Соединение литиевых аккумуляторов в батарею - ELSTROIKOMPLEKT.RU

Соединение литиевых аккумуляторов в батарею

Соединение литиевых аккумуляторов в батарею

Можно, ли использовать элементы питания одинаковые по напряжению и типу (Li-ion) но разные по емкости, разных производителей?
Если нет, то почему? и можно ли (теоретически) исправить ситуацию специальным контроллером?
Как устроена защита от взрыва Li-Ion?

JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc

Последний раз редактировалось GarryBig Пт май 04, 2012 10:48:01, всего редактировалось 3 раз(а).

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Вебинар пройдет 16/09/2021 и будет посвящен особенностям работы высокопроизводительных микроконтроллеров из линеек STM32H7. На вебинаре разберем ключевые особенности линеек STM32H72/3 и проведем практическую работу с оценкой производительности с использованием ускорителей и кэш-буфера при чтении инструкций из внутренней и из зашифрованной внешней памяти. Для отображения результатов будет использоваться программная среда STM32CubeMonitor.

Ну мы и говорим про литиевые. Т.е. идентичность полная: емкость, напряжение, внутреннее сопротивление?

А можно неодинаковость элементов питания компенсировать электроникой?

TE Connectivity представила обновленную линейку соединителей серии Power Versa-Lock – надежное и герметичное решение, рассчитанное на ток до 15 А, в компактном корпусе. Корпус и аксессуары соединительной системы Power Versa-Lock выполнены из материала, соответствующего стандарту UL94-V0.

_________________
In theory, theory and practice are the same. In practice, they’re not.

Спасибо за заботу, я понимаю что аккумулятор опасен, смотрел видео на ютьюбе, как взрывается литий в воде, или как взрываются пробитые аккумуляторы, но мы же находимся в «Теории». Потому прошу оставить обсуждение последствий и целесообразность данного мероприятия, их можно будет потом обсудит в «практике», а оставим только саму возможность этих последствий.

На том же Ютюбе я смотрел ролик китайской компании (сейчас уже не вспомню названия) где показывалась огромная сборка цилиндрический литиевых аккумуляторов. Прямо во время работы сборки сотрудник протыкал один из аккумуляторов, он выгорал а остальные продолжали работать, далее он вкручивал саморез в другой аккумулятор, а сборка продолжала работать. только немного понижалось напряжение.

_________________
In theory, theory and practice are the same. In practice, they’re not.

А банки были разных производителей? Вы их емкость замеряли/сверяли? Большой разброс?

Я подумал, может если разброс будет небольшой, то одна банка просто подзарядит другую, и дальше они равномерно буду отдавать заряд?

Даже при большом разбросе из-за различий во внутреннем сопротивлении банки сами распределяют между собой ток разряда. Кто мощнее, то больше и отдаёт, социальная справедливость
Сильно разные по ёмкости ( в 2-3 раза) может и не имеет смысла в параллель ставить, всё равно они особо ничего не добавят, проще подобрать другой, близкий по емкости элемент.

Только ещё раз, нюанс — перед соединением я их всех заряжал до одинакового напряжения, чтобы не было уравнивающих токов. Соединять элементы сильно заряженные и сильно разряженные чревато. Это я к тому, что где-то видел идею-фикс дозаряжать акки в мобиле простым подключением другого элемента. Так вот это — неправильно и ни к чему хорошему не приведет. Даже если они и не перегреются, всё равно из-за превышения максимальных токов заряда-разряда долго служить не будут.

_________________
In theory, theory and practice are the same. In practice, they’re not.

Так, а если теоретически:
Напряжение полностью заряженного аккумулятора 4.2 В. Не зависимо от его емкости. Полностью разряженного — 2.7. Это напряжения при которых контроллер прекращает заряжать/отключает батарею.
Для наглядности возьмем аккумуляторы 2500 и 1250 mAh.
Если больший аккумулятор заряжен на 100% а меньший разряжен полностью. Соответственно больший аккумулятор будет заряжать меньший, причем сила тока будет неконтролируемая (они же запараллелены), а учитывая что внутреннее сопротивление Li-ion аккумулятора примерно 60-120 mOm (не уверен, я путаюсь в этих единицах), для большого аккумулятора это будет короткое замыкание? т.е. перегрев и возможно взрыв?

А если они изначально заряжены на 100-90%, то соответственно один аккумулятор подзарядит другой и они будут дружно работать в паре, заряжаясь и разряжаясь кратно своему объему?

_________________
In theory, theory and practice are the same. In practice, they’re not.

Ну вот, Вы меня обрадовали. Теперь подведем итоги:
Если взять 3 новых, исправных аккумулятора на 2500 + 1250 +1250, зарядить их до одинакового напряжения, «уравновесить» напряжение соединив их параллельно, например, через ресистор (чтобы вдруг не возникло больших токов). Потом капитально соединить параллельно и к контроллеру от аккумулятора на 2500, то получим аккумулятор на 5000 mAh. Который будет заряжаться, учитывая ограничитель в контроллере, в 2 раза дольше, чем на 2500 mAh.

В данном случае остается только один вопрос — как организовать тепловую защиту реализованную в контроллере, ведь она будет работать только для одной банки.

А если запараллелить три таких аккумулятора но каждый со своим «родным» контроллером?

Вообще я, наверно, покривил душой, сказав, что источники напряжения совсем нельзя подключать параллельно. Действительно, если взять несколько достаточно близких по характеристикам (идеально одинаковых не найти никогда), одинаково заряженных источника, соединить параллельно, то должно происходить что-то следующее.

Если при разряде один из источников разрядится сильнее, то за счёт чуть пониженного напряжения и чуть увеличенного внутреннего сопротивления ток его разряда ослабнет, распределившись на другие элементы. Это приведёт к выравниванию уровня разряда. В то же время, если по какой-то причине источник разрядится слабее, то ток его разряда возрастёт, и это тоже приведёт к выравниванию уровня разряда источников.

Что-то аналогичное, возможно, будет происходить и при заряде аккумуляторов. Однако, эти процессы могут приводить к эксплуатации аккумуляторов в чрезвычайно суровых условиях, выходящих за рамки установленные в даташитах, а это приведёт, в свою очередь, к ускоренному их износу или вообще мгновенному выходу из стоя. Так что надо быть очень внимательным.

Не совсем так. Это верно, если нагрузка постоянная. Тогда напряжения на аккумуляторах выровняются (за счёт распределения токов, и установления определённых внутренних сопротивлений и напряжений). Однако если нагрузка резко изменится, то это приведёт к тому, что аккумуляторам потребуется снова перераспределить токи, чтобы выровнять свое напряжения (учитывая внутреннее сопротивление и напряжение). Во время перераспределения через какие-то элементы будут течь существенно большие токи чем ранее. Кроме то, снизится КПД (особенно при полном отключении нагрузки, когда аккумуляторы будут перезаряжать сами себя). Происходить так будет от того, что аккумуляторы всё-таки не идеально одинаковые и кривые разряда у них идут не один-в-один на всех участках.

Отсюда три вывода: во-первых подбирать как можно более одинаковые аккумуляторы (строя для каждого кривые разряда), во-вторых не брать от батареи аккумуляторов ток больший, чем может обеспечить один аккумулятор, в-третьих желательна постоянная нагрузка.

Но ведь если я использую коммуникатор со стандартным аккумулятором на 2500, то использование батареи 2500 +1250+1250 никак не может вывести условия за рамки даташитов производителей. Большой аккумулятор будет отдавать намного меньше энергии, режимы работы ведь не изменились. А маленькие будут ему помогать, тем более их 2 одинаковых и они явно, между собой, распределят нагрузку поровну.
Опять же даже если взять два по 1250, в сумме они как раз 2500, как стандартный аккумулятор. Соответственно «потянут» этот коммуникатор без проблем. А тут еще и большой им в подмогу)))

позвольте внести свою лепту (это только моя теория, просьба не материть и не ругать) — а может, соединить, но только через диоды, а дальше к контроллеру?
вот только придется заряжать элементы по отдельности, ну или попробовать сконструировать «включатель заряда», который будет выполнен на резисторах (в свою очередь предварительно отрегулированных для того, чтобы каждой емкости отдавался свой ток для полного заряда за одинаковое время).
например, есть 2500мА, и 1250мА. минусовые клеймы соединяются. от плюсов подключаются диоды, чтобы ток не смог бегать от одной емкости к другой, дальше к контроллеру. А заряд нужно будет делать через один резистор к одной емкости, т.е кол-во емкостей = кол-во резисторов, номинал подбирается для ограничения тока заряда, чтобы не было ситуации в стиле — один перезарядил, второй недозарядил (к примеру, 1250мА полностью заряжается за 2 часа при 100мА, а 2500мА заряжается за 4 часа при том же токе заряда, т.е нужно чтобы все емкости заряжались 4 часа, а чтобы маленькие не перезарядить, им нужно ограничивать ток до такого, чтобы емкость маленькая заряжалась за то же время, что и большая, т.е, если брать 1250 и 2500мА, ток заряда для 1250 должен быть в два раза меньше, чем 2500мА. )
из минусов — городить 4 диода (2 к контроллеру от плюсовых, и 2 от ЗУ к плюсовым, 2 резистора на заряд емкостей, и все же не хочется обходить базовый контроллер заряда (т.е. если так емкости соединить, заряжать их в устройстве где торчит контроллер заряда нельзя))
или городить n-канальный контроллер заряда-разряда (n=количество емкостей), и контроллер должен знать кому сколько отдавать.

З.Ы. Есть подозрение, что если так сделать, ток всеравно будет бегать, но уже по минусовой клейме (тогда нужно будет и по минусу добавлять диоды)

Читайте также  Индукционный датчик принцип работы

гуру Li-on АКБ прошу не ругать. это всеголишь предположение.

_________________
Быстро, Качественно, Недорого.
Выбрать можно только 2 варианта.

а что будет если схему доработать путем замены диодов на сборки полевиков ?
тип как в китайском мобильном аккуме — полевик на заряд и на разряд

на практике, какие грабли могут ждать на этом пути ??
нужна батарейка с напругой около 17-21В,емкость от 5АЧ(аккумы для ЮПС не предлагать))

кстати если аккумы лежат в одной коробке(банки для ноутов, стандартная коробка на 50 шт) — можно ли считать, что они идентичны ?? т.е можно в ноут засунуть ?

_________________
вместо спасибо лучше накиньте кармы,а что чакры запылились

Один из наиболее частых вопросов — «Мне нужно больше мощности! У вас есть батарея, которая может дать мне больше вольт или больше ампер? » Ответ положительный. Все наши батареи могут быть подключены для получения большей мощности для работы более мощных двигателей (напряжение — v) или дополнительной емкости (ампер-часы — Ач). Это называется последовательным подключением батареи или параллельной литиевой батареей.

Последовательное подключение батареи — это способ увеличить напряжение батареи. Например, если вы последовательно подключите две из наших батарей на 12 В и 10 Ач, вы получите одну батарею на 24 В и 10 ампер-часов. Поскольку многие электродвигатели в байдарках, велосипедах и скутерах работают от 24 вольт, это обычный способ подключения батарей.

Подключение батареи к литиевым батареям Параллельное подключение — это способ увеличить время работы батареи в ампер-часах (т.е. сколько времени батарея будет работать от одной зарядки). Например, если вы подключите две из наших батарей 12 В, 10 Ач параллельно, вы получите одну батарею на 12 В и 20 ампер-часов. Поскольку многие небольшие электродвигатели, солнечные панели, жилые дома, лодки и большая часть бытовой электроники работают от 12 вольт, это обычный способ создания батареи, которая прослужит очень долго.

Последовательное соединение предполагает соединение 2 или более батарей вместе для увеличения напряжения аккумуляторной системы, но сохраняет тот же номинальный ток в ампер-часах. Помните, что при последовательном подключении каждая батарея должна иметь одинаковое напряжение и емкость, иначе вы можете повредить батарею. Чтобы подключить батареи последовательно, вы подключаете положительный полюс одной батареи к отрицательной клемме другой, пока не будет достигнуто желаемое напряжение. При последовательной зарядке аккумуляторов необходимо использовать зарядное устройство, соответствующее напряжению системы. Мы рекомендуем заряжать каждую батарею индивидуально с помощью зарядного устройства с несколькими банками, чтобы избежать дисбаланса между батареями.

Если вы думаете об электричестве как о воде, протекающей по системе труб, напряжение лучше всего рассматривать как давление воды, а также как метрику, с помощью которой мы можем измерить силу протекания электрического тока. Ампер — это размер трубы, по которой течет вода, и, следовательно, показатель, с помощью которого мы измеряем, сколько мощности мы можем выдать в данный момент. Ампер-часы в данном случае аналогий с водопроводом — это мера того, сколько галлонов воды проходит по вашим трубам с течением времени.

Я всегда находил это изображение (и многие подобные изображения в Интернете) полезным для объяснения электричества.

Основы

Батарейные блоки конструируются путем последовательного соединения нескольких ячеек; каждая ячейка добавляет свое напряжение к напряжению на клеммах батареи. Рисунок 1 Ниже показана типичная конфигурация стартерной батареи BSLBATT 13.2 В LiFePO4.

Батареи могут состоять из комбинации последовательного и параллельного подключения. Ячейки параллельно увеличили ток обработки; каждая ячейка добавляет к общей сумме ампер-часов (Ач) батареи. BSLBATT B-LFP12V 12AH является примером последовательной и параллельной конфигурации литиевых батарей. Конфигурация B-LFP12V 12AH, 13.2 В / 12.4 Ач, показана на Рисунок 2.

Более слабая ячейка в последовательно соединенных ячейках вызовет дисбаланс. Это особенно важно в последовательной конфигурации, потому что мощность батареи определяется мощностью самого слабого элемента (аналогично слабому звену в цепи). Слабый элемент может не выйти из строя сразу, но может быть разряжен (падение напряжения ниже безопасного уровня, 2.8 В на элемент) быстрее, чем сильный элемент при разрядке. При зарядке слабый элемент может заполниться раньше здорового и перезарядиться (напряжение превышает 3.9 В на элемент). В отличие от слабого звена в цепной аналогии, слабый элемент вызывает нагрузку на другие здоровые элементы в батарее. Элементы в групповых блоках должны быть согласованы, особенно при воздействии высоких зарядных и разрядных токов. Рисунок 3 ниже показан пример батареи со слабым элементом.

Система управления батареями (BMS) Защита ячеек

BMS непрерывно контролирует напряжение каждой ячейки. Если напряжение одной ячейки превышает другие, схемы BMS будут работать, чтобы снизить уровень заряда этой ячейки. Это гарантирует, что уровень заряда всех ячеек остается равным, даже при высоком разряде (> 100 Ампер) и токе заряда (> 10 Ампер).

Ячейка может быть необратимо повреждена, если перезарядить (перенапряжение) или разрядить (истощить) только один раз. BMS имеет схему для блокировки зарядки, если напряжение превышает 15.5 В (или если напряжение какой-либо ячейки превышает 3.9 В). BMS также отключает аккумулятор от нагрузки, если он разряжен до уровня менее 5% (состояние чрезмерной разрядки). Чрезмерно разряженная батарея обычно имеет напряжение менее 11.5 В (

Несколько батарей, подключенных последовательно и / или параллельно (каждая батарея со своей собственной BMS)

Батареи BSLBATT на 13.2 В могут использоваться последовательно или параллельно для достижения более высоких рабочих напряжений и / или емкости для вашего конкретного применения. Важно использовать батареи одной модели с одинаковым напряжением и емкостью (Ач) и никогда не смешивать батареи разного возраста.

Если не указано иное, батареи BSLBATT одобрены для использования до двух серий и или двух литиевых батарей, работающих параллельно, без дополнительной внешней электроники. Это ограничение применяется из-за того, что импеданс, емкость или скорость саморазряда между ячейками могут различаться. Ограничение допускает нормальные изменения в одной батарее без неблагоприятного воздействия на другую батарею.

Кроме того, ограничения и рабочие пределы допускают ненормальные условия, такие как слабый или неисправный элемент в одной батарее. Обратите внимание, что характеристики конкретной батареи отличаются, когда она используется в последовательном режиме. См. Раздел ниже «Максимальные пределы безопасной эксплуатации» для получения информации о номинальных характеристиках батареи.

Всегда предпочтительнее использовать одну батарею на 26.4 В вместо двух последовательно соединенных батарей на 13.2 В, поскольку одна батарея может внутренне контролировать каждую из 8 последовательно соединенных ячеек и обеспечивать сбалансированный уровень заряда всех ячеек.

Провода и соединители, используемые для создания параллельной группы батарей последовательно / литиевых батарей, должны быть рассчитаны на ожидаемые токи.

Не подключайте литиевые батареи серии BSLBATT к другим химическим батареям.

На изображении ниже два 12В батареи соединены последовательно, что превращает этот аккумуляторный блок в систему 24 В. Вы также можете видеть, что у банка все еще есть номинальная емкость 100 Ач.

Параллельное соединение предполагает соединение 2 или более батарей вместе для увеличения емкости батарейного блока в ампер-часах, но ваше напряжение остается неизменным. Для параллельного подключения батарей положительные клеммы соединяются вместе с помощью кабеля, а отрицательные клеммы соединяются вместе другим кабелем, пока вы не достигнете желаемой емкости.

Параллельное соединение литиевых батарей не предназначено для того, чтобы позволить вашим батареям питать что-либо с выходным напряжением, превышающим его стандартное выходное напряжение, а скорее увеличивает время, в течение которого они могут обеспечивать питание оборудования. Важно отметить, что при зарядке батарей, подключенных параллельно к литиевым батареям, увеличенная емкость в ампер-часах может потребовать более длительного времени зарядки.

В приведенном ниже примере у нас есть две батареи на 12 В, но вы видите, что ампер-часы увеличиваются до 200 Ач.

Теперь мы подходим к вопросу: «Могут ли батареи BSLBATT подключаться последовательно или параллельно?»

Стандартная линейка продуктов: наши стандартные литиевые батареи могут быть подключены последовательно или параллельно в зависимости от того, что вы пытаетесь выполнить в своем конкретном приложении. BSLBATT В технических данных указано количество батарей, которые могут быть подключены последовательно в зависимости от модели. Обычно мы рекомендуем для нашего стандартного продукта не более 4 параллельно подключенных батарей, однако могут быть исключения, которые позволяют использовать больше в зависимости от вашего приложения.

Важно понимать разницу между параллельной и последовательной конфигурациями и их влияние на производительность вашего блока батарей. Независимо от того, ищете ли вы увеличения напряжения или емкости в ампер-часах, знание этих двух конфигураций чрезвычайно важно для максимального продления срока службы литиевой батареи и общей производительности.

У вас больше вопросов?
Посетите наш Часто задаваемые вопросы страницу с наиболее часто задаваемыми вопросами о литиевых батареях.

Готовы приобрести следующий аккумуляторный блок?
Ознакомьтесь с нашей полной линейкой литиевых батарей.

Перевод шуруповёрта на литиевые аккумуляторы (с Ni-Cd на Li-Ion)

Неизбежное наступило – аккумуляторы в моём стареньком Hitachi DS 12DVF3 окончательно сдохли. Отвратительно держать заряд они стали уже очень давно, но для мелких бытовых нужд имеющейся ёмкости хватало, поэтому я никогда и не думал над решением этой проблемы. До того момента, когда мне понадобилось просверлить отверстие в кухонной мойке из нержавейки, на что у меня ушло минут сорок! На одно отверстие! Один аккумулятор раскачать вообще не удалось, а другой так и работал, двадцать секунд крутит, около десяти минут заряжается. Вот тут то я и понял, что пришло время подарить новую жизнь моему любимому инструменту.
Понятно, что для начала необходимо было немного ознакомиться с теорией, чтобы понять, что вообще мне предстоит сделать. Конечно, тема эта совсем не новая и переводом шуруповёртов на литий занимаются все, кому не лень. Но каждый делает это по своему в зависимости от своей образованности, количества лени и понятия о красоте. Мне же нужно было, чтоб с технической стороны всё было сделано абсолютно правильно, чтоб снаружи выглядело не страшно и чтоб аккумуляторами можно было удобно пользоваться. Перечитав и пересмотрев огромное количество материала, я взял за основу проект от AlexGyver.

Читайте также  Сопротивление изоляции кабеля 10 кв норма

Определившись с необходимыми элементами, я полез на Ali тратить деньги. Литиевые аккумуляторы заказал с уже наваренными никелевыми пластинами, чтоб не мучить пайкой ни себя, ни их. Оказалось, что доставляются аккумуляторы действительно долго и, пока я ждал одних из Китая, купил в местном магазине ещё и другие, но уже без пластинок, ведь у меня два корпуса для переделки. Спустя полтора месяца после заказа, я наконец-то свои посылки получил и уже можно было приступать к работе. Для начала разбираю один старый корпус и знакомлюсь с его содержимым.

Тут надо аккуратно отломать верхнюю контактную площадочку, она будет необходима позднее. Ещё понадобятся никелевые перемычки для припаивания к аккумуляторам второго блока, поэтому этот хлам отодвигаю пока в сторону. Далее примеряю новые компоненты, чтоб понять фронт предстоящих работ.

Пока готовился, проверил одну банку фирмы VariCore на соответствие заявленным характеристикам, ведь от китайцев можно всякого ожидать. Каково же было моё удивление, когда прибор выдал окончательное значение ёмкости аккумулятора: 2892 мАч вместо 3000! С учётом всевозможных погрешностей просто отличный результат!

Места под три банки 18650 и плату BMS в штатном корпусе аккумулятора совсем мало, поэтому было принято волевое решение избавляться от защёлки и удалить изнутри все лишние пластиковые элементы.

Как оказалось позднее, решение правильное. Корпус отлично держится и без замка, поскольку внутри самого шуруповёрта стоят очень мощные подпружиненные зажимные пластины, да и сам новый аккумулятор становится несколько легче, чем старый никель-кадмиевый. Я видел в инете вариант размещения литиевых банок и такой же платы BMS без удаления защёлки, но мне не понравилось как всё это выглядело и от такой компоновки я отказался. Но в моём случае просто избавиться от рёбер внутри корпуса было недостаточно, по ширине три банки 18650 всё-равно не влезают, пришлось немного стачивать крепёжные направляющие саморезов.

Без индикатора оставшегося заряда было бы совсем уныло и несовременно, поэтому беру вольтметр и припаиваю к нему тактовую кнопку с удлинённым жалом (13 мм)

Напильником и острым канцелярским ножом делаю в корпусе под него посадочное место и не сильно аккуратно, но зато очень надёжно вклеиваю его на «горячие сопли».

Такая вот симпатичная мордочка вырисовывается

После всего этого баловства начинается самый ответственный этап — сборка энергетического блока :) При наличии на литиевых банках приваренных электродов, это дело не составляет особого труда.

Как всегда на высоте себя показал флюс Amtech NC-559, вернее его отличная китайская копия.

Многие говорят, что аккумуляторы без кислоты не спаять. Паяльная кислота у меня тоже есть, но я решил попробовать свой любимый флюс в новых для него условиях и даже тут получилось отлично. Единственное, пришлось площадку под пайку пошкрябать ножом, иначе припой очень неуверенно ложился, что могло бы привести к катастрофическому перегреву литиевой банки.
Получилась вот такая аккуратная сборка, на которую я наклеил две полоски двухстороннего скотча для крепления платы BMS.

В том же месте, где я брал литиевые аккумуляторы, я купил толстый силовой провод в силиконовом изоляторе. Удовольствие не из дешёвых, но очень хотелось мощи и гибкости, поэтому тут экономить не стал.
С огромным нетерпением припаял донышко с вольтметром и принялся тестировать полуфабрикат :)

На удивление точные показания давал вольтметр, я его даже калибровать не стал.
Итак, две части будущего обновлённого аккумулятора соединены, осталось дело за малым — подготовить к монтажу последнюю третью.
Аккуратно отломанные контакты я закрепляю на контактной площадке шикарной пятиминутной «эпоксидкой». Наверное, смысла так делать особого небыло, ведь контакты подожмутся саморезом при окончательной сборке, но мне так будет спокойней.

После высыхания сверлю отверстия. Под мои саморезы получилось сверлом 2мм в контактной площадке и 3мм в крышке с последующем зенкованием 6мм сверлом, чтоб головка самореза была заподлицо с поверхностью.

Последние шаги перед окончательной сборкой очень важны. Нужно всё максимально заизолировать и аккуратно проложить все провода.

Когда всё сто раз перепроверено, можно скручивать.

Попробовал в работе новый аккумулятор. Шикарноооо! Крутит шустро, нагрузку держит, на предпоследнем делении усилий трещотка чётко срабатывает. Чего ещё желать?! Разве что второй такой же! Делал его как говорится «по горячим следам», или «не отходя от кассы», или «куй железо…» и так далее, пока ещё весь инструмент не был убран. Процесс, естественно, абсолютно такой же, кроме соединения банок в сборку. Тут как раз понадобились никелевые пластины со старых аккумуляторов, ведь второй комплект банок у меня без приваренных электродов. Фото не делал, заработался, но процесс простой, только требует повышенной аккуратности и 440°С на паяльной станции.

Тут можно заметить несколько другой дисплей-вольтметр. Он предназначен специально для работы с платой балансировки 3S, то есть максимальный заряд (четыре деления) он покажет при достижении 12.1В, три деления при 11.4В, два при 10.9В, одно при 10.3В. Более разряжать литиевую сборку из трёх 18650 не рекомендуется и он просто погасит все деления и останется светиться только красная рамка. Очень интересный такой дисплейчик.
Старое зарядное устройство для работы с литием не подходит, поэтому я в Китае заказал новое, с подходящими параметрами. На верхней крышке у него светодиод, который горит красным когда идёт заряд, и зелёным, когда батарея заряжена.

У данного зарядного устройства есть очень специфичная особенность. Оно пищит при зарядке! :) В отзывах многие пишут, что это непотребство какое-то, а мне вроде нормально. Ночью во время сна я пользоваться им не планирую, а в других условиях всегда знаешь, если пропал писк, значит аккумулятор зарядился!

Вот и всё. Я снова узнал много нового, обрёл опыт создания литиевых сборок и овладел принципами работы с паяльной станцией на экстремальных температурах.
Многие, посмотрев на бюджет проделанных работ, скажут, что на эти деньги можно было бы купить в Китае новый хороший шуруповёрт с правильным питанием. Абсолютно с ними соглашусь. Однако я получил огромное удовольствие от работы и приобрёл бесценный опыт, а это важнее банальной покупки новой вещи. Тем более, он неимоверно удобно лежит в руке, ну и дорог мне как память!

Бюджет:
Вольтметр 0,28” — 58р. ссылка
Дисплей-вольтметр — 67р. ссылка
Зарядное устройство — 395р. ссылка
Разъём питания ВС099 (5,5*2,1) — 2шт.*40р.=80р. ссылка
Плата BMS 3S — 2шт.*117р.=234р. ссылка
Аккумулятор VariCore 18650 3000мАч 30А — 3шт.*215р.=645р. ссылка
Аккумулятор Lg HE4 18650 2500мАч 25А — 3шт.*280р.=840р. ссылка
Провод 16AWG 1 метр — 2шт.*75р.=150р. ссылка
Тактовая кнопка KFC-A06-13H — 2шт.*3,20р.=6,4р. ссылка
Итого на два аккумулятора: 2475,4р.

Как собрать аккумуляторную батарею своими руками (тонкости и советы)



В этой статье мастер-самодельщик проведет нас по всем этапам сборки батареи, от выбора материала до окончательной сборки. Радиоуправляемые игрушки, батареи ноутбуков, медицинские приборы, электровелосипеды и даже электромобили используют аккумуляторы в основе которых элемент питания 18650.

Батарея 18650 (18*65 мм) — это размер литий-ионной батареи. Для сравнения обычные батарейки формата АА имею размер 14*50 мм. Конкретно эту сборку автор делал для замены свинцово-кислотного аккумулятора в изготовленной им ранее самоделки.

Инструменты и материалы:
— Аккумуляторы 18650 ;
— BMS (Battery Management System) ;
— Никилиевая полоса ;
— Индикатор уровня заряда батареи ;
-Выключатель;
-Разъем;
— Держатель аккумуляторной батареи 18650 ;
-Винты 3M x 10 мм;
-Аппарат точечной контактной сварки;
-3D-принтер;
-Стриппер (инструмент для снятия изоляции);
-Фен;
-Мультиметр;
-Зарядное устройство для литий-ионных батарей;
-Защитные очки;
-Диэлектрические перчатки;

Некоторые инструменты можно заменить на более доступные.

Шаг первый: выбор аккумуляторов
Первым делом нужно выбрать правильные аккумуляторы. На рынке представлены разные батареи от $ 1 до $ 10. По утверждению автора лучшие аккумуляторы фирм Panasonic , Samsung , Sanyo и LG. По цене они дороже других, но зарекомендовали себя хорошим качеством и характеристиками.
Не советует автор покупать батареи с названиями Ultrafire, Surefire и Trustfire. Это батареи которые не прошли контроль качества на заводе и были куплены по бросовой цене и перепакованы под новым названием. Как правило в таких батареях отсутствует заявленная емкость и есть риск возгорания при заряде-разряде.
Для своей самоделки мастер использовал аккумуляторы фирмы Panasonic емкостью 3400 мАч.

Читайте также  Какие бывают электрические плиты?





Шаг пятый: расчет батарей
Для проекта мастеру нужна батарея с напряжением 11,1 В и емкостью 17000 мАч.
Емкость батареи 18650 составляет 3400 мАч. При параллельном соединении пяти аккумуляторов получаем емкость равную 17000 мАч. Обозначают такое соединение Р, в данном случае 5Р

Одна батарея имеет напряжения 3,7 В. Что бы получить 11,1 В нужно соединить последовательно три батареи. Обозначение S, в данном случае 3S.

Итак для получения нужных параметров нужно три секции, состоящих каждая из пяти параллельно соединенных аккумуляторов, соединить последовательно. Пакет 3S5P.


Сверху устанавливает вторую ячейку.

Шаг седьмой: сварка
Отрезает четыре никелевые полосы, для параллельного соединение, с запасом в 10 мм. Отрезает десять полосок для последовательного соединения.

Укладывает длинную полоску на + контакты первой (при переворачивании она так и останется первой) параллельной ячейки 5Р. Приваривает полосу. Приваривает полоски одним концом к + третей ячейки другим к — второй. Приваривает длинную полосу к + третей ячейки (поверх пластинок). Переворачивает блок. Приваривает пластинки с обратной стороны учитывая, что теперь параллельно соединяем третью, а параллельно-последовательно первую и вторую секции (учитывая что ее перевернули).




Шаг восьмой: BMS (Battery Management System)
Сначала немного разберемся что такое BMS.
BMS (Battery Management System) – это электронная плата, которая ставится на аккумуляторную батарею с целью контроля процесса её заряда/разряда, мониторинга состояния аккумулятора и его элементов, контроля температуры, количества циклов заряда/разряда, защиты составных аккумуляторной батареи. Система управления и балансировки обеспечивает индивидуальный контроль напряжения и сопротивления каждого элемента аккумулятора, распределяет токи между составными аккумуляторной батареи во время зарядного процесса, контролирует ток разряда, определяет потерю емкости от дисбаланса, гарантирует безопасное подключение/отключение нагрузки.

На основе получаемых данных BMS выполняет балансировку заряда ячеек, защищает аккумулятор от короткого замыкания, перегрузки по току, перезаряда, переразряда (высокого и чрезмерно низкого напряжения каждой ячейки), перегрева и переохлаждения. Функциональность BMS позволяет не только улучшить режим эксплуатации аккумуляторных батарей, но и максимально увеличить срок их службы.

Важными параметрами платы является количество ячеек в ряду, в данном случае 3S, и максимальный разрядный ток, в данном случае 25 А. Для данного проекта мастер использовал плату со следующими параметрами:
Модель: HX-3S-FL25A-A
Диапазон перенапряжения: 4,25

4,35 В ± 0,05 В
Диапазон разрядного напряжения: 2,3

3,0 В ± 0,05 В
Максимальный рабочий ток: 0

25 А
Рабочая температура: -40 ℃

+ 50 ℃
Припаивает плату к концам батареи согласно схеме.

ОДНОВРЕМЕННАЯ ЗАРЯДКА НЕСКОЛЬКИХ АККУМУЛЯТОРОВ

Сейчас всё большую популярность набирают литиевые аккумуляторы. Особенно пальчиковые, типа 18650, на 3,7 В 3000 мА. Ни сколько не сомневаюсь, что ещё 3-5 лет, и они полностью вытеснят никель-кадмиевые. Правда остаётся открытым вопрос про их зарядку. Если со старыми АКБ всё понятно — собирай в батарею и через резистор к любому подходящему блоку питания, то тут такой фокус не проходит. Но как же тогда зарядить сразу несколько штук, не используя дорогие фирменные балансировочные ЗУ?

Теория

Для последовательного соединения аккумуляторов, обычно к плюсу электрической схемы подключают положительную клемму первого последовательное соединение аккумуляторов аккумулятора. К его отрицательной клемме подключают положительную клемму второго аккумулятора и т.д. Отрицательную клемму последнего аккумулятора подключают к минусу блока. Получившаяся при последовательном соединении аккумуляторная батарея имеет ту же емкость, что и у одиночного аккумулятора, а напряжение такой батареи равно сумме напряжений входящих в нее аккумуляторов. Значит если аккумуляторы имеют одинаковые напряжения, то напряжение батареи равно напряжению одного аккумулятора, умноженному на количество аккумуляторов в аккумуляторной батарее.

Энергия, накопленная в АКБ, равна сумме энергий отдельных аккумуляторов (произведению энергий отдельных аккумуляторов, если аккумуляторы одинаковые), независимо от того, как соединены аккумуляторы — параллельно или последовательно.

Литий-ионные батареи просто подключить к БП нельзя — нужно выравнивание зарядных токов на каждом элементе (банке). Балансировку проводят при зарядке аккумулятора, когда энергии много и её можно сильно не экономить и поэтому без особых потерь можно воспользоваться пассивным рассеиванием «лишнего» электричества.

Никель-кадмиевые АКБ не требуют дополнительных систем, поскольку каждое звено при достижении его максимального напряжения заряда перестает принимать энергию. Признаки полного заряда Ni-Cd — это увеличение напряжения до определенного значения, а затем его падение на несколько десятков милливольт, и повышение температуры — так что лишняя энергия сразу превращается в тепло.

У литиевых аккумуляторов наоборот. Разрядка до низких напряжений вызывает деградацию химии и необратимое повреждение элемнта, с ростом внутреннего сопротивления. В общем они не защищены от перезаряда, и можно потратить много лишней энергии, резко сокращая тем самым время их службы.

Если соединить несколько литиевых элементов в ряд и запитать через зажимы на обоих концах блока, то мы не можем контролировать заряд отдельных элементов. Достаточно того, что одно из них будет иметь несколько более высокое сопротивление или чуть меньшую емкость, и это звено гораздо быстрее достигнет напряжения заряда 4,2 В, в то время как остальные будут еще иметь 4,1 В. И когда напряжение всего пакета достигнет напряжение заряда, может оказаться, что эти слабые звенья заряжены до 4,3 Вольт или даже больше. С каждым таким циклом будет происходить ухудшение параметров. К тому же Li-Ion является неустойчивым и при перегрузке может достичь высокой температуры, а, следовательно, взорваться.

Чаще всего на выходе источника зарядного напряжения ставится устройство, называемое «балансиром». Простейший тип балансира — это ограничитель напряжения. Он представляет из себя компаратор, сравнивающий напряжение на банке Li-Ion с пороговым значением 4,20 В. По достижении этого значения приоткрывается мощный ключ-транзистор, включенный параллельно элементу, пропускающий через себя большую часть тока заряда и превращающий энергию в тепло. На долю самой банки при этом достается крайне малая часть тока, что, практически, останавливает ее заряд, давая дозарядиться соседним. Выравнивание напряжений на элементах батареи с таким балансиром происходит только в конце заряда по достижении элементами порогового значения.

Упрощённая схема балансира для АКБ

Вот упрощённая схема балансира тока на базе TL431. Резисторы R1 и R2 устанавливают напряжение 4,20 Вольт, или можно выбрать другие, в зависимости от типа батареи. Эталонное напряжение для регулятора снимается с транзистора, и уже на границе 4,20 В система начнет приоткрывать транзистор, чтобы не допустить превышения заданного напряжения. Минимальное увеличение напряжения вызовет очень быстрый рост тока транзистора. Во время тестов, уже при 4,22 В (превышение на 20 мВ), ток составил более 1 А.

Сюда подходит в принципе любой транзистор PNP, работающий в диапазоне напряжений и токов, которые нас интересуют. Если батареи должны быть заряжены током 500 мА. Расчет его мощности прост: 4,20 В х 0,5 А = 2,1 В, и столько должен потерять транзистор, что вероятно, потребует небольшого охлаждения. Для зарядного тока 1 А или больше мощность потерь, соответственно, растет, и все труднее будет избавиться от тепла. Во время теста были проверены несколько разных транзисторов, в частности BD244C, 2N6491 и A1535A — все они ведут себя одинаково.

Делитель напряжения R1 и R2 следует подобрать так, чтобы получить нужное напряжение ограничения. Для удобства вот несколько значений после применения которых, мы получим следующие результаты:

  • R1 + R2 = Vo
  • 22K + 33K = 4,166 В
  • 15К + 22K = 4,204 В
  • 47K + 68K = 4,227 В
  • 27K + 39K = 4,230 В
  • 39K + 56K = 4,241 В
  • 33K + 47K = 4,255 В

Схема устройства для балансировки аккумуляторов

Это аналог мощного стабилитрона, нагруженного на низкоомную нагрузку, роль которой здесь выполняют диоды D2. D5. Микросхема D1 измеряет напряжение на плюсе и минусе аккумулятора и если оно поднимается выше порога, открывает мощный транзистор, пропуская через себя весь ток от ЗУ. Как соединяется всё это вместе и к блоку питания — смотрите далее.

Блоки получаются действительно маленькие, и вы можете смело устанавливать их сразу на элементе. Следует только иметь в виду, что на корпусе транзистора возникает потенциал отрицательного полюса батареи, и вы должны быть осторожны при установке систем общего радиатора — надо использовать изоляцию корпусов транзисторов друг от друга.

Испытания

Сразу 6 штук балансировочных блоков понадобились для одновременной зарядки 6 аккумуляторов 18650. Элементы видны на фото ниже.

Все элементы зарядились ровно до 4,20 вольта (напряжение были выставлены потенциометрами), а транзисторы стали горячие, хотя и обошлось без дополнительного охлаждения — зарядка током 500 мА. Таким образом, можно смело рекомендовать данный метод для одновременного заряда нескольких литиевых аккумуляторов от общего источника напряжения.

Форум по обсуждению материала ОДНОВРЕМЕННАЯ ЗАРЯДКА НЕСКОЛЬКИХ АККУМУЛЯТОРОВ

Электрофорез «Поток-1» — схема, инструкция и самостоятельное изготовление медицинского прибора.

Классический фонарик со встроенным зарядным устройством можно неплохо улучшить, добавив пару микросхем и 18650 АКБ.

Схема гитарного комбо-усилителя с блоком эффектов на базе микросхем TDA2052, PT2399 и TL072.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: