Ротор дарье конструкция принцип работы - ELSTROIKOMPLEKT.RU

Ротор дарье конструкция принцип работы

Вертикальный ветрогенератор

Пост опубликован: 11 апреля, 2020

Колоссальная энергия ветра, как и дикий необъезженный мустанг неуправляемы

Ветер и дикий мустанг при колоссальной энергии абсолютно непредсказуемы. Дикого жеребца можно обуздать, а вертикальный ветрогенератор своеобразный аналог такой упряжи –он будет вырабатывать энергию вне зависимости от направления воздушного потока. А КПД вертикальных ветряков на 40% выше, чем у горизонтальных ветрогенераторов

Вертикальный ветрогенератор

Среди всех альтернативных источников энергии есть один особый, который присутствует везде и всегда. Он и в пустыне и в море, он и днём и ночью – это ветер. Казалось бы ветрогенератор идеальное устройство чтобы обеспечить свой дом бесплатным электричеством, но именно для ветра характерна онтологическая дихотомия – он одновременно и постоянен, и непредсказуем.

Зол — повелитель ветров у греков

Двуликая энергия ветра

На Земле нет такого места, где никогда не дуют ветра. Они могут быть слабые, а в какие-то периоды может быть полный штиль, но это издержки атмосферных явлений. В глобальном представлении ветер есть всегда. Однако его направление абсолютно непредсказуемо!

Обычные горизонтальные ветрогенераторы нуждаются в сложной системе ориентации «по ветру». Они или поворачиваются целиком, или же у них лопасти меняют угол наклона. Но это усложнение конструкции прямо сказывается на стоимости и надёжности.

Однако есть вертикальные ветрогенераторы, для которых этой проблемы не существует в принципе! Им абсолютно без разницы направление ветра, главное чтобы он был. И что особенно привлекательно – работать вертикальный ветрогенератор начинает при меньшей скорости воздушного потока.

Преимущества и недостатки вертикальных ветрогенераторов

Придумать и нарисовать схему на бумаге, это совсем не то же самое, что воплотить её в реальность. На практике вылезают некоторые изъяны, которые приходится как-то нивелировать. Например, поток воздуха оказывает отрицательное давление на лопатки турбины. С одной стороны ветер их закручивает, а когда они возвращаются в исходное положение, то этот поток оказывает сопротивление.

Если горизонтальный ветрогенератор можно заглушить при штормовом ветре простым поворотом лопастей, то в вертикальной конструкцией этого проделать невозможно.

Именно эти недостатки на начальном этапе развития альтернативной энергетики, сделали вертикальные ветрогенераторы аутсайдерами в своём сегменте.

Сейчас положение кардинально изменилось! В 2008 году, исследователи из Калифорнийского технического университета доказали, что при скрупулёзном проектировании и использовании современных композитных материалов, имея одинаковые размеры, вертикальный ветрогенератор даёт в 10 раз больше энергии, чем его горизонтальный конкурент.

Основные преимущества вертикальных ветряков следующие:

  • Не требуется ориентация по направлению ветра;
  • Выдерживает вдвое большую скорость воздушного потока;
  • Начинают работать при меньших скоростях ветра;
  • Оснащаются более простым и надёжным редуктором;
  • Не нуждаются в высоких мачтах;
  • Центровка конструкции надёжная, так как вся система находится на одной центральной оси, а центр тяжести смещён вниз. Поэтому возведение вертикального ветрогенератора обходится дешевле;
  • Блок управления находится внизу, поэтому обслуживание и ремонт выполнить гораздо проще;
  • Требуют площадку меньших размеров;

Принимая в расчёт, что изготовление вертикальных ветрогенераторов обходится дешевле, многие энтузиасты альтернативной энергетики сходятся во мнении, что есть явные признаки картельного сговора. Поэтому на рынке уже 15 лет выпускаются мини- и микромодели таких генераторов, ориентированные на частный сектор.

Спиральный ротор Дарье

Эволюция вертикальных ветрогенераторов

Первые вертикальные мельницы появились в Китае, почти 2000 лет назад. Через тысячу лет их заново изобрели в Персии. Но приспосабливать такие конструкции для выработки электроэнергии начали в самом конце 19-го века.

Чертежи из австрийского патента Савониуса 1925

Попытки устранить базовые изъяны были направлены на конструкцию и форму лопастей. За 130 лет появилось несколько модификаций, которые не поддаются безальтернативной систематизации. Поэтому начать их описание надо с наиболее лёгких в изготовлении, пусть даже они не такие эффективные как современные разработки.

Модель Савониуса

Изобрёл лопасти такого типа финский инженере сто лет назад.

В изготовлении она чрезвычайно проста и в эксплуатации надёжна. Но так как лопасти работают только за счёт разности давления, то эффективность оставляет желать лучшего.

В частном секторе, именно ветрогенераторы Савониуса чаще используются как стартовая модель. Важно только не упустить особенность расположения лопастей относительно друг друга, и оставить небольшой просвет между ними.

Базовый изъян ветрогенератора Савониуса кроется в переменных нагрузках на лопасти, которые вызваны эффектом Магнуса. Поэтому в Голландии модернизировали конструкцию, путём закручивания лопастей в спирали.

Называется такой вертикальный ветрогенератор Windwokkel (Обтекатель Ветра) .

Модель Дарье

В конце 20-х годов прошлого века, французский лётчик Дарье додумался использовать подъёмную силу крыла, для увеличения эффективность вертикального ветрогенератора. Симбиоз чрезвычайно эффективен, и даже сейчас ещё не существует реальных математических моделей, описывающих физические процессы в таком ветрогенераторе! Достаточно сказать, что в 2010 году, в Новосибирском отделении РАН было проведено полномасштабное исследование ветрогенератора Дарье, и ученые чётко обосновали следующий факт: коэффициент энергопреобразования в идеально спроектированной конструкции вертикального ветрогенератора Дарье – 0,72.

Чтобы понять глубину этого факта, надо вспомнить, что теоретически доказанный предел эффективности для любых типов горизонтальных ветрогенераторов, не может превышать 0,593. А на практике, он даже не достигает 0,45.

Причина такого качественного скачка в том, что кроме разницы давлений ветра на лопасти, в конструкции Дарье задействован эффект аэродинамической подъёмной силы крыла. Поэтому скорость вращения вертикальной турбины Дарье может превышать скорость набегающего воздушного потока в 3-4 раза!

Существует несколько разновидностей ветротурбины Дарье:

  • Спиральная турбина Горлова.

Идеальный проект предполагает три лопасти. Так как при двух лопастях затруднён автозапуск, а четыре и более лопасти снижают производительность.В некоторых конструкциях, для автозапуска используют гибридную систему, для этого ветрогенератор Савониуса интегрируют внутрь конструкции Дарье .

Экзотические системы вертикальных ветрогенераторов

Около 12 лет назад, французский изобретатель Дьедонне , придумал ни на что не похожий вертикальный ветрогенератор и назвал его Panemon.

Система очень оригинальная, и кустари одиночки воспроизводили её в своих частных домах.

В Хорватии установили более серьёзный прототип.

В Голландии придумали и запустили в мелкосерийное производство «Энергетический шар».

Это чудовищная химера вертикального и горизонтального ветрогенератора, вырабатывает около 700 вт уже при 1,5 м/с. Кроме обычных динамических сил описанных выше, в данной конструкции был учтён эффект Вентури. Это частное ответвление от эффекта Бернулли, которое проявляется в падении давления при протекании воздуха через узкое пространство.

Сенсация альтернативной энергетики

Одним из самых слабых мест у вертикальных ветрогенераторов является опорный подшипник. Масса всей конструкции давит на опору вызывая её усталостную деструкцию, а механическое трения снижает производительность. Чтобы обойти этот изъян, один китайско-немецкий консорциум предложил использовать магнитные подшипники с эффектом левитации.

Формы лопаток турбины могут быть различные, но центральный вал в этих моделях держится на магнитном подшипнике – левитирует. Проверка работоспособности конструкции вертикального ветрогенератора на магнитом подшипнике, продемонстрировала высокую эффективность в изменяющихся ветровых условиях по сравнению с аналогичной системой без такой опоры

Феномен маглева (магнитной левитации) основан на отталкивании одноименных полюсов постоянных магнитов. Использование пары постоянных неодимовых магнитов, с реальной поддержкой магнитной левитации, достаточно легко испытывается на практике. Два кольцевых магнита обращённых друг к другу одинаковыми полюсами демонстрирую достаточно сильное отталкивание, чтобы держать обе поверхности на расстоянии друг от друга. Сила, создаваемая в результате этого отталкивания, используется для подвески и является достаточно мощной, чтобы уравновесить вес объекта в зависимости от мощности магнитного поля.

Читайте также  Как нарастить телефонный кабель?

В этом проекте удалось реализовать технологию достижения вертикальной ориентации с помощью роторов, а также генератора осевого потока. Однако есть нюансы, которые действительно отличают систему, работающую на постоянных магнитах, от электромагнитов.

В конструкции ветряка с осевым потоком, работоспособность основана на генераторах с постоянными магнитами. В них концепция магнитов и магнитных полей является доминирующим фактором в этой форме работы. Эти генераторы имеют воздушный зазор, перпендикулярный оси вращения. Одновременно, воздушный зазор создает магнитные потоки, параллельные оси.

Технология maglev, служит эффективной заменой шарикоподшипников, используемых в типовой ветротурбине, и обычно реализуется с постоянными магнитами.

Левитация используется между вращающимся валом турбины и основанием всей системы ветряка. При наличии соответствующих механизмов удаётся использовать очень слабые ветра для выработки электроэнергии. Правильно размещённые магниты формирует магнитное поле, а медные катушки будут способствовать захвату напряжения из-за изменения этого магнитного поля.

Такая система может работать при скорости ветра от 1 м/с, и поддерживает генерацию до шквальных порывов в 55 м/с. Согласно исследованию, генерирующая мощность ветровой турбины Маглева выше на 20% по сравнению с обычными ветряными турбинами, а эксплуатационные расходы на 50% ниже.

Ветрогенераторы МагЛев производятся и продаются в США с 2014 года.

В комментариях прикрикриплен Прайс лист чисто для ознакомления с разновидность турбин Маглева,и дополнительную полезную информацию:

Характеристики ротора Дарье

Разработка ветрогенератора с вертикальной осью

Вероятно, Вам также понравятся следующие материалы:

Спасибо, что дочитали до конца!

Если статья Вам понравилась!

Делитесь с друзьями, оставляйте ваши комментарии

Следите за нами в твиттере: https://twitter.com/Alter2201

Добавляйтесь в нашу группу в ВК:

и предлагайте темы для обсуждений, вместе будет интереснее.

Ротор Дарье

Сведения о роторе

Ротор Дарье – это механизм для оснащения вертикальных ветрогенераторов. Техническое устройство функционирует за счет силы подъема. Состоит из двух или более крыльев, симметрично расположенных относительно друг друга. Сами крылья выполнены из упругой ленты без использования профиля.

Конструкция отличается простотой монтажа и изготовления. Изобретение устройства было выполнено в 31 году прошлого столетия.

Сегодня имеется принцип работы механизма, но отсутствует модель изготовления, в том числе последовательность проведения работ. Все же, имея минимальные технические знания, ротор Дарье можно сконструировать своими руками.

О принципе работы механизма

Разность показаний аэродинамических нагрузок обеспечивает вращение подвижных частей ротора. После образования циркуляции механизм становится быстроходным.

Описание принципа работы:

  1. По отдельности на каждую лопасть воздействует сила подъема относительно потока ветра. Параметры этой силы зависят от угла, образованного величиной скорости потока и лопасти.
  2. Образующийся момент силы имеет переменный характер, а не постоянный, по этой причине существует цикличность изменений, связанных с движением крыльев. Поэтому, чтобы подъемная сила была создана, необходимо обеспечить постоянное движение лопастей и учитывать это при проектировании большего количества лопастей.

Чтобы произвести запуск установки, необходимо приложить много усилий.

Изготовление ротора в домашних условиях

Ротор Дарье имеет несложную конструкцию. Чтобы его изготовить, необязательно владеть специальными знаниями и опытом. Для выполнения ротора для ветряка своими руками необходимо:

  1. Выполнить чертеж.
  2. Подготовить материалы: лопасти, генератор, мачту для установки, крепежи. Каждую часть можно приобрести в магазине, а можно изготовить из подручных средств. К примеру, для изготовления лопастей можно использовать обрезки от труб из ПВХ.
  3. Приступить к непосредственному изготовлению механизма. Из подготовленных труб определенного размера вырезать предполагаемые лопасти, при этом не забыть просверлить отверстия для выполнения крепежа. Каждую отдельную деталь необходимо ошкурить, чтобы не было травмирования. Крепеж производить на болтовые соединения. Если будет использоваться для этих целей лента, то следует ее нарезать в размер.
  4. Затем мачту установить на ранее подготовленное основание.
  5. Для подключения электричества необходимо изучить элементарные основы электротехники.
  6. Проводить предварительные испытания, начиная с небольших оборотов создаваемого крутящего момента.
  7. При возникновении непредвиденных обстоятельств, в том числе разрыве ленты, следует остановить работу и устранить недостатки.

Ротор Дарье представляет собой систему одновременно функционирующих нескольких лопастей. Хотя его несложно изготовить, но получить от него необходимое количество электроэнергии не получится, потому что конструкция требует дополнительных усовершенствований.

Преимущества устройства

Достоинствами ротора можно называть следующие характеризующие его моменты:

  1. Турбины, оснащенные этим ротором, не нуждаются в дополнительной установке ориентационных устройств, а это в положительную сторону сказывается на его стоимости.
  2. Даже при небольшой скорости ветра механизм является быстроходным.
  3. Коэффициент использования энергии от ветровых нагрузок высокий.

Ротор Дарье можно изготовить самостоятельно, а можно приобрести в магазине, при этом цена приемлема.

Недостатки конструкции

К недоработкам технического устройства, применяемого для вертикальных ветряков, можно отнести:

  1. Во время работы на ротор воздействуют сильные ветровые нагрузки.
  2. Нет возможности усовершенствования модели из-за отсутствия шаблона.
  3. Расположение крутящего момента на периферии, что способствует возникновению мощных центробежных сил, которые приводят к изнашиванию механизмов. Для уменьшения массы ротора и побочного воздействия на него лопасти изготавливаются кривыми.
  4. Повышенный уровень шума. При очень сильных воздушных потоках возникает сильный шум, переходящий в визг, а уровень вибрации может привести к разрыву ленты лопасти.

Ротор Дарье

Ротор Дарье, турбина Дарье (Darrieus rotor) — тип турбины низкого давления, ось вращения которой перпендикулярна потоку жидкой или газовой среды. Предложена в 1931 году французским авиаконструктором Жоржем Дарье. Ротор Дарье нашёл широкое применение в ветроэнергетике.

Устройство и принцип действия

Ротор Дарье представляет собой симметричную конструкцию, состоящую из двух и более аэродинамических крыльев, закреплённых на радиальных балках. На каждое из крыльев, движущихся относительно потока действует подъёмная сила, величина которой зависит от угла между вектором скорости потока и мгновенной скорости крыла. Максимального значения подъёмная сила достигает при ортогональности данных векторов. Ввиду того, что вектор мгновенной скорости крыла циклически изменяется в процессе вращения ротора, момент силы, развиваемый ротором также является переменным. Поскольку для возникновения подъёмной силы необходимо движение крыльев, ротор Дарье характеризуется плохим самозапуском. Самозапуск улучшается в случае применения трёх и более лопастей.

Преимущества и недостатки

Работа ротора Дарье не зависит от направления потока. Следовательно турбина на его основе не требует устройства ориентации. Ротор Дарье характеризуется высоким коэффициентом быстроходности при малых скоростях потока и высоким коэффициентом использования энергии потока: площадь ометаемая крыльями ротора может быть выполнена достаточно большой.

К недостаткам ротора Дарье относится плохой самозапуск, низкая механическая прочность, повышенный шум, создаваемый при работе.

Постоянного тока • Переменного тока • Трёхфазные • Двухфазные • Однофазные • Универсальные
Асинхронные Конденсаторный двигатель
Синхронные Бесколлекторные • Коллекторные • Вентильные реактивные • Шаговые
Другие Линейные • Гистерезисные • Униполярные • Ультразвуковые • Мендосинский мотор

Wikimedia Foundation . 2010 .

  • Ротор, Артуро
  • Роторно-фрезерный движитель

Смотреть что такое «Ротор Дарье» в других словарях:

Ротор — Роторный экскаватор как экспонат в бывшем угольном карьере «стальном городе» Феррополис (Германия), превращенном в музей под открытым небом Ротор от лат. roto ) вращаться В математике: Ротор то же, что вихрь векторного поля, то… … Википедия

Читайте также  Генератор ШИМ сигнала с изменением скважности

Турбина Уэльса — Принцип работы лопаток турбины Турбина Уэльса (Уэллса) (англ. Wells turbine) воздушная турбина низкого давления имеющая симметричную аэродинамическую поверхность лопаток, позволяющую им … Википедия

Асинхронная машина — Статор и ротор асинхронной машины 0.75 кВт, 1420 об/мин, 50 Гц, 230 400 В, 3.4 2.0 A Асинхронная машина это электрическая машина переменного тока … Википедия

Бесколлекторный электродвигатель — Принцип работы трёхфазного вентильного двигателя Вентильный электродвигатель это синхронный двигатель, основанный на принципе частотного регулирования с самосинхронизацией, суть которого заключается в управлении вектором магнитного поля… … Википедия

Электрический двигатель — Основная статья: Электрическая машина Электродвигатели разной мощности (750 Вт, 25 Вт, к CD плееру, к игрушке, к дисководу). Батарейка «Крона» дана для сравнения Электрический двигатель … Википедия

Электродвигатель постоянного тока — Рис. 1 Устройство простейшего коллекторного двигателя постоянного тока с двухполюсным статором и с двухполюсным ротором Двигатель постоянного тока электрическая машина, ма … Википедия

Линейный двигатель — Лабораторный синхронный линейный двигатель. На заднем плане статор ряд индукционных катушек, на переднем плане подвижный вторичный элемент, содержащий постоянный магнит … Википедия

Шаговый электродвигатель — Шаговый электродвигатель это синхронный бесщёточный электродвигатель с несколькими обмотками, в котором ток, подаваемый в одну из обмоток статора, вызывает фиксацию ротора. Последовательная активация обмоток двигателя вызывает дискретные… … Википедия

Коллекторный электродвигатель — Коллекторный электродвигатель синхронная[1] электрическая машина, в которой датчиком положения ротора и пере­к­лю­ча­те­лем тока в обмотках является одно и то же устройство щёточно коллекторный узел … Википедия

Лопатка (лопасть) — У этого термина существуют и другие значения, см. Лопатка (значения). Турбинная лопатка Лопатка (лопасть) деталь лопаточных ма … Википедия

Вертикальный ветрогенератор своими руками

С чего все начиналось

Поэтому было решено построить ветрогенератор чтобы использовать еще и энергию ветра. Сначала было желание построить парусный ветрогенератор. Такой тип ветрогенераторов очень понравился, и после некоторого времени проведенного в интернете в голове и на компьютере накопилось много материалов по этим ветрогенераторам.Но строить парусный ветрогенератор довольно затратное дело, так-как такие ветрогенераторы маленькие не строят и диаметр винта для ветрогенератора такого типа должен быть как минимум метров пять.

Большой ветрогенератор не было возможности потянуть, но все-таки очень хотелось попробовать сделать ветрогенератор, хотя бы небольшой мощности, для зарядки аккумулятора. Горизонтальный пропеллерный ветрогенератор сразу отпал так-как они шумные, есть сложности с изготовлением токосьемных колец и защитой ветрогенератора от сильного ветра, а так-же трудно изготовить правильные лопасти.

Хотелось чего-то простого и тихоходного, посмотрев некоторые видеоролики в интернете очень понравились вертикальные ветрогенераторы типа Савониус. По сути это аналоги разрезанной бочки, половинки которой раздвинуты в противоположные стороны. В поисках информации нашел более продвинутый вид этих ветрогенераторов — ротор Угринского. Обычные Савониусы имеют очень маленький КИЭВ ( коэффициент использования энергии ветра), он обычно всего 10-20%, а ротор Угринского имеет более высокий КИЭВ за счет использования отражённой от лопастей энергии ветра.

Ниже наглядные картинки для понимания принципа роботы данного ротора

Схема разметки координат лопастей

КИЭВ ротора Угринского заявлен аш до 46% , а значит он не уступает горизонтальным ветрогенераторам. Ну а практика покажет что и как.

Изготовление лопастей.

Материалы для ротора выбраны самые простые и дешовые. Лопасти сделаны из алюминиевого листа толщиной 0,5мм. Из фанеры толщиной 10мм вырезаны три круга. Круги были расчерчены по рисунку выше и были сделаны бороздки глубиной 3 мм для вставки лопастей. Крепление лопастей сделано на маленьких уголочках и стянуто на болтики. Дополнительно для прочности всей сборки фанерные диски стянуты шпильками по краям и в центре, получилось очень жёстко и прочно.

Размер получившегося ротора 75*160см, на материалы ротора потрачено примерно 3600 рублей.

Изготовление генератора.

В поисках информации на форумах оказалось многие люди делают генераторы сами и в этом нет ничего сложного. Решение было принято в пользу самодельного генератора на постоянных магнитах. За основу была взята классическая конструкция аксиального генератора на постоянных магнитах, сделанная на автомобильной ступице.

Первым делом были заказаны неодимовые магниты шайбы для этого генератора в количестве 32 шт размером 10*30мм. Пока шли магниты изготавливались другие детали генератора. Вычислив все размеры статора под ротор, который собран из двух тормозных дисков от автомобиля ВАЗ на ступице заднего колеса, были намотаны катушки.

Для намотки катушек сделан простенький ручной станочек. Количество катушек 12 по три на фазу, так-как генератор трехфазный. На дисках ротора будет по 16 магнитов, это соотношение 4/3 вместо 2/3, так генератор получится тихоходнее и мощнее.

Для намотки катушек сделан простой станочек.

На бумаге размечены места расположения катушек статора.

Для заливки статора смолой изготовлена форма из фанеры. Перед заливкой все катушки были спаяны в звезду, а провода выведены наружу по прорезанным канальцам.

Катушки статора перед заливкой.

Свеже залитый статор, перед заливкой на дно был постелен кружок из стеклосетки, и после укладки катушек и заливкой эпоксидной смолой поверх них был уложен второй кружок, это для дополнительной прочности. В смолу добавлен тальк для крепкости, от этого она белая.

Так-же смолой залиты и магниты на дисках.

А вот уже собранный генератор, основа тоже из фанеры.

После изготовления генератор сразу был покручен руками на предмет вольт-амперной характеристики. К нему был подключен мотоциклетный аккумулятор 12 вольт. К генератору была приделана ручка и смотря на секундную стрелку и вращая генератор были получены некоторые данные. На аккумулятор при 120 об/м получилось 15 вольт 3,5А, быстрее раскрутить рукой не позволяет сильное сопротивление генератора. Максимум в холостую на 240 об/м 43 вольта.

Электроника

Для генератора был собран диодный мост, который был упакован в корпус, а на корпусе были смонтированы два прибора это вольтметр и амперметр. Так-же знакомый электронщик спаял простенький контроллер для него. Принцип контроллера прост, при полном заряде аккумуляторов контроллер подключает дополнительную нагрузку, которая съедает все излишки энергии чтобы аккумуляторы не перезарядились.

Первый контроллер спаянный знакомым не совсем устраивал, по этому был спаян более надежный программный контроллер.

Установка ветрогенератора.

Для ветрогенератора был сделан мощный каркас из деревянных брусков 10*5 см. Для надежности опорные бруски были вкопаны в землю на 50 см, а так-же вся конструкция была дополнительно усилена растяжками, которые привязывались к уголкам вбитым в землю. Такая конструкция очень практична и быстро устанавливается, а так-же в изготовлении проще чем сварная. Поэтому было принято решение строить из дерева, а металл дорого и сварку некуда включать пока.

Вот уже готовый ветрогенератор.На этом фото привод генератора прямой, но в последствии был сделан мультипликатор для поднятия оборотов генератора.

Привод генератора ременной, передаточное соотношение можно менять заменой шкивов.

В последствии генератор был соединен с ротором через мультипликатор. В общем итоге ветрогенератор выдает 50 ватт на ветру 7-8 м/с, зарядка начинается на ветру 5 м/с, хотя начинает вращаться на ветре 2-3 м/с, но обороты слишком маленькие для зарядки аккумулятора.

Читайте также  Как правильно выбрать варочную панель электрическую?

В будущем планируется поднять ветрогенератор по выше и переработать некоторые узлы установки, а тск-же возможно изготовление нового более большого ротора.

Ротор дарье конструкция принцип работы

Войти

Авторизуясь в LiveJournal с помощью стороннего сервиса вы принимаете условия Пользовательского соглашения LiveJournal

  • Recent Entries
  • Archive
  • Friends
  • Profile
  • Memories

Prototype this по-русски — выпуск десятый. Автостарт для ротора Дарье.

В условиях глобального потепления использование альтернативных источников энергии является не только способом сократить вредные выбросы в атмосферу, но также методом, который позволяет использовать энергию разбушевавшейся атмосферы «в мирных целях». Поскольку изменения климата приводят, в числе прочего, к расширению зон сильных ветров — территории, на которых могут быть эффективно использованы ветрогенераторы, становятся все более обширными, а это делает ветроэнергетику все более привлекательной.

На сегодня существует два больших класса ветрогенераторов — быстроходные и медленноходные.

К медленноходным ветрогенераторам относятся всевозможные вариации на тему Савониуса — собственно сам Савониус:

Также к медленноходным относится лопастной ветряк типа «American Multiblade»:

и парусные ветряки

Преимущество медленноходных ветряков заключается в том, что они работаею не за счет скорости потока, а за счет его напора. Это позволяет им стартовать при гораздо более низких скоростях ветра, однако означает низкую скорость вращения вала отбора мощности, а значит — необходимость редуктора либо генератора специальной конструкции (многополюсный малооборотный).

Кроме того, с повышением скорости ветра очень быстро наступает момент, когда напор превышает прочность, и ветряк разрушается.

Быстроходные конструкции представлены классическими пропеллерными ветряками с малым числом лопастей

И ротором Дарье:

Преимущество быстроходных роторов заключаются в том, что они работают не от напора, а от скорости потока, при этом скорость движения лопасти в них превышает скорость самого потока, так как ротор разгоняется не под действием напора, а под действием аэродинамических сил, возникающих при обтекании лопасти потоком. Это позволяет уменьшить потери на передачу энергии на генератор, а также использовать более простые (а значит, гораздо более дешевые) генераторы. Кроме того, поскольку быстроходные генераторы отбирают энергию не с поверхности, а с ометаемой площади, они в разы легче медленноходных, а значит — потенциально дешевле.

У быстроходных генераторов существует только одна проблема — они очень плохо стартуют. Поскольку в неподвижном состоянии при обтекании лопастей потоком они отбирают энергию не с ометаемой площади, а с площади лопасти, и поскольку обтекание в этом случае происходит не в рабочем режиме (когда лопасть набегает на потом), а в форс-мажорном (когда поток набегает на лопасть, да еще и под неправильным углом) — энергии потока недостаточно для запуска такого генератора. А один из лучших вариантов — ротор Дарье — вообще сам не стартует, что приводит к монстрообразным конструкциям вроде:

где неправильная аэродинамическая форма лопасти приводит к падению КПД на рабочем режиме аж на 5% (зато есть автостарт) или

где в конструкцию введено центральное тело, повышающее сопротивление потоку.

В результате в процессе старта получается ситуация, в которой ветряк не может запуститься при той скорости ветра, на которой, набрав обороты, он уверенно может работать и давать мощность.

Заметим, что American Multiblade и геликоидный ротор достаточно сложны в производстве, первый — из-за большого количества лопастей и необходимости обеспечить аэродинамическую чистоту ротора при одновременных прочностных требованиях (все-таки от напора работаем, и нагрузки велики), второй — из-за сложной аэродинамической формы лопастей. Наболее просты в производстве Савониус, Угринский и Ленц, а также пропеллерный быстроход (теперь понятно, почему именно их используют в промышленных ВЭС?) и Дарье.

Если отвлечься от больших динамических нагрузок, испытываемых при работе ротором Дарье, его можно признать самой лучшей конструкцией, и вот почему:

1. Он быстроходен, а значит — способен работать с дешевыми электрогенераторами, дешевой механикой.
2. Стартовый режим Дарье крайне затруднен, в силу малой площади лопастей. А это значит, что будучи остановлен и поставлен на тормоз, он не станет сам раскручиваться во время слишком сильного ветра, а аэродинамические нагрузки на лопасти не будут чрезмерно высоки.
3. На единицу массы он ометает большую площадь, а значит в рабочем режиме имеет большую отдачу по мощности.
4. Ему не требуются механизмы поворота (как классическому «пропеллеру») и управления шагом (как на мощных пропеллерах) лопасти.

Можно ли усовершенствовать ротор Дарье таким образом, чтобы обеспечить нормальный автостарт без усложнения конструкции? Очевидное решение, а именно, объединение на одной оси Савониуса и Дарье, имеет ряд минусов. Конечно, напорный режим Савониуса способен начать раскрутку Дарье, что значительно уменьшает скорость ветра, при которой Дарье стартует. Однако при достижении быстроходности 1, когда Дарье начинает выходить на рабочий режим, Савониус начинает опережать поток, что приводит к торможению Дарье, а значит — снижению КПД всей связки. Кроме того, торможение Дарье роторов Савониуса приводит к повышению того порога скорости ветра, на котором Дарье начинает работать устойчиво, а значит — к ухудшению характеристик Дарье по рабочей скорости ветра.

Естественным решением является установка Савониуса (а еще лучше — Угринского) на одной оси с Дарье через муфту обратного хода, как передача звездочки на ведушем колесе велосипеда. В режиме старта Угринский (Савониус) передает момент на Дарье, раскручивая его. Как только Дарье начинает «брать» ветер, он обгоняет свой «стартер» и выходит на режим с максимальным КПД. А Савониус продолжает свое неспешное «эстонское» вращение.

Поскольку одним из преимуществ Дарье является отсутствие автостарта на тормозе от сильного ветра, что позволяет уберечь ветряк от аварии, муфта обратного хода должна передавать момент через разобщаемый вручную (или от привода по команде — это зависит от размера ветряка) фрикцион. Когда Дарье не нужен, фрикцион разобщается и автостарт отключается.

Учитывая тот факт, что Савониус не участвует в выработке энергии, а служит исключительно в качестве стартера, его размеры, а значит действующая на него ветровая нагрузка — существенно меньше рабочих для ветряка, что позволяет исполнить его достаточно прочным для того, чтобы противостоять ветровой нагрузке от слишком сильного ветра.

Заметим, что предлагаемое решение, в отличие от неполной лопасти или системы с центральным телом, обеспечивает управляемый автостарт. И хотя система

Выглядит наиболее простой и эффективной с точки зрения реализации автостарта Дарье, ее более низкий КПД в сумме с неуправляемым самозапуском делают ее неприменимой для ветряков большой мощности.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: