будет одинаково:

Заряд же на каждом из конденсаторов будет зависеть от его емкости:

При этом общий заряд цепи будет равен сумме зарядов всех параллельно подключенных конденсаторов:

Рассчитать общую емкость конденсаторов при параллельном соединении можно по следующей формуле:

Смешанное соединение конденсаторов

Схема в которой присутствует две и более группы (блока) конденсаторов с различными схемами соединения называется схемой смешанного соединения конденсаторов.

Приведем пример такой схемы:

Для расчетов такие схемы условно разделяются на группы одинаково соединенных конденсаторов, после чего расчеты ведутся для каждой группы по формулам приведенным выше.

Для наглядности приведем пример расчета общей емкости данной схемы.

Пример расчета

Условно разделив схему на группы получим следующее:

Как видно из схемы на первом этапе мы выделили 3 группы (блока) конденсаторов, при этом конденсаторы в первой и второй группе соединены последовательно, а конденсаторы в третьей группе — параллельно.

Произведем расчет каждой группы:

  • Группа 1 — последовательное соединение трех конденсаторов:
  • Группа 2 — последовательное соединение двух конденсаторов:

С4,5 = C 4* C 5/ C 4+ C 5 = 20*30/20+30 = 600/50 = 12 мкФ

  • Группа 3 — параллельное соединение трех конденсаторов:

В результате расчета схема упрощается:

Как видно в упрощенной схеме осталась еще одна группа из двух параллельно соединенных конденсаторов, произведем расчет ее емкости:

  • Группа 4 — параллельное соединение двух групп конденсаторов:

С1,2,3,4,5 = C 1,2,3+ C4,5 = 2,72+12 = 14,72 мкФ

В конечном итоге получаем простую схему из двух последовательно соединенных групп конденсаторов:

Теперь можно определить общую емкость схемы:

Собщ = C 1,2,3,4,5* C 6,7,8/ C 1,2,3,4,5+ C 6,7,8 = 14,72*60/14,72+60 = 883,2/74,72 = 11,8 мкФ

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Задачи на соединение конденсаторов

  • Задания по электротехнике на тему «Конденсаторы»
    • Знание каких формул и законов потребуется для решения
  • Решение задач на параллельное соединение
  • Решение задач на последовательное соединение
  • Решение задач на смешанное соединение
  • Задания по электротехнике на тему «Конденсаторы»
    • Знание каких формул и законов потребуется для решения
  • Решение задач на параллельное соединение
  • Решение задач на последовательное соединение
  • Решение задач на смешанное соединение

Задания по электротехнике успешно даются только тем, кто может досконально разобраться в теме, нарисовать схему электроцепи и объяснить, каким образом в ней происходит взаимодействие между элементами. Ошибочно думать, что это очень сложный раздел физики, с которым под силу разобраться только электромеханикам. При желании эта тема доступна каждому среднестатистическому человеку. Давайте с ней разберемся!

Задания по электротехнике на тему «Конденсаторы»

Прежде чем приступать непосредственно к задачам, вспомним теорию.

Конденсатор — это два электрических проводника, разделенных между собой тонким слоем диэлектрика.

Проводники соединяют между собой с целью получить батареи. Существует 3 способа подключения конденсаторов:

  • параллельное;
  • последовательное;
  • комбинированное.

Последовательным соединением называется подключение двух или более конденсаторов в цепь так, что каждый отдельный проводник соединен с другим только в одной точке.

Параллельным называется такое соединение конденсаторов, при котором все они подключены между одной и той же парой точек.

Комбинированное — это вид соединения, в котором часть проводников подключены параллельно, а часть — последовательно.

Знание каких формул и законов потребуется для решения

В зависимости от того, какой вид подключения проводников используется, по-разному будут определяться ключевые характеристики конденсаторов: емкость, заряд, напряжение.

Для решения заданий по данной теме в большинстве случаев понадобятся следующие формулы:

Предлагаем рассмотреть примеры решения типовых задач по данной теме со всеми необходимыми пояснениями, чтобы окончательно усвоить, как правильно разбирать такие задания.

Решение задач на параллельное соединение

Задача

Три проводника соединены между собой параллельно. Емкость первого равна 100 микрофарад, второго — 200 микрофарад, третьего — 500 микрофарад. Найдите общую емкость конденсаторов.

Решение

  1. Запишем известные вводные: C1=100 мкФ, C2=200 мкФ, C3=500 мкФ, C=?
  2. Так как соединение в цепи параллельное, общая емкость будет определяться по формуле: C=C1+C2+C3
  3. Подставляем числовые значения в формулу и получаем ответ: 800 мкФ.

Решение задач на последовательное соединение

Задача

Батарея состоит из двух конденсаторов, соединенных последовательно. Емкость первого — 4 мкФ, второго — 6 мкФ. Батарея заряжена до напряжения 220 Вольт. Определите емкость и заряд батареи.

Решение

  1. Запишем известные нам данные из условий задачи: C1=4 мкФ, C2=6 мкФ, U=220 В, C=? q=?
  2. Так как конденсаторы соединены последовательно, емкость батареи будет определяться по формуле: (frac1c=frac1+frac1)
  3. Общий заряд батареи будет равен заряду первого и заряду второго проводника, т.е. q=q1=q2
  4. Ищем значение емкости батареи по указанной выше формуле, получаем значение, равное 2,4 мкФ.
  5. Заряд батареи можно вычислить по формуле: (q=Ctimes U)
  6. Подставляем числовые значения в формулу и получаем ответ: 528 мкКл.

Решение задач на смешанное соединение

Предлагаем рассмотреть более сложное задание, правильный ответ на которое включает в себя сразу четыре варианта решения:

Остались вопросы? Физика по-прежнему кажется сложным для понимания предметом? Вы не понимаете разницу между постоянным и переменным током? Не знаете откуда берется энергия? Обращайтесь за помощью в решении задач и подготовке докладов к специалистам нашего образовательного сервиса ФениксХелп. Для нас нет нелюбимых предметов и сложных тем!

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: