Соединение полумуфт насоса и электродвигателя - ELSTROIKOMPLEKT.RU

Соединение полумуфт насоса и электродвигателя

Центровка насосного агрегата и соединение полумуфт Текст научной статьи по специальности « Механика и машиностроение»

Аннотация научной статьи по механике и машиностроению, автор научной работы — Хисматуллин Р.Ф., Хайдарова А.Ф.

В данной статье рассматривается центровка питательного насоса и соединение полумуфт .

Похожие темы научных работ по механике и машиностроению , автор научной работы — Хисматуллин Р.Ф., Хайдарова А.Ф.

Текст научной работы на тему «Центровка насосного агрегата и соединение полумуфт»

задвижки. После регулировки задвижку опломбировать[6, c. 8]..

Все подготовительные работы по пуску электродвигателей главного насоса и вспомогательных электронасосов должны быть проведены при рассоединенных полумуфтах.

Для проверки направления вращения электродвигателя его ротор включается на 1 с. Обкатка электродвигателя должна производиться до тех пор, пока не установится нормальная температура подшипников (не более 60 °С), но не менее 8 ч. Вибрация подшипников электродвигателей не должна превышать 0,05 мм.

Для агрегата с гидромуфтой соединить зубчатую муфту «электродвигатель-гидромуфта» и произвести пробный пуск с целью оценки качества монтажа и центровки гидромуфты с электродвигателем. Эти работы проводить в соответствии с инструкцией по эксплуатации гидромуфты.

Разъединение и соединение полумуфт разрешается производить только при разобранной схеме питания электродвигателей. Перед опробованием агрегатов на муфты должны быть надеты и закреплены защитные кожухи.

Персонал, принимающий участие в пуске, не должен находиться против муфт. При собранных муфтах и собранной электрической схеме производить какие-либо работы на агрегатах насосной установки категорически воспрещается.

Список использованной литературы: 1.Преобразование энергии и тепловые насосы. Багаутдинов И.З., Кувшинов Н.Е. Инновационная наука. 2016. № 3-3. С. 37-39.

2.Общие сведения о работе теплового насоса. Багаутдинов И.З., Кувшинов Н.Е. Инновационная наука. 2016. № 3-3. С. 39-40.

3.Определение предельных эффективных конструктивных параметров и технических характеристик обратимой электрической машины возвратно-Поступательного Действия. Копылов А.М., Ившин И.В., Сафин А.Р., Гибадуллин Р.Р., Мисбахов Р.Ш. Энергетика Татарстана. 2015.№4(40). С.75-81

4. Обоснование рациональной модели тележки трамвая на основе параллельного моделирования в среде matlab/simulink и cad, cae — системе catia v5. Сафин А.Р., Гуреев В.М., Мисбахов Р.Ш. Электроника и электрооборудование транспорта. 2015.№ 5-6. С.28-32.

5. Numerical studies into hydrodynamics and heat exchange in heat exchangers using helical square and oval tubes. Misbakhov R.S., Moskalenko N.I., Bagautdinov I.Z.F., Gureev V.M., Ermakov A.M. Biosciences biotechnology research asia. 2015. Т12. С. 719-724.

6. Моделирование системы охлаждения с парожидкостной компрессионной установкой. Карелин Д.Л., Гуреев В.М., Мулюкин В.Л. Вестник казанского государственного технического университета им. А.н. туполева. 2015.Т71. №5. С. 5-10.

© Хисматуллин Р.Ф., Хайдарова А.Ф. 2017

Инженер научно-исследовательской лаборатории «Физико-химических процессов в энергетики »

Младший научный сотрудник управления научно-исследовательских работ Казанский государственный энергетический университет

г. Казань, Российская Федерация

ЦЕНТРОВКА НАСОСНОГО АГРЕГАТА И СОЕДИНЕНИЕ ПОЛУМУФТ

В данной статье рассматривается центровка питательного насоса и соединение полумуфт.

Центровка, зазор, полумуфта.

Центровка должна производиться при помощи приспособления (рис. 1), укрепляемого на втулках зубчатых муфт[1, с. 40].. Приспособление устанавливается так, чтобы при вращении одного ротора относительно другого не было задеваний. Приспособление должно быть жестким и не должно пружинить при замерах. Обе полумуфты совмещать по монтажным меткам и поворачивать одновременно, чтобы исключить ошибки, которые могут возникнуть из-за неточности изготовления или насадки полумуфт на валы[2, с.40 ]. При замерах торцовых зазоров помимо щупа рекомендуется пользоваться мерной плиткой. Радиальные и торцовые зазоры при центровке измерять при исходном положении 0° и последующих положениях после одновременных поворотах роторов насоса и электродвигателя на 90, 180 и 270° в направлении вращения ротора при работе насос[3, с. 76]. При каждом положении полумуфт произвести один замер радиального зазора и два замера торцовых зазоров (сверху и снизу или справа и слева) между полумуфтами.

Для контроля правильности измерений после четырех замеров необходимо вновь установить полумуфты в первоначальное положение (0°), результаты повторных измерений в этом положении должны совпадать с первоначальными. Если данные контрольного замера не совпадают с первоначальными, следует найти причину отклонения и устранить ее.

Правильность измерения можно проверить, сопоставив суммы результатов, полученных при измерении противоположных сторон муфты; эти суммы должны быть равны между собой. Допускаемое отклонение не должно превышать 0,02 мм. При большем отклонении нужно найти и устранить причину неточности и повторить замеры зазоров во всех положениях.

Результирующая замеров зазоров по торцу в каждой из четырех точек окружности получается путем определения средней арифметической величины замеров по торцу полумуфт в каждом положении роторов сверху, снизу, справа и слева[4, с. 28]. Величину полученных замеров по торцу и по окружности привести к нулю путем вычитания из нее величины наименьшего зазора. Центровка насосного агрегата считается удовлетворительной, если разность величин замеров для насосов без гидромуфты не превышает 0,05 мм по окружности и 0,03 мм по торцу. При центровке агрегата с гидромуфтой следует учесть, что ось гидромуфты при неработающем насосе должна лежать на 0,15 мм ниже осей электродвигателя и насоса, поэтому разность величин замеров по окружности должна быть в пределах 0,32 — 0,27 мм[5, с. 720]. В случае неудовлетворительных результатов центровки и необходимости перемещения агрегата в горизонтальной и вертикальной плоскостях величины перемещений определить по нижеследующим формулам (приведенные обозначения соответствуют обозначениям на рис. 2

Рисунок 1 — Схема записи замеров при центровке

Рисунок 2 — Положение роторов до исправления центровки

После подсоединения трубопроводов центровку необходимо снова проверить и убедиться в том, что смещения насоса не произошло.

Полумуфты соединить после опробования электродвигателя на холостом ходу[6, c. 8]. Проверить установку маслоподводящих трубок зубчатых муфт и обеспечить нормальную смазку зубьев. Перед соединением полумуфт зубчатые обоймы надеть на зубчатые втулки по клеймам, фиксирующим их взаимное расположение. Клейма нанесены на торце зуба со стороны разъема муфты. Сочленение полумуфт смежных роторов выполнить по маркировке, нанесенной на фланцах обойм у отверстий. Аналогичная маркировка выполнена на болтах и гайках. Соединенные обоймы должны легко перемещаться вдоль зубчатых втулок на величину осевых зазоров, указанных в заводских чертежах. Для предотвращения самоотвинчивания гайки болтовых соединений зубчатых муфт закрепить шайбами из листовой стали. По окончании сборки и соединения зубчатых муфт надеть на них и закрепить защитные кожухи[7, c. 72]. Во время работы соединительная муфта не должна цеплять за защитный кожух.

Список использованной литературы:

1.Энергетическая оценка теплового насоса. Багаутдинов И.З., Кувшинов Н.Е. Инновационная наука. 2016. № 3-3. С. 40-42.

2.Общие сведения о работе теплового насоса. Багаутдинов И.З., Кувшинов Н.Е. Инновационная наука. 2016. № 3-3. С. 39-40.

3.Определение предельных эффективных конструктивных параметров и технических характеристик обратимой электрической машины возвратно-Поступательного Действия. Копылов А.М., Ившин И.В., Сафин А.Р., Гибадуллин Р.Р., Мисбахов Р.Ш. Энергетика Татарстана. 2015.№4(40). С.75-81

4. Обоснование рациональной модели тележки трамвая на основе параллельного моделирования в среде matlab/simulink и cad, cae — системе catia v5. Сафин А.Р., Гуреев В.М., Мисбахов Р.Ш. Электроника и электрооборудование транспорта. 2015.№ 5-6. С.28-32.

5. Numerical studies into hydrodynamics and heat exchange in heat exchangers using helical square and oval tubes. Misbakhov R.S., Moskalenko N.I., Bagautdinov I.Z.F., Gureev V.M., Ermakov A.M. Biosciences biotechnology research asia. 2015. Т12. С. 719-724.

6. Моделирование системы охлаждения с парожидкостной компрессионной установкой. Карелин Д.Л., Гуреев В.М., Мулюкин В.Л. Вестник казанского государственного технического университета им. А.Н. Туполева. 2015.Т71. №5. С. 5-10.

7. Снижение выхлопа оксидов азота транспортного дизеля за счет применения рециркуляции отработавших газов. Хайруллин А.Х., Гуреев В.М., Гордеев А.В., Петров А.В. вестник казанского государственного технического университета им. А.Н. Туполева. 2015.Т71. С. 68-72.

© Хисматуллин Р.Ф., Хайдарова А.Ф., 2017

_МЕЖДУНАРОДНЫЙ НАУЧНЫЙ ЖУРНАЛ «ИННОВАЦИОННАЯ НАУКА» №02-1/2017 ISSN 2410-6070_

К.т.н., доцент кафедры «Технологии обработки материалов»

МГТУ им. Н.Э. Баумана В.Ф. Алешин

К.т.н., доцент кафедры «Технологии обработки материалов»

МГТУ им. Н.Э. Баумана г. Москва, Российская Федерация С.А. Жаворонков

Студент кафедры «Оборудование и технологии прокатки»

МГТУ им. Н.Э. Баумана г. Москва, Российская Федерация

ПОЛУЧЕНИЕ МАТЕРИАЛОВ С ПОВЫШЕННЫМИ МЕХАНИЧЕСКИМИ СВОЙСТВАМИ СОВРЕМЕННЫМИ И ПЕРСПЕКТИВНЫМИ МЕТОДАМИ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ

В качестве перспектив развития методов деформационного наноструктурирования материалов предлагается использование соответствующих инструментов с регулярной микрогеометрией воздействующих поверхностей и различных технологий применения инновационных металлоплакирующих смазок, реализующих фундаментальное научное открытие «эффект безызносности при трении Гаркунова-Крагельского»

Наноструктура, деформация, регулярный микрорельеф, эффект безызносности при трении.

В настоящее время значительный научный интерес к наноструктурным материалам обусловлен тем, что их механические, физические и функциональные свойства существенно отличаются от свойств крупнозернистых аналогов. Особенности структуры таких материалов (размер зерен, доля большеугловых границ) определяются методами получения и оказывают существенное влияние на их свойства [1].

Эффективным путем получения наноструктурных материалов является использование современных методов пластической деформации. Для осуществления больших пластических деформаций в принципе можно использовать традиционные процессы обработки давлением: прокатку, волочение, прессование и др. Однако этому, прежде всего, мешает недостаточно высокая пластичность металлов. Кроме того, монотонное формоизменение заготовки (постоянное увеличение длины при прокатке и волочении, уменьшение высоты при осадке), очевидно, приводит к тому, что при больших деформациях ее размер, хотя бы в одном из направлений, становится чрезвычайно малым [2].

Читайте также  Электростатический генератор своими руками

Исследования показывают, что эффект больших деформаций при определенных условиях можно получить путем немонотонного формоизменения заготовок, что как раз и используется в процессах обработки давлением, основной целью которых является накопление деформации в заготовках, а не изменение их формы. Именно такие процессы причисляют, в настоящее время, к современным методам пластической деформации. Поскольку форма заготовки после деформации практически совпадает с исходной, то имеется возможность их многократной обработки для накопления достаточной деформации. С одной стороны, операции современных методов являются процессами обработки давлением. Поэтому их реализация невозможна без решения характерных для таких процессов задач: определения напряженно-деформированного состояния заготовки, расчета силовых параметров процесса, проектирования и изготовления деформирующего инструмента и оснастки, подбора смазок и т.д. [3]. С другой стороны — это не обычные операции обработки давлением, целью которых является, прежде всего, формоизменение заготовок, а процессы, призванные формировать структуру материалов, обеспечивающую заданные физико-механические свойства.

Муфты для насосов

Электродвигатель и насос — крепкая любовь через муфту.

Муфты насоса

Для обеспечения работоспособности концы валов двигателя и насоса должны надёжно соединяться. Элемент, обеспечивающий передачу крутящего момента, называется — муфтой . Учитывая, что в каждом конкретном случае оборудование работает в разных условиях, подбор муфт осуществляется индивидуально.

К факторам, влияющим на правильный выбор соединительного элемента, относят:

  • мощность двигателя;
  • частота вращения;
  • наличие вибрации;
  • соосность;
  • наличие постоянного или меняющегося угла между валами;
  • необходимость оперативного отключения соединения или регулирования жесткости сцепления;

В зависимости от типа соединения валов двигателя и насоса муфты делятся на такие категории:

  • глухие;
  • жесткие компенсирующие;
  • упругие компенсирующие;
  • управляемые.

Глухие муфты для насоса

К наиболее простому и максимально надёжному типу соединения валов мотора и насоса относят глухие муфты. Их задача заключается в обеспечении максимально прочного соединения. Такие приспособления устанавливают на моторах большой мощности. Обязательным условием использования таких муфт является идеальная соосность валов. Даже незначительное несовпадение осей приводит к появлению сильной вибрации, износу деталей, поломкам.

Самыми распространенными муфтами с глухим соединением для насосов являются втулочные и фланцевые. Первые имеют очень простую конструкцию, изготавливаются в виде цилиндрической обоймы, внутренний диаметр которой соответствует диаметру валов. Передача крутящего момента обеспечивается штифтами или шпоночной посадкой.

Фланцевая муфта состоит из двух половин – полумуфт. Сначала каждая из полумуфт насаживается через шпоночное соединение на концы валов, а затем плоскости фланцев соединяются между собой болтами.

Жесткие компенсирующие муфты двигателя насоса

Обеспечить работоспособность насосных агрегатов при условии незначительной несоосности или при наличии угла между осями мотора и насоса помогают жесткие компенсирующие муфты. Жесткими такие соединения называют лишь потому, что между рабочими частями элементов не имеется мягких пружинящих прокладок. Само по себе соединение жестким назвать нельзя, т.к. его элементы подвижны друг относительно друга.

Одна из разновидностей муфт – кулачково-дисковая. Между двумя жестко закреплёнными полумуфтами вставляется промежуточный диск. Передача крутящего момента от одного диска к другому обеспечивается наличием соединения типа «паз-гребень». При наличии небольшого осевого смещения свободно передвигающийся промежуточный диск компенсирует его.

Другая муфта привода насоса с жесткой компенсацией, предназначенная для передачи вращения между валами с угловым смещением — зубчатая. Конструкция муфты предусматривает:

  • две полумуфты с наружными зубьями;
  • обойма с внутренними зубьями.

Обладая возможностью изменения угла наклона оси полумуфты, по отношению к обойме, такой механизм может обеспечить передачу крутящего момента при наличии угла между валами.

Упругие компенсирующие соединительные муфты насоса

Для того, чтобы частично погасить вибрационные колебания и продлить ресурс работы подшипников валов насосов и электромоторов, используют муфты с упругими элементами.

Наиболее простой по конструкции и надёжной является муфта втулочно-пальцевого типа. По конструкции она напоминает жесткую фланцевую, полумуфты не приживаются жестко друг к другу, а в одной из них соединительные пальцы имеют эластичные прокладки.

Более сложной по конструкции является пружинная муфта. Кроме двух полумуфт, устанавливающихся на концах валов, между которыми находится пружина, муфта имеет защитный корпус. Корпус или кожух одновременно является хранилищем для смазочного материала. Концы пружины упираются в выступы на разных полумуфтах. Вал насоса начинает движение в тот момент, когда вал мотора, вращаясь, сожмёт пружину и та, в свою очередь, передаст усилие на вторую полумуфту.

Сцепные или управляемые муфты

Если в процессе работы насосного агрегата возникает необходимость останавливать перекачку при работающем двигателе, сделать это можно с помощью сцепной или управляемой муфты. Существует несколько разновидностей муфт с управляемым соединением, а самыми распространенными являются муфты жесткого сцепления и фрикционные. Жесткие муфтовые сцепления обеспечиваются кулачковыми и зубчатыми полумуфтами.

В первом случае полумуфты валов имеют на соприкасающихся поверхностях кулачки, которые при сближении входят в прочное соединение и передают вращение. Между полумуфтами устанавливается эластичный элемент — «звездочка» которая гасит толчки и делает запуск более плавным. Упругие звездочки бывают разных цветов в зависимости от ее жесткости и рабочей температуры.

Зубчатые муфты работают по такому же принципу, но в зацепление входят внутренние зубы одной полумуфты и наружные другой. Для жестких соединений характерно резкое зацепление. Такое соединение при большой частоте вращения ведущего вала невозможно. Для смягчения процесса зацепления устройства оборудуют синхронизаторами.

Максимально плавные включение и выключение зацепления валов обеспечивают фрикционные муфты. Принцип их действия основан на использовании силы трения. Соприкасающиеся поверхности двух полумуфт имеют покрытие, которое позволяет им проскальзывать. Чем сильнее полумуфты приживаются друг к другу, тем прочнее соединение. Это позволяет валу насоса плавно набрать частоту вращения. Фрикционные муфты в зависимости от конструкции могут быть однодисковыми, многодисковыми, конусными.

Центровка насоса с электродвигателем: правильные методы работы

Центровка (юстировка) насоса с электродвигателем – ряд технических работ, производимых для достижения соосности вала насоса и вала электродвигателя во всех плоскостях, в пределах требуемых допусков.

Центровка насоса с электродвигателем

Соединение электродвигателя с насосом, центровка и регулировка

Соединение электродвигателя с насосом будет правильным в том случае, когда несоосность (неколлинеарность) валов обоих агрегатов будет минимальной и центровка валов насоса не понадобится или не потребует много времени. При выполнении работ по устранению любой несоосности, агрегаты разделяют на подвижный и стационарный. В соединении «двигатель – насос» подвижным будет двигатель, так как насос уже может быть присоединенным к трубам. При регулировке возникнет необходимость сдвига электромотора влево или вправо от оси вращения вала насоса, если несоосность горизонтальная, и подъёма или опускания двигателя при вертикальной регулировке.

Центровка по видам несоосности

Соединение валов имеет 3 вида несоосности:

  • параллельную;
  • угловую;
  • смешанную.

Параллельная несоосность выражается в том, что оси вращения соединяемых валов, находясь в одной плоскости, располагаются на расстоянии друг от друга. Измеряется этот показатель между осевыми линиями валов и выражается в миллиметрах.

Угловая несоосность – это когда оси вращения валов соединяемых агрегатов находятся под углом друг к другу. Числовое значение угловой несоосности измеряют как расстояние между осями вращения обоих агрегатов в двух точках, отстоящих друг от друга на 10 см. Полученные данные записывают в миллиметрах, затем их складывают и делят на расстояние между ними. Поэтому угловая неколлинеарность имеет вид дроби: мм100 мм.

Еще одним вариантом является смешанная несоосность – когда в соединении валов присутствуют горизонтальный и угловой варианты одновременно. Существует несколько способов измерения неколлинеарности и проведения регулировок: от применения простейших устройств до использования точных приборов и специальных конструкций.

Как производится центровка

Перед тем, как центровать насос с электродвигателем, необходимо измерить несоосность.

Самый простой способ измерения – с помощью двух проволок, размещенных на валах соединяемых агрегатов.

С помощью пары проволок

Центровка двигателя и валов насоса способом «двух проволок» является самым доступным вариантом.

Для более точного измерения, валы с закрепленными проволоками, поворачивают вручную на 90˚ от точки первого измерения, и проводят второе измерение. Поворачивая вал на 90º после каждого измерения, получают значение несоосности, которое регулируют изменением положения мотора. Параллельную неколлинеарность этим способом проверяют по совпадению острых отгибов проволоки, а угловую – по расстоянию между ними.

Другим вариантом того, как отцентровать насос с электродвигателем без прибора является способ с помощью пары радиально-осевых скоб.

Способ со скобами

Суть способа заключается в установке на центрируемые валы специальных скоб. Представляют собой пару скоб, закрепленных на валах либо на полумуфтах. Между горизонтальными полками скоб измеряют параллельную несоосность, по расстоянию между специальными выступами на вертикальных частях – угловую.

Крепление на полумуфты необходимо в том случае, когда нужна центровка валов по полумуфтам с помощью индикаторов. Например, если для крепления скоб на оси требуется значительный перерасход рабочего времени. Схемы со скобами позволяют произвести центровку вала насоса с электродвигателем (или мотор-редуктором) без применения измерительных приборов.

Пошаговая инструкция центровки пары электродвигатель – насос

Пошаговая инструкция показывает, как сделать центровку насоса с электродвигателем своими руками, с помощью одного часового индикатора. Прибор типа ИЧ широко распространен, и найти его особого труда не составит. Первым шагом инструкции по центровке будет установка индикатора. Методика работы такова:

  1. Собирается устройство с магнитным держателем индикатора.
  2. Готовое приспособление устанавливается на вал насоса.
  3. На выносной конец стержня крепится индикатор и его щуп упирается в вал мотора.
  4. Снимаются показания индикатора.
  5. Проводятся аналогичные операции при установке устройства на вал мотора.

В состав приспособления входят:

  • магнитный держатель;
  • вертикальная стойка;
  • хомут крепления для горизонтального стержня;
  • горизонтальный стержень;
  • поворотное устройство;
  • хомут крепления для индикатора;
  • индикатор типа ИЧ.

Следующим шагом инструкции станет проведение измерений и регулировки. Процесс центровки пары «мотор-насос» часовым индикатором аналогичен процессу с использованием проволок или скоб: делают 4 замера и 4 регулировки, в 4-х точках. Хорошим результатом будет разница в показаниях на 0,06 мм между собой. Последним, 5-м замером считается новый замер в первоначальной точке. Если в показаниях первого измерения и показаниях пятого измерения получилась разница больше требуемой величины, то измерения и регулировки проводят повторно.

Приведенная методика показывает, как центровать насос с электродвигателем с помощью одного индикатора. В технике существует практика более точного и более быстрого способа, когда центровка валов и электродвигателя проводится с помощью измерительного комплекта. В комплект входят специальные крепления и два индикатора.

Применение двух индикаторов позволяет измерить одновременно горизонтальную и вертикальную несоосности.

На фото, индикатор, расположенный вертикально, измеряет горизонтальную несоосность, а расположенный горизонтально – угловую.

Центровка валов агрегатов: практическое руководство

Перед вычислением параметров центровки по любому способу следует все произведенные замеры для удобства свести в таблицу. Приведенное руководство может быть применено при проведении регулировок по любому способу, основанному на применении механических средств измерения.

Пояснения к таблице. При измерении угловой несоосности, измерения производят в двух местах, отстоящих друг от друга на 10 см. Для удобства, в таблице эти места обозначены как «положение Ф» (фронтальное) и «положение Т» (тыловое). Измерения горизонтальной несоосности могут быть проведены при расположении средств измерения и на полумуфтах, и на валах.

Центровка валов агрегатов: практическое руководство

Главная страница » Центровка валов агрегатов: практическое руководство

Коллинеарность (соосность) валов считается идеальной, когда центры валов находятся на одной осевой линии. Соответственно несоосность показывает обратный результат. Отсюда логический вывод — центровка валов машин является обязательным действием, направленным на обеспечение качественной безопасной работы.

Стационарный и подвижный вал

Последствия нарушения коллинеарности выражаются следующими моментами:

  • преждевременный выход из строя подшипников, сальников, муфтовых соединений;
  • усиление осевой и радиальной вибрации;
  • повышение температуры нагрева подшипниковых узлов и смазывающей жидкости;
  • ослабление или поломка элементов крепежа к фундаменту.

Для центровки валов агрегатов удобно применять измерительные наборы, подобные серийным от фирмы Baltech

Когда проверяется, например, коллинеарность муфтового соединения насоса и электродвигателя, насосный вал определяется как стационарный, а вал электродвигателя как подвижный. Центровка соединения всегда производится, исходя из положения подвижного вала относительно стационарного.

Центр вращения стационарного вала

Центр вращения стационарного вала – это опорная линия с нулевыми координатами. В системе координат X-Y плюсовыми значениями являются перемещения вправо по горизонтали и вверх по вертикали.

Несоосность вычисляется путём определения положения центра подвижного вала в двух плоскостях, относительно положения центра оси стационарного вала (горизонтальная ось X и вертикальная Y).

Горизонтальная коллинеарность

Состояние несоосности (вид сверху), которое корректируется перемещением электродвигателя в боковых направлениях по оси X – это горизонтальная центровка.

Электродвигатель перемещают вправо-влево, добиваясь, таким образом, соосности и параллельности в горизонтальной плоскости.

Вертикальная коллинеарность

Состояние несоосности (вид сбоку), которое корректируется перемещением электродвигателя вниз или вверх по оси Y – это вертикальная центровка.

Необходимую величину смещения получают путём установки под лапы мотора регулировочных пластин разных по толщине.

Центровка по видам несоосности

Параллельная несоосность – состояние, когда оси вращения валов расположены на одинаковом расстоянии одна от другой и по всей их длине.

Центровка в параллельной и угловой несоосности выполняется в соответствии с определёнными правилами и нормами. Применяется профессиональный инструмент

Угловая несоосность – состояние, когда оси вращения валов расположены на разных расстояниях одна от другой и по всей их длине.

Центровка соединения должна проводиться:

  • после монтажа нового оборудования;
  • после соединения оборудования с трубопроводами и арматурой;
  • по завершении ремонтных работ;
  • если при работе отмечается повышенный шум и вибрации;
  • если температура подшипниковых узлов выше нормы.

Процедура центровки соединения валов агрегатов:

  1. Установить измерительное устройство.
  2. Проверить и скорректировать положение мягкой вставки.
  3. Вычислить значения несоосности.
  4. Выполнить качественную центровку валов.
  5. Составить отчёт о проделанной работе.

Инструмент для центровки муфтовых соединений

Существует целый ряд инструментов для центровки муфтовых соединений, начиная от простейших и завершая совершенными наборами.

Чем совершеннее и современнее набор измерительного инструмента, тем выше точность центровки

Самый простой и доступный набор содержит:

  • штангенциркуль,
  • линейку,
  • пластинчатые щупы разной толщины.

Точность измерений этим набором невысока. Качество центровки обеспечивается не столько инструментом, сколько мастерством и опытом механика. Сама процедура центровки с помощью этих инструментов может занимать продолжительное время.

Цифровой анализатор центровки соединений – инструмент из серии наиболее совершенных приспособлений. Анализатор позволяет быстро и легко отцентрировать валы с высокой точностью.

Работу может выполнить любой человек, изучивший инструкцию по работе с цифровым анализатором. Однако стоимость цифрового измерителя очень высока и далеко не всем по карману.

Анализатор точности центровки валов часового типа позволяет достаточно точно провести измерения коллинеарности

Между тем есть экономичная альтернатива – ещё один вид измерительного анализатора, построенного на основе двух индикаторов часового типа. Один индикатор определяет отклонения по оси X, другой по оси Y. Удобный, эффективный, недорогой инструмент, помогающий быстро центровать, к примеру, муфтовое соединение между электродвигателем и насосом.

Пошаговая инструкция центровки пары электродвигатель-насос

  1. Проверить правильность установки рамы агрегата на фундаменте при помощи строительного уровня. Выполняется эта операция в продольном и поперечном направлениях.
  2. Если расстояние между анкерными болтами рамы превышает 800 мм, установить под раму дополнительные подкладки в центральной точке межанкерного расстояния. Подкладки должны плотно прилегать к раме и фундаменту.
  3. Ослабить болты крепления насоса и болты крепления подшипниковой опоры. Убедиться, что на подшипниковую опору не действуют какие-либо нагрузки.
  4. Затянуть крепёжные болты на основании насоса, оставив ослабленным крепёж подшипниковой опоры.

На картинке несколько первых шагов, показывающих как выполняется центровка валов агрегатов

Дальнейший процесс центровки:

  1. Измерить величину зазора между муфтами электродвигателя и насоса. Эта величина не должна превышать значений 3-5 мм. В случае несоответствия, ослабить крепление электродвигателя и выставить мотор на место до получения указанных цифр. Получив результат, закрепить двигатель.
  2. Проверить свободный ход вращения, прокручивая валы агрегата вручную. Свободное вращение, без наличия заеданий – свидетельство корректного состояния устройств.
  3. Используя червячные хомуты, разместить на полумуфтах механизм центровки. Основная и ответная часть механизма устанавливаются с осевым зазором между ними в 2-3 мм. При вращении валов, они не должны соприкасаться.
  4. Закрепить к механизму центровки индикаторы часового типа и приступить к операции центровки валов электродвигателя / насоса.

Процесс центровки пары мотор / насос часовым индикатором

Индикаторами часового типа измеряют боковые зазоры (А) и угловые зазоры (В). Для этого приборы закрепляют на оснастке с таким расчётом, чтобы их наконечники упирались в тело полумуфт на валу двигателя и насоса. Также при установке приборов следует учесть удобство считывания показаний.

Индикаторы часового типа нужно установить так, чтобы без затруднений снимать показания

Упирают измерительные стержни индикаторов в тело полумуфт с выбегом в 2-3 мм по шкале. Затем вращением ободков приборов совмещают стрелки с нулевой отметкой. Начинают измерение в четырёх пространственных точках:

  1. Первыми измеряют зазоры А и В верхнего положения.
  2. Поворачивают валы на 90º в направлении рабочего вращения привода.
  3. Вновь измеряют зазоры А и В по среднему положению.
  4. Повторяют процедуру для двух оставшихся положений.

Последним контрольным замером – пятым по счёту, будет повторное измерение в начальной верхней точке. Полученные цифры замеров в 1 и 5 положениях должны совпадать.

Последствия нарушения центровки валов

Изменения параметров центровки валов (соосности), прежде всего, вызывают эффект вибрации. Влияние вибрации на муфту и на близко расположенные подшипники очевидно: детали подвергаются ускоренному износу.

Такими обещают быть последствия посредственного подхода к центровке валов агрегатов

На муфте изнашивается эластичная вставка, появляются дефекты подшипников мотора и насоса, торцевого уплотнения. Если же перекос осей значительный, в конечном итоге неизбежен срез вала.

О том, как центруют валы агрегатов анализатором часового типа

Практическое пособие на видеоролике по теме центровки валов машинных агрегатов посредством часовых индикаторов. На видео демонстрируется полная последовательность процедуры, показываются все тонкости центровки:

КРАТКИЙ БРИФИНГ

Zetsila — публикации материалов, интересных и полезных для социума. Новости технологий, исследований, экспериментов мирового масштаба. Социальная мультитематическая информация — СМИ .

Центровка валов электродвигателей и рабочих машин

1. Непосредственное соединение при помощи муфты

Центровка валов электродвигателей и соединенных с ним рабочих машин непосредственно влияет на техническое состояние как электродвигателей, так и самих машин. Параллельное смещение осей валов электродвигателей и рабочих машин вызывает деформацию упругих элементов соединительных муфт, пульсацию передаваемых моментов, а также радиальные усилия, передаваемые на подшипники. Угловое смещение осей валов вызывает значительно меньшие пульсации скорости валов, чем их параллельное смещение. Как и параллельное, угловое смещение наиболее опасно при жестком соединении валов. Неправильная центровка валов электродвигателей и рабочих машин в некоторых случаях приводит к возникновению пульсаций токов и моментов.

Центровка электродвигателя относительно вала вращаемой им машины является одной из наиболее ответственных и трудоемких операций при монтаже.

Чтобы обеспечить нормальную работу центрируемых валов и правильное распределение нагрузок между подшипниками при непосредственном соединении электродвигателя с рабочей машиной (при помощи муфты), валы соединяемых машин должны быть установлены в такое положение, при котором торцевые поверхности полумуфт в горизонтальной и вертикальной плоскостях будут параллельны, а оси валов будут располагаться на одной линии. Практически бывает трудно добиться строгой параллельности плоскостей полумуфт, поэтому валы приходиться соединять при некоторой несоосности их. Величина несоосности зависит от типа применяемых полумуфт. При правильном (соосном) соединении электродвигателя и механизма они работают спокойно, без вибрации.

Путем перемещения двигателя на небольшие расстояния в горизонтальной и вертикальной плоскостях добиваются такого взаимного положения валов двигателя и рабочей машины, при котором величины зазоров между полумуфтами будут равны. Центровка производится в два приема: предварительная и окончательная. При предварительной центровке стальную линейку или стальной угольник прикладывают к образующим обеих полумуфт и проверяют, есть ли зазор между ребром линейки и полумуфтами.

Рис. 1. Центровочные скобы: 1 — наружная скоба; 2 — полумуфта; 3 — внутренняя скоба; 4 — электродвигатель; 5 —хомут; 6, 7, 8 — болты

Такую проверку выполняют в четырех местах: вверху, внизу и в двух боковых направлениях. Если зазор есть, то под лапы электродвигателя подкладывают прокладки толщиной 0,5—0,8 мм. При этом число тонких прокладок не должно превышать 3—4 штук, так как при большем числе прокладок может нарушиться центровка. Если по условиям центровки прокладок оказывается больше, то их необходимо заменить общей прокладкой большей толщины.

Окончательную центровку проводят при помощи одной пары центровочных скоб (рис. 1). Наружная скоба 1 закрепляется на полумуфте 2 рабочей машины, а внутренняя скоба 3 — на полумуфте электродвигателя 4.

Скобы крепятся на полумуфтах при помощи хомутов 5 и болтов 6. В процессе центровки измеряют радиальные a и осевые b зазоры при помощи щупов, индикаторов или микрометров. При этом индикатор или микрометрическую головку устанавливают на место болтов 7 и 8.

Существуют и другие типы скоб для центровки электродвигателя с механизмом; некоторые из них изображены на рис. 2 и 3.

Центровочные скобы устанавливают друг против друга при совпадении маркировочных пометок (рисок) на полумуфтах, поставленных во время спаренной обработки полумуфт на станке или нанесенных перед рассоединением их в начале ремонта. Пометки лучше всего ставить зубилом.

Рис. 2. Скобы для центровки полумуфт: а — центровочные скобы; б — центровочные приспособления; в — центровочные приспособления с хомутами

Рис. 3. Скобы для центровки электродвигателя с механизмом: 1 — скоба; 2 — палец; 3 — прижимной или стопорный болт; 4 — болт для замера зазора; 5 — рекомендуемая форма записи значений зазоров

Посредством винтов устанавливают зазоры по окружности и торцу в пределах 1—2 мм, проверяя отсутствие задевания скоб друг за друга при одновременном проворачивании обеих валов на 360° в направлении вращения электродвигателя. Для измерения зазоров по окружности и торцу оба вала одновременно поворачивают от исходного верхнего положения на 90, 180 и 270°. При каждом из этих положений пластинки щупа должны входить с легким усилием, одинаковым во всех замерах.

При помощи щупа измеряют радиальный зазор a между болтом скобы и полумуфтой и аксиальный зазор b между торцами полумуфт (рис. 3).

Затем поворачивают оба ротора относительно первоначального положения на 90, 180 и 270° и в каждом из этих положений замеряют зазоры a и b. Значения радиальных зазоров записывают вне окружности, аксиальных — внутри окружности, как указано на рис. 3.

Если при проворачивании валов радиальные зазоры a остаются неизменными, а аксиальные зазоры b меняются, то значит, что центры валов совпадают, но оси валов расположены одна к другой под некоторым углом (рис. 4а).

При параллельности валов двигателя и рабочей машины и наличии между ними сдвига (рис. 4б) аксиальные зазоры b при проворачивании валов остаются неизменными, а радиальные зазоры a изменяются.

Наконец, при сдвиге центров валов и расположении осей валов под углом (рис. 4в) будут меняться величины как аксиальных зазоров b, так и радиальных зазоров a.

В заключение валы устанавливают в первоначальное положение (скоба вверху) и вновь замеряют зазор a, который должен совпасть с тем же зазором, замеренным в начале проверки.

Рис. 4. Центровка валов при помощи одной пары скоб: а — центры валов совпадают, но оси расположены под углом; б — валы параллельны, но между ними имеется сдвиг; в — центры валов сдвинуты, а их оси расположены под углом

Отличие в результатах замера зазоров в начале и в конце проверки более чем на 0,02 мм недопустимо и свидетельствует о недостаточно жестком креплении скобы или о смещении валов в осевом направлении. В этом случае скобу следует укрепить более надежно и замер зазоров повторить. Для исключения ошибок от осевого смещения валов при первом замере и после каждого проворачивания необходимо при помощи лома или другим способом подавать валы друг к другу до упора.

Точность центровки определяется сравнением зазоров замеренных в противоположных точках полумуфт. Разность значений этих зазоров (a1a3; a2a4; b1b3; b2b4) должна быть не более указанной в табл. 1.1.

Таблица 1.1. Допустимая разность зазоров

Допустимая разница в значениях зазоров, мм, при частоте вращения, об/мин

Полужесткая или с полужесткими пальцами

Примечание. Меньшая разница в значениях зазоров относится к аксиальным зазорам, а большая — к радиальным.

Расцентровка в горизонтальной плоскости (большая разница в зазорах a2 и a4; b2 и b4) устраняется перемещением по горизонтали корпуса электродвигателя. Расцентровка в вертикальной плоскости (большая разница в зазорах a1a3; b1b3) устраняется путем изменения толщины подкладок под лапами электродвигателя. Для точной центровки применяется стальная фольга. Количество прокладок должно быть минимальным, так как при большом числе прокладок центровка со временем может нарушиться. Несколько тонких подкладок заменяйте на одну более толстую. Несколько более толстых — на одну еще более толстую. Обязательное условие центровки — после каждого изменения толщины подкладок производите полную затяжку крепежных болтов электродвигателя. Неполная или некачественная затяжка болтов, крепящих двигатель к фундаменту или к монтажной раме, дает неправильную картину изменения зазоров в процессе регулировки.

Хаотичная регулировка зазоров требует очень много времени и сил. Для более быстрого процесса регулировки необходима определенная последовательность в операциях по устранению зазоров.

Первое, что нужно сделать — установить валы параллельно в вертикальной плоскости (соблюдается равенство зазоров b1 = b3), подкладывая подкладки под передние лапы электродвигателя или удаляя их из-под задних лап. Когда равенство зазоров b1 и b3 установлено, проверяете вертикальное смещение валов электродвигателя и приводного механизма (разность зазоров a1 – a3). Если a1 больше a3, вал электродвигателя расположен ниже вала приводного механизма, если же a1 меньше a3 — электродвигатель поднят выше нормы. Разность зазоров a1 – a3 дает толщину подкладки, которую необходимо подложить под передние и задние лапы электродвигателя или, наоборот, удалить (толщину подкладок замеряйте микрометром). Затем снова проверьте допустимую разницу зазоров a1 – a3 и b1b3.

Если она находится в пределах нормы, приступайте к регулировке в горизонтальной плоскости. Регулировка производится смещением корпуса двигателя вправо или влево. В заключение еще раз проверьте точность центровки, сравнивая разность значений зазоров (a1 – a3; a2 – a4; b1 – b3; b2 – b4).

2. Соединение клиноременной передачей

В механических приводах ременные передачи могут служить как для увеличения вращающего момента на приводном валу, так и для увеличения скорости вращения. Клиновидные ремни имеют лучшее сцепление со шкивом и относительно малое скольжение по сравнению с плоскими

ремнями; благодаря этому можно осуществлять передачи с большим (до 10) передаточным числом.

При выборе минимального межосевого расстояния принимают

h — толщина ремня;

D1и D2— диаметры меньшего и большего шкивов, мм.

Угол охвата меньшего шкива

Угол a1 должен быть не менее 120°, а при огибании трех шкивов a1 ≥ 70°.

Наибольшее межосевое расстояние

Рис. 5. Клиновидный ремень

Так как клиновидные ремни имеют стандартную длину, то окончательно межцентровое расстояние после подбора ремня должно быть уточнено по формуле

L0 — длина ремня, измеряемая по нейтральному слою.

Размеры сечений клиновидных ремней приведены в табл. 2.1.

Таблица 2.1. Клиновидные ремни

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: