Резонансный генератор энергии своими руками - ELSTROIKOMPLEKT.RU

Резонансный генератор энергии своими руками

Как самому сделать бестопливный генератор на 20 кВт

Основная задача БТГ (бестопливного генератора) — производство электрической энергии. Поэтому многие интересуются возможностью и целесообразностью создания бестопливного генератора своими руками на 20 кВт 220в 50Гц.

Принцип работы генератора

В промышленном масштабе для выработки электроэнергии используется топливо, которое при сгорании выделяет энергию, преобразуемую в электричество. Создатели современных бестопливных генераторов при разработке своих устройств хотят устранить промежуточное звено — топливо.

Принцип работы генерирующего устройства состоит в получении электрического тока путем формирования направленного потока заряженных частиц в проводящей среде. Влияние можно оказывать следующими способами:

  • создать внешнее переменное магнитное поле, наводящее в проводнике ЭДС;
  • поддерживать разность потенциалов на концах проводника;
  • перевести токопроводящую среду в режим самогенерации, когда выделяемой энергии больше, чем требуется для поддержания процесса.

Объединяет все генераторы на любом принципе работы необходимость в подаче некоторого стартового количества энергии для запуска процесса.

В описании любого генератора без топлива источник энергии, процесс ее извлечения, а также дальнейшего преобразования не приводится или дается в общих утверждениях.

Схема и конструкция свободного генератора на 20 квт

Под БТГ понимается устройство, вырабатывающее электроэнергию без затрат на вращение вала и другие процессы, требующие расхода энергии. В наше время освоены технологии производства электричества при помощи солнечной энергии, ветра, перепадов по высоте течения рек, приливов и отливов. Человеку доступны инструменты и ресурсы, позволяющие воспроизводство одной из этих технологий в домашних условиях.

Способы сделать устройство самому

Для изготовления бестопливного генератора своими руками нужно выбрать соответствующую технологию. Многие авторы избегают детального описания использованных инструментов и материалов, электрических схем. В результате описываются якобы работающие модели, но без достоверной информации о функционирующих устройствах.

Использование масла

БТГ с использованием масла имеют другое название — мокрый способ получения электричества. Их отличительной чертой является применение аккумуляторов для накопления и отдачи энергии. Построение таких устройств требует следующих ресурсов и узлов:

  • трансформатора переменного тока;
  • зарядного устройства;
  • АКБ для накопления полученного электричества;
  • усилителя мощности, увеличивающего подачу тока.

Зарядное устройство можно взять готовое, но оно, вероятнее всего, окажется слабым и неспособным обеспечить требуемый зарядный ток. Поэтому для 20 кВт установки его лучше изготовить самостоятельно. Обзоры и рекомендации по сборке таких устройств имеются в свободном доступе.

Принцип работы устройства прост. К аккумуляторной батарее необходимо подключить входную обмотку трансформатора. К ее клеммам подсоединяется усилитель мощности, преобразующий и повышающий напряжение 12 В или 24 В, снимаемое с аккумулятора. Зарядное устройство используется для поддержания АКБ в рабочем состоянии.

Сухой вариант

Этот способ предполагает в качестве накопителя использовать конденсатор большой емкости. Свою схему сухого варианта БТГ помогут реализовать такие приборы и материалы:

  • трансформатор;
  • прототип генератора;
  • проводники с нулевым сопротивлением;
  • динатрон;
  • сварочный аппарат.

Прототип генератора соединяется особыми проводниками с трансформатором. Для надежного контакта требуется применять сварочный аппарат. Динатрон выполняет регулирующую функцию в создаваемом макете. Расчетное время функционирования этого агрегата составляет около 3 лет без обслуживания.

Промышленный вариант БТГ для бытового применения

Солнечные батареи полностью удовлетворяют требованиям бестопливных генераторов. При этом нет необходимости разрабатывать схему и собирать ее из различных узлов. В продаже уже имеются солнечные электростанции для бытового применения производительностью 20 кВт/сут. Средняя стоимость комплекта находится в пределах 260 000 — 360 000 руб. В него входят:

  • солнечные панели;
  • 1-фазный инвертор на 6 — 20 кВт;
  • коммутационное оборудование (кабели, выключатели, предохранители);
  • крепления.

Возможна работа как в полностью автономном режиме, так и в сочетании с другими источниками энергии, мобильными бензиновыми генераторами или стационарными электросетями.

LiveInternetLiveInternet

  • Регистрация
  • Вход

Рубрики

  • История (292)
  • Мегалиты и древние строения. (28)
  • Здоровье (212)
  • Политика (158)
  • Армагедон-начало новой эры (134)
  • Славянские знания (113)
  • Физика вселенной (110)
  • Земледелие,Экопоселения (88)
  • Духовные практики (85)
  • Знания о человеке (81)
  • Космос,Солнце,Вселенная (76)
  • Непознанное (72)
  • Планета Земля (59)
  • Изобретения (45)
  • Русская душа (30)
  • разное (29)
  • Притчи и сказы (26)
  • Природа (25)
  • Выпечка (24)
  • фото и юмор (23)
  • Рецепты (21)
  • Финансы (20)
  • Растения (14)
  • Комп (13)
  • Энерго-тепло независимость вашего дома (8)
  • Нумерология,Астрология (7)
  • Другие цивилизации (6)
  • Делаем сами (4)
  • Строительство дома (4)
  • Электричество (1)

Музыка

Поиск по дневнику

Подписка по e-mail

Интересы

Постоянные читатели

Статистика

Резонансный трансформатор — энергия из эфира.

220 V. Схема предельно простая, это надо отдать должное «сообразительности» смоленских «парней». Здесь сравнительно небольшой раскачки источника колебаний вполне хватает для резонансного возбуждения силовых колебаний тока в данном контуре, а с вторичной обмотки трансформатора можно спокойно снимать трансформированный ток на любую полезную нагрузку. Возможно, что сам Тесла использовал этот приём для привода своего электромобиля в движение, недаром же он покупал радиолампы в магазине, которые и являлись источником колебательной энергии для обкладок конденсаторов, а индуктивность статорной обмотки тягового электродвигателя служила основной частью колебательного контура – источника тока (вместо первичной обмотки трансформатора в схеме рис.5). А сейчас поговорим о главном – о величине мощности раскачки эфира вокруг ёмкостей и индуктивностей с целью получения свободной энергии (реактивной мощности), поисками которой заняты специалисты во всём техническом мире. Сначала рассмотрим теоретическую сторону вопроса.

Поскольку формула реактивной мощности для любой обмотки Q = I^2*2П*F* L,

где I -величина тока, F — частота тока, L- индуктивность. Величина L задана геометрией обмотки трансформатора или контура, её изменять трудновато, но её и использовал Капанадзе. Другая величина — частота F может изменяться. В реактивной мощности она задаётся частотой электростанции (источником колебаний), но с увеличением её увеличивается мощность свободной энергии, значит, разумно её повышать при раскачке индуктивности. А раскачать индуктивность по частоте, для получения и повышения тока I необходим конденсатор, подключённый к индуктивности. Но, чтобы начать раскачку контура, нужен первоначальный импульс тока. А его сила, в свою очередь, зависит от активного сопротивления самой обмотки, сопротивления соединительных проводов и, как не удивительно, волнового сопротивления этой цепочки тока. Для постоянного тока этого параметра не существует, а для переменного обязательно возникает и ограничивает наши возможности, а с другой стороны помогает нам. Из уравнений длинных линий связи известно,-волновое сопротивление движения для любой электромагнитной волны по проводам должно быть согласовано с сопротивлением нагрузки в конце линии. Чем лучше согласование, тем экономичнее устройство. В контурах, состоящих из ёмкости и индуктивности, из которых состоит «тесловка», волновое сопротивление определяется величиной которая, если её поделить на активное сопротивление проводников, в принципе, является добротностью контура, т.е. числом, показывающим во сколько раз напряжение в катушке контура возрастает по отношению к задающему напряжению от генератора электростанции (источника раскачки).

Zв = КОРЕНЬ ( L / С ),

Вот этим принципом и пользовался Тесла, изготавливая катушки всё более солидные по размеру, т. е. увеличивая, и увеличивая L — индукцию катушки и чисто интуитивно стремился к волновому числу Zв = 377 Ом. А это и есть волновое сопротивление не чего нибудь, а обыкновенного эфира по Максвеллу, хотя его конкретную величину определили позднее исходя из условий распространения электромагнитных волн в атмосфере и космосе. Приближение к этому числу волнового сопротивления уменьшает мощность раскачки. Отсюда всегда можно хотя бы приблизительно вычислить даже частоту колебаний самого эфира, при которой требуется минимальная энергия раскачки от электростанции для «тесловки» вырабатывающей реактивную энергию, но это отдельная тема рассмотрения.

В будущем видится предельно простой генератор тока для любых мощностей. Это трансформатор приемлемой мощности, первичная обмотка которого подсоединяется через рассчитанный конденсатор (с соответствующей реактивной мощностью) к источнику электрической раскачки сравнительно небольшой мощности, работающего при запуске от аккумулятора. Вторичная обмотка трансформатора через выпрямитель и инвертор выдаёт в расходную сеть необходимый ток с частотой 50 Герц для потребителей и одновременно питает, минуя аккумуляторы, схему раскачки, точнее сам себя (по рис.5.). Сейчас это кажется нереальным в силу закона сохранения энергии, поскольку не учитывается действие эфира, однако в ближайшем будущем такие установки будут широко распространёнными в быту и на производствах. Реактивная мощность, точнее свободная энергия эфира, подчеркнём, эфира Максвелла и Кельвина, должна и будет работать на людей в полной мере, как это предсказывал великий Никола Тесла. Время, которое он предвидел, уже наступило благодаря воспитанной промышленностью громадной армии специалистов электриков и интернету, позволяющему обмениваться мировым опытом.
http://kapagen.livejournal.com/2342.html

Читайте также  Как подключиться к СИП кабелю под напряжением?
Рубрики: Физика вселенной

Процитировано 1 раз
Понравилось: 1 пользователю

Генератор свободной энергии – рассказ разработчика

Автор видео канала “Vasili Ivanov” разработчик, который специализируется в области свободной энергии. Закончил делать катушку трансформатора-генератора. Она трехсекционная, в каждой секции по 465 витков.

Первая секция проводам 0,5 мм. Вторая 0,45 мм, и третья 0,35. В одной части расположится узел напряженности, в другой – кучность тока. Индуктивность конструкция получилась большая через 17,54 миллигенри. По секциям: 5,66; 4,77; 5,65. Общий резонанс 65,6 килогерц.

Для поиска волнового резонанса сделал временной индуктор, который разместил над первой секцией. Здесь будет возбуждение все катушки от генератора. Осциллограф подключил, периодически последовательно проверял резонанс разных секций и общий.

Резонансы правильные, то есть гармоники четко прослеживаются.

Прогонял по всем частотам катушку до 15 Мгц. Смотрел, чем такая многослойная намотка дышит. Услышал много критики, что волнового резонанса при многослойном волноводе не будет. Что не определить, где узел напряжение будет и так далее. Но ничего такого не увидел. Проверял и настраивал классический трансформатор Теслы, всё тоже самое. Открыл для себя неожиданно незапланированный эффект, когда когда ушёл на низкие частоты. На частоте 5 килогерц получился такой сигнал на осциллографе. Нижний щуп подключен к выходу генератора на два вывода индуктора. Видим, как генератор работает по возбуждению катушки.

Что мы наблюдаем? Говорят: откуда берётся свободная энергия? Отвечаем. Работа индуктора по частоте и фазе сигнала совпадают полностью. Если переместить сигнал индуктор наверх, то получится такая картина.

Что мы наблюдаем? Идет удар импульса генератора по катушке. Колебания пошли на затухание. А что мы видим в секции, в обмотке? Там идёт возрастание. На первый импульс пришелся удар, и пошёл затухать. А в секции 3 импульса получили прибавку энергии. На фоне затухания колебания меандра. Затем эти четыре пика идут на убывание, а на трех ровный сигнал. В то время, как возбуждение индуктора по амплитуде уменьшается. И потом снова: удар импульса и опять идет возрастание колебаний. Мы имеем на этом этапе свободную энергию. Так как удары импульса вызывают свободные колебания с возрастающей амплитудой. Если мы теперь поменяем секции, получаем аналогичную картину.

Удар – происходит сразу снижение амплитуды меандра. В то время, как в 3 секции сигнал возрастает.
Появилась почва для мыслей: на какой же частоте работать и откуда добывать эту свободную энергию? Как найти узел напряжение при такой многослойной намотке? Он будет на 3 секции. Такие итоги поиска резонансных частот.

Один из комментариев под видео на YouTube

Михаил Незнаю:
Для размышления. Из личного опыта. Я намотал конденсатор в виде катушки из двух алюминиевых полос по 25 мм, по 50 витков каждая (примерно) это около 6 м, на сердечнике от твс, а контакты вывел как бы бифилярно – начало одной обкладки и конец другой.. Емкость такой катушки-конденсатора получилась около 50 нф. Эту катушку-конденсатор подключить к индуктивности, что бы получить параллельный колебательный контур. Получилось зажечь лампочку на вторичной обмотке, при этом ставил цель создать магнитный поток в сердечнике, не за счет тока, а за счет статического электричества (видимо холодного электричества), а раз это так, то зарядом этого “конденсатора” можно воспользоваться многократно получая на выходе больше затраченного… Сейчас жду трансформаторное масло, что бы проверить работу от искровика в резонансном контуре, т.к. у такой “катушки” емкость и мощность, как я понял, годится только при высоком потенциале.

Волновой резонанс, генерируемый многослойной катушкой

Мастер снял видеоролик о волновом резонансе многослойной катушки, которая будет использоваться в резонансном трансформаторе для получения свободной энергии. Катушка моталась из расчёта рабочей частоты 288 кгц.

Длина волны 1041,6 м. 1 четверть, соответственно, 260 м. Это уложилось в 1385 витков. Намотал секциями по 462 витка.

Проверка будет проводиться датчиками напряжения и магнитного поля. В схеме опыта 2 датчика: датчик тока на земляном конце. И второй на горячем конце. На осциллографе верхний луч на горячем, нижний на холодном. Аккумулятор, узел коммутации. Включаем. Только потребление порядка 3 ампер. На фото сигналы датчика.

При такой противофазе сигналов только горячего и холодного концов появился волновой резонанс на частоте 154 килогерц.

Высокое напряжение внутри катушки. Что же образовалась внутри? Датчик напряжения на расстоянии 10 и 12 сантиметров мощно светится. Это происходит именно на 3 секции.

В результате сложения волн здесь образовался узел. Теперь смотрим датчик магнитного поля. Он должен светиться по всей катушке при волновом резонансе. Это так и есть.

На узле при расстоянии 1,5 – 2 см максимально яркость свечения. То есть катушку съёма надо ставить на этом расстоянии. Таким образом можно с помощью датчика определять радиус магнитного поля на разных участках катушки.
Обмотка нагревается, буквально за несколько минут 3 секции становится горячей.
Если выбирать частоту от резонансной в другую сторону, смотрим, что на катушке. Датчик не светится. То есть падающая и отраженная волна здесь не складываются. Резонанса при этой частоте нет. Если вращать новое регулятор частоты, чтобы сигналы датчиков находились в противофазе, загорается лампа, появляется зебра и снова такое поле напряженности.
Чтобы работать с этой намоткой, инженер изготовил катушку съема здесь пока 40 м.

Сильно отличается частота волнового резонанса от теоретической. По идее должно быть около 1 Мгца, но из-за того, что такой многослойный пирог, частота получилось совсем другая – 154 килогерц.

Резонансный генератор энергии своими руками

Геннератор Владомира (генератор НЭГ)

Эксперимент по свободной энергии своими руками

Надеюсь, кому-то из экспериментаторов поможет.

Наконец-то я провел свой, пожалуй, самый дорогостоящий эксперимент по «свободной энергии».

Тема эта уже довольно давно гуляет по просторам Интернета, и известна она как «Генератор Владомира», или первая редакция американского генератора «НЭГ».

Напомню, о чем идет речь.

Если рассмотреть работу обыкновенного электромеханического преобразователя энергии механического вращения в электрическую энергию (по-простому — электрогенератора), то можно заметить одну главную вещь — для генерации электрического тока в обмотках статора абсолютно все равно, что будет вращаться на месте ротора- постоянный магнит или просто само магнитное поле. Главное — чтобы чисто силовые характеристики (сама механическая сила притяжения магнита, если говорить грубо) вращающегося магнитного поля совпадали как у непосредственно вращающегося постоянного магнита, так и у неподвижного электромагнитного индуктора в любой момент времени в любой точке статора.

Вроде бы все просто — нам нужно лишь создать как можно более низкозатратное вращающееся магнитное поле, причем полученное без использования механического вращения. Естественно, на ум сразу приходят несколько вариантов электронных коммутаторов/преобразователей, многие из которых уже неоднократно обкатывались и на этом, и на многих других подобных форумах.

И, конечно же, без самого важного элемента предполагаемого СЕ-генератора — магнитопровода с обмотками — тут не обойтись. И вот тут возникли главные распри-различия между конструктивами собственно генератора Владомира и НЭГ-а.

И там, и там используются обычные трехфазные барабанные намотки на шихтованное железо статора и ротора, но если в НЭГе специально подчеркнуто, что воздушный зазор между ротором и статором не нужен, так как он якобы вносит одни лишь потери, то Владомир в своем конструктиве настаивает на зазоре («зазор, говорю я вам, а не расщелина»).

Мне вариант без зазора сперва понравился больше, потому я несколько лет назад и занимался изготовлением НЭГа в подробном изложении товарища Ральфа с ветки Скифа. Да, очень сложно было сперва изготовить такой наборной сердечник из трансформаторной стали, потом фрезеровать в нем пазы, а уж затем (верх извращения, как по мне) мотать трехфазные обмотки.

Но- охота пуще неволи, и я, как и немногочисленные, увы, повторители сего чуда инженерной мысли, сделал-таки свой НЭГ. И он, как и у всех остальных энтузиастов, не выдал обещанной сверхединицы. У моей реплики общий КПД едва приблизился к 30%.

Читайте также  Ток при последовательном соединении светодиодов

Дальше пошел «разбор полетов».

Если считать, что НЭГ- это электромагнитное устройство с потерей обратной связи, то у нас должно получиться так, что ток в генераторных обмотках не должен существенно влиять на ток в обмотках возбуждения. А как это сделать? Первое, что приходит на ум- это уменьшить индуктивное влияние вторички (генераторной обмотки) на первичку (индукторную обмотку). Но классический НЭГ обладает весьма жестким магнитосцеплением между обмотками возбуждения и генерации, и вполне можно говорить о том, что в данном конструктиве НЭГ можно представить как обычный трехфазный трансформатор- общее вращающееся магнитное поле не имеет существенного отличия от трансформаторного пульсирующего магнитного поля. Опять-таки в плане взаимного влияния обмоток друг на друга.

Рассудив так, становится более убедительной фраза Владомира об обязательности введения зазора в магнитопровод. Да, воздушный зазор разрывает жесткую индуктивную связь между обмотками возбуждения и генерации, но, на мой взгляд, одного этого недостаточно для получения вожделенной сверхединицы.

Нужно сделать так, чтобы обмотки статора и ротора не были одинаковыми, то есть не было зеркального отражения друг друга как по части расположения обмоточного провода, так и по части «попадания» одного зуба магнитопровода индуктора на такой же зуб магнитопровода генератора. А еще лучше вообще сделать числа этих пазов разными.

И вот, размышляя так и эдак, пришел я к мысли о том, что где-то я уже подобный девайс видел в реальности. И вспомнил! Это обычный, хоть и малораспространенный, вариант асинхронного электродвигателя- с фазным ротором. Долгие поиски подходящего прибора растянулись на несколько лет, но, наконец-то, я стал обладателем так называемого кранового электродвигателя типа МТФ-111-6 мощностью 3,5 кВт при 900 об/мин производства московского завода «Динамо».

У него оказалось подходящее железо- статор имеет трехфазную обмотку, уложенную в 36 пазов, а на роторе намотана тоже трехфазная обмотка, но уже в 27 пазах. То есть принцип несимметричности соблюден, да и заводской воздушный зазор точен и равномерен и составляет 0,35 мм. Статорная обмотка имеет 6 выводов и может быть соединена как в звезду на 380 вольт, так и на треугольник на 220 вольт. Роторная трехфазная обмотка же жестко соединена в треугольник, выводы подведены на контактные кольца, ну а с колец через скользящие щетки- в клеммную коробку.

Теперь дело было за самим электрическим генератором трехфазного тока. И тут, дабы не изобретать велосипед, я решил использовать очень популярный сегодня у профессиональных станочников прибор- частотный преобразователь. Говоря по-простому, это просто мощный регулятор оборотов асинхронных электродвигателей. Да, с кучей защит, настроек и много чего еще, но меня интересовали только два момента- работа от однофазной сети и достаточно широкий диапазон регулировки выходной частоты при полноценных трех фазах.

Удалось приобрести немецкий частотный преобразователь типа «Altivar 28» на максимальную мощность в 1,5 кВт и максимальной выходной частотой в 400 Гц. Он работает от обычной однофазной сети 220 вольт/50 Гц, на выход можно цеплять как рекомендуемые асинхронники в соединении «треугольник» на напряжение 220 вольт, так и обычные в соединении «звезда» и напряжении 380 вольт (правда, с потерей максимальной мощности). В общем, то, что нужно.
Для удобства измерения выходной мощности решил поставить стандартный трехфазный выпрямитель по схеме Ларионова на 6 диодах, и нагрузку- обычный электрокамин на 1500 Вт / 220 В. Схема соединений прилагается.

Клеммную коробку электродвигателя я немного доработал- все 9 выводов (6 статорных и 3 роторных) пустил через плавкие предохранители.
Сперва просто убедился в работоспособности самого мотора- накоротко замкнул выводы щеточных колец ротора, и подал трехфазное напряжение с частотника на статорные обмотки, соединенные в треугольник. Мотор плавно, с характерным низким звуком работающего крана, запустился и стал набирать обороты. Потом несколько видоизменил выходные соединения- три фазы с ротора направил сперва на выпрямитель, а потом уже, после выпрямления, замкнул накоротко амперметром постоянного тока. Мотор запустился и работал без изменений.

Ну и контрольный эксперимент — три фазы с частотника подал на кольца ротора, а выводы статорных обмоток замкнул накоротко. Мотор стартанул так же, однако разогнаться до положенных по номиналу 900 об/мин так и не сумел- на частоте частотного преобразователя в 17 Гц потребляемая всей системой мощность превысила 1 кВт, и частотник отключился, высветив ошибку «перегрузка электродвигателя». Что, в общем-то, логично- обмотки ротора рассчитаны на максимальное напряжение в 165 вольт (судя по данным на шильдике), а с частотника шли импульсы амплитудой под 300 вольт, и ШИМ-контроллер после определенного значения просто оказался перегружен.

Для работы данного электродвигателя в качестве вращающегося трансформатора – НЭГа необходимо затормозить вал. Я решил не мудрствовать лукаво и просто изогнутой металлической полосой притянул надетую на вал мотора полумуфту к его же корпусу (на фото видно).

Ну и пришел черед самих экспериментов. Общая принципиальная схема установки показана на прилагаемом чертеже.

Максимальная выходная частота, которую выдал мой частотник в паре с этим мотором, оказалась ограниченной 200 Гц (хотя по паспорту он может выдавать и до 400 Гц, но что-то ему не понравилось, и он сам ограничил верхний предел 200 Гц, хотя в настройках вручную выставлено 400 Гц).
Собственно, все видно на вот этом видео

Пока же дам небольшие пояснения.

Хотя мотор позволяет работать со статорной обмоткой, соединенной в «треугольник», но в моем варианте он так работать на частотах выше 20 Гц не захотел- выдавал ошибку «перегрузка преобразователя», поэтому остальные эксперименты я проводил уже при соединении статора в «звезду». По этой же причине — перегрузка преобразователя – не удалось провести и эксперименты при подаче питающего напряжения на обмотки ротора, чтобы снять нагрузку со статора.

Итак, вот в таблице данные, полученные в ходе эксперимента. Осциллограф показал на выходе слабые пульсации постоянного тока после трехфазного выпрямителя, так что показания китайских мультиметров можно принять за правдоподобные.

К сожалению, чуда не произошло. Хотя явно был виден рост общего КПД преобразования с увеличением частоты генератора, но до сверхединицы так и не дошло. Я так думаю, что даже если просто и дальше увеличивать частоту следования импульсов, то вскоре КПД начнет падать из-за возрастающих потерь на гистерезис – все-таки трансформаторная сталь — это не высокочастотный феррит.

Вот так. Очередная попытка сделать СЕ – девайс из промышленных комплектующих не увенчалась успехом.

Генератор Тесла

Никола Тесла – один из известнейших ученых в области электроэнергетики и электричества, чье научное наследие до сих пор вызывает многочисленные споры. И если практически реализованные проекты активно используются и известны повсеместно, то некоторые нереализованные до сих пор являются объектами исследований, как серьезными организациями, так и любителями.

Генератор или вечный двигатель?

Большинство ученых отрицает возможность создания генератора на свободной энергии. На это следует возразить тем, что даже в прошлом многие современные достижения также казались невозможными. Дело в том, что наука имеет множество областей, где исследования проведены далеко не полностью. Это особенно касается вопросов физических полей и энергии. Те виды энергии, которые нам знакомы, можно ощутить и измерять. Но ведь нельзя отрицать наличие неизвестных видов только на том основании, что пока не существует методов и приборов для их измерения и преобразования.

Для скептиков любые предложения генераторов, схемы и идеи, основанные на преобразовании свободной энергии, кажутся вечными двигателями, которые работают, не потребляя энергии, да еще способны вырабатывать излишек уже в виде известной энергии, тепловой или электрической.

Здесь не идет речь о вечных двигателях. На самом деле вечный генератор использует свободную энергию, которая в настоящее время пока еще не имеет внятного теоретического обоснования. Чем раньше считался свет? А сейчас он используется для выработки электрической энергии.

Альтернативная энергетика

Сторонники традиционной физики и энергетики отрицают возможность создания работоспособного генератора, оперируя существующими понятиями, законами и определениями. Приводится масса доказательств, что подобные устройства не могут существовать на практике, поскольку противоречат закону сохранения энергии.

Сторонники «теории заговора» убеждены, что расчеты генератора существуют, как и его работающие прототипы, но они не предъявляются науке и широкой общественности, поскольку не выгодны современным энергетическим компаниям и могут вызвать кризис экономики.

Читайте также  Откуда берется ноль в электричестве?

Энтузиасты неоднократно делали попытки создания генератора, ими построены немало прототипов, но отчеты о работе почему-то регулярно пропадают или исчезают. Отмечено, что периодически закрываются сетевые ресурсы, посвященные альтернативной энергетике.

Это может свидетельствовать о том, что конструкция в действительности работоспособна, и создать генератор своими руками возможно даже в домашних условиях.

Трансформатор Тесла

Многие путают понятия генератора и трансформатора (катушка) Тесла. Для разъяснений нужно остановиться на этом подробнее. Трансформатор Тесла изучен достаточно и доступен для повторения. Многие производители успешно выпускают различные модели трансформаторов как для практического использования в различных устройствах, так и для демонстрационных целей.

Трансформатор Тесла представляет собой преобразователь электрической энергии с низкого напряжения в высокое. Выходное напряжение может составлять миллионы вольт, но сама конструкция при этом не представляет высокой сложности. Гениальность изобретателя состоит в том, что ему удалось собрать устройство, использующее известные физические свойства электромагнитных полей, но при этом совершенно иным способом. Исчерпывающего теоретического обоснования работы устройства не существует до сих пор.

В основе конструкции лежит трансформатор с двумя обмотками, с большим и малым количеством витков. Самое главное – отсутствует традиционный ферромагнитный сердечник, и взаимосвязь между обмотками получается очень слабой. Учитывая уровень выходного напряжения трансформатора Тесла, можно сделать вывод, что обычная методика расчета трансформатора, даже с учетом высокой частоты преобразования, здесь неприменима.

Генератор Тесла

Иное предназначение имеет генератор. Конструкция генератора также использует трансформатор, подобный высоковольтному. Работая на одинаковом принципе с трансформатором, генератор способен создавать на выходе излишки энергии, значительно превосходящие затраченные на первоначальный запуск устройства. Основная задача состоит в методике изготовления трансформатора и его настройке. Важна точная настройка системы на частоту резонанса. Ситуация осложняется тем, что таких данных не имеется в свободном доступе.

Как сделать генератор

Чтобы собрать генератор Тесла, необходимо совсем немного. В интернете можно найти данные по сборке трансформатора генератора Тесла своими руками и схемы для запуска конструкции. На основе имеющейся информации ниже даны рекомендации, как должна быть выполнена самостоятельная сборка конструкции, и краткая методика настройки.

Трансформатор должен удовлетворять противоречивым требованиям:

  • Высокочастотная свободная энергия требует уменьшения габаритов (подобно разнице в размерах телевизионных антенн метрового и дециметровых диапазонов);
  • С уменьшением габаритов падает КПД конструкции.

Трансформатор

Вопрос частично решается подбором диаметра и количества первичной обмотки трансформатора. Оптимальный диаметр обмотки составляет 50 мм, поэтому удобно для намотки использовать отрезок пластиковой канализационной трубы соответствующей длины. Экспериментально установлено, что количество витков обмотки должно составлять не менее 800, лучше это количество удвоить. Диметр провода не имеет существенного значения для самодельной конструкции, поскольку ее мощность невелика. Поэтому диаметр может лежать в диапазоне от 0.12 до 0.5 мм. Меньшее значение создаст трудности при намотке, а большее – увеличит габариты устройства.

Длина трубы берется с учетом количества витков и диаметра провода. К примеру, провода ПЭВ-2 0.15 мм диаметр с изоляцией составляет 0.17 мм, суммарная длина обмотки – 272 мм. Отступив от края трубы 50 мм для крепления, сверлят отверстие для крепления начала обмотки, а через 272 мм еще одно – для конца. Запас трубы сверху составляет пару сантиметров. Итого общая длина отрезка трубы будет 340-350 мм.

Для намотки провода его начало продевают в нижнее отверстие, оставляют там запас в 10-20 см и закрепляют скотчем. После того, как обмотка выполнена, ее конец такой же длины продевают в верхнее отверстие и тоже закрепляют.

Важно! Витки обмотки должны плотно прилегать друг к другу. Провод не должен иметь перегибов и петель.

Готовую обмотку обязательно покрывают сверху электротехническим лаком или эпоксидной смолой для исключения сдвига витков.

Для вторичной обмотки нужен более серьезный провод с сечением не менее 10 мм2. Это соответствует проводу с диаметром 3.6 мм. Если есть толще, то так даже лучше.

Обратите внимание! Поскольку система работает на высокой частоте, то, благодаря скин-эффекту, ток распространяется в поверхностном слое провода, поэтому вместо него можно взять тонкостенную медную трубку. Скин-эффект – еще одно оправдание большого диаметра провода вторичной обмотки.

Диаметр витков вторичной обмотки должен быть в два раза больше первичной, то есть 100 мм. Вторичку можно намотать на отрезке канализационной трубы 110 мм или на любом другом простом каркасе. Труба или подходящая болванка нужны только для процесса намотки. Жесткая обмотка в каркасе нуждаться не будет.

Для вторичной обмотки количество витков составляет 5-6. Есть несколько вариантов конструкции вторичной обмотки:

  • Сплошная;
  • С расстоянием между витками 20-30 мм;
  • Конусообразная с теми же расстояниями.

Конусообразная представляет наибольший интерес, поскольку расширяет диапазон настройки (имеет более широкую частотную полосу). Нижний первый виток делается диаметром 100 мм, а верхний доходит до 150-200 мм.

Важно! Необходимо строго выдерживать расстояние между витками, а поверхность провода или трубки нужно сделать гладкими (в лучшем случае отполировать).

Схема запитки

Для первоначального запуска необходима схема, которая подает на трансформатор генератора Тесла импульс энергии. Далее генератор переходит в автоколебательный режим и постоянно во внешнем питании не нуждается.

На сленге разработчиков устройство для запитки именуется «качер». Те, кто знаком с электроникой, знают, что правильное название устройства – блокинг-генератор (ударный генератор). Подобное схемотехническое решение вырабатывает однократный мощный электрический импульс.

Разработано много вариантов блокинг-генераторов, которые делятся на три группы:

  • На электронных лампах;
  • На биполярных транзисторах;
  • На полевых транзисторах с изолированным затвором.

Ламповый электромагнитный генератор на мощных генераторных лампах работает с высокими выходными параметрами, но его конструирование затрудняется наличием комплектующих. Кроме того, требуется не двух,- а трехобмоточный трансформатор, поэтому ламповые блокинг-генераторы в настоящее время встречаются редко.

Самое широкое распространение получили качеры на биполярных транзисторах. Их схемотехника хорошо отработана, настройка и регулировка просты. Используются транзисторы отечественного производства 800-й серии (КТ805, КТ808, КТ819), которые имеют хорошие технические параметры, широко распространены и не вызывают финансовых затруднений.

Распространение мощных и надежных полевых транзисторов сделало возможным конструирование блокинг-генераторов с повышенным КПД благодаря тому, что MOSFET или IGBT транзисторы имеют лучшие параметры по падению напряжения на переходах. Кроме роста КПД, становится менее проблематичной проблема охлаждения транзисторов. Проверенные схемы используют транзисторы IRF740 или IRF840, также недорогие и надежные.

Перед тем, как собрать генератор в готовую конструкцию, еще раз перепроверьте качество изготовления всех комплектующих. Соберите конструкцию и подайте на нее питание. Переход в автоколебательный режим сопровождается наличием напряжения на обмотках трансформатора (на выходе вторички). Если напряжение отсутствует, то необходима настройка частоты блокинг-генератора в резонанс с частотой трансформатора.

Важно! При работе с генератором Тесла необходимо соблюдать повышенную осторожность, поскольку при запуске в первичной обмотке наводится высокое напряжение, способное привести к несчастному случаю.

Применение генератора

Генератор Тесла и трансформатор конструировались изобретателем как универсальные устройства для беспроводной передачи электрической энергии. Никола Тесла неоднократно проводил эксперименты, подтверждающие его теорию, но, к сожалению, следы отчетов по передаче энергии также оказались утеряны или надежно спрятаны, как и многие другие его конструкции. Разработчики только недавно начали конструировать устройства для передачи энергии, но и то на сравнительно малые расстояния (беспроводные зарядные устройства для телефонов – хороший пример).

В эпоху неотвратимого истощения запасов невосполняемых природных ресурсов (углеводородного топлива) разработка и конструирование устройств альтернативной энергетики, в том числе бестопливного генератора, имеет высокое значение. Электрогенератором на свободной энергии при его достаточной мощности можно пользоваться для освещения и отопления домов. Не следует отказываться от исследований, ссылаясь на отсутствие опыта и профильного образования. Многие важные изобретения сделаны людьми, которые были профессионалами в совершенно других областях.

Видео

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: