Индикатор включения 220 вольт на светодиоде - ELSTROIKOMPLEKT.RU

Индикатор включения 220 вольт на светодиоде

Несколько вариантов схем как подключить светодиод к 220 вольтам (для световой индикации)

Порой возникает необходимость в подключении обычного, маломощного светодиода к переменному, сетевому напряжению 220 вольт в роли светового индикатора. Казалось бы нет ничего проще, чем взять и поставить последовательно светодиоду обычный резистор, который бы ограничивал силу тока в данной цепи. Но не все так просто. В этой статье давайте с вами рассмотрим наиболее распространенные варианты такого подключения, после чего можно будет выбрать наиболее лучшую схему с учетом имеющихся достоинств и недостатков.

Вариант №1 » последовательное включение светодиода и резистора.

Итак, первым вариантом все же будет схема, где последовательно к светодиоду подключается обычный резистор с нужным сопротивлением. Величину сопротивления можно вычислить по закону ома. Допустим у нас светодиод, рассчитанный на напряжение 3 вольта и потребляющий 9 миллиампер. Напряжение питания (220 В) разделится между резистором и светодиодом. Если на светодиоде осядет 3 вольта, то на резисторе осядет около 217 вольт. Ток в последовательных цепях во всех точках одинаковый (в нашем случае он будет равен 9 мА). И чтобы узнать сопротивление резистора мы 217 вольт делим на 9 миллиампер и получаем 24 ком (24000 ом).

Теоретически эта схема подключения светодиода к сети 220 вольт рабочая, но практически она скорее всего сгорит сразу при включении. Почему это так. Дело в том, что большинство обычных светодиодов рассчитаны на напряжение питания (при прямом своем включении, то есть плюс светодиода к плюсу источника питания и минус светодиода к минусу источника питания), где-то в пределах от 2,5 до 4,5 вольта. При прямом включении на светодиоде будет его рабочее напряжение (пусть 3 вольта), а излишек (217 вольт) осядет на резисторе. Обратное напряжение у светодиодов не такое уж и высокое (где-то около 30 вольт). И когда обратная полуволна переменного напряжения подается на светодиод, то светодиод просто выйдет из строя из-за слишком большого обратного напряжения, поданного на него. Напомню, что полупроводники при обратном включении имеют очень большое внутреннее сопротивление (гораздо большее чем стоящий в цепи резистор). Следовательно все сетевое напряжение осядет именно на светодиоде.

Вариант №2 » подключение светодиода с защитой от обратного напряжения.

В этом варианте схемы подключения индикаторного светодиода к сетевому напряжению 220 вольт имеется защита от чрезмерного высокого напряжения обратной полуволны, что подается на светодиод. То есть, в цепь добавлен обычный диод, который включен той же полярностью, что и светодиод. В итоге все излишнее высокое напряжение оседает на полупроводниках (при обратном включении питания, обратной полуволне переменного тока). Тот ток, что возникает в цепи при обратной полуволне настолько настолько мал, что его не хватает для пробиться светодиода при обратном его включении. Таким образом данная схема уже будет нормально работать. Хотя в этом варианте все же имеются свои недостатки, а именно будет достаточно сильно греться резистор. Его мощность должна быть не менее 2 Вт. Этот нагрев приводит к тому, что схема весьма не экономна, у нее низкий КПД. Помимо этого поскольку светодиод будет светить только при одной полуволне, то рабочая частота светодиода будет равна 25 Гц. Свечение светодиода при такой частоте будет восприниматься глазом с эффектом мерцания.

Вариант №3 » альтернативная схема подключения светодиода к 220 с защитой от обратного напряжения.

Эта схема похожа не предыдущую. Она также имеет защиту от чрезмерного напряжения обратной полуволны переменного напряжения. Если в первой схеме защитный диод стоял последовательно со светодиодом, то в данной схеме диод подключен параллельно, и имеет уже обратное включение относительно светодиоду. При одной полуволне переменного напряжения будет гореть индикаторный светодиод (на котором будет падение напряжения до рабочей величины светодиода), а при обратной полуволне диод будет находится в открытом состоянии и на нем также будет падение напряжения до величины (порядка 1 вольта) недостаточной для пробоя светодиода. Как и в предыдущей схеме недостатками будет значительный нагрев резистора и видимое мерцание светодиода, вдобавок эта схема будет больше потреблять электроэнергии из-за прямого включения диода.

Хотя вместо обычного диода можно поставить еще один светодиод.

Тогда в одну полуволну будет гореть один светодиод, ну а в обратную второй. Хотя в этом случае и будут светодиоды защищены от высокого обратного напряжения, но гореть каждый из них будет все равно с частотой 25 герц (будут оба мерцать).

Вариант №4 » лучшая схема с токоограничительным конденсатором, резистором и выпрямительным мостом.

Данный вариант схемы подключения индикаторного светодиода к сети 220 вольт считаю наиболее лучшим. Единственным недостатком (если можно так сказать) этой схемы является то, что в ней больше всего деталей. К достоинствам же можно отнести то, что в ней нет элементов, которые чрезмерно нагревались, поскольку стоит диодный мост, то светодиод работает с двумя полупериодами переменного напряжения, следовательно нет заметных для глаза мерцаний. Потребляет эта схема меньше всего электроэнергии (экономная).

Работает данная схема следующим образом. Вместо токоограничительного резистора (который был в предыдущих схемах на 24 кОм) стоит конденсатор, что исключает нагрев данного элемента. Этот конденсатор обязательно должен быть пленочного типа (не электролит) и рассчитан на напряжение не менее 250 вольт (лучше ставить на 400 вольт). Именно подбором его емкости можно регулировать величину силы тока в схеме. В таблице на рисунке приведены емкости конденсатора и соответствующие им токи. Параллельно конденсатору стоит резистор, задача которого сводится всего лишь к разряду конденсатора после отключения схемы от сети 220 вольт. Активной роли в самой схеме запитки индикаторного светодиода от 220 В он не принимает.

Далее стоит обычный выпрямительный диодный мост, который из переменного тока делает постоянный. Подойдут любые диоды (готовый диодный мост), у которых максимальная сила тока будет больше тока, потребляемого самим индикаторным светодиодом. Ну и обратное напряжение этих диодов должно быть не менее 400 вольт. Можно поставить наиболее популярные диоды серии 1N4007. Они дешево стоят, малы по размерам, рассчитаны на ток до 1 ампера и обратное напряжение 1000 вольт.

В схеме есть еще один резистор, токоограничительный, но он нужен для ограничения тока, который возникает от случайных всплесков напряжения, идущие от самой сети 220 вольт. Допусти если кто-то по соседству использует мощные устройства, содержащие катушки (индуктивный элемент, способствующий кратковременным всплескам напряжения), то в сети образуется кратковременное увеличение сетевого напряжения. Конденсатор данный всплеск напряжения пропускает беспрепятственно. А поскольку величина тока этого всплеска достаточна для того, чтобы вывести из строя индикаторный светодиод в схеме предусмотрен токоограничительный резистор, защищающий схему от подобный перепадов напряжения в электрической сети. Этот резистор нагревается незначительно, в сравнении с резисторами в предыдущих схемах. Ну и сам индикаторный светодиод. Его вы выбираете уже сами, его яркость, цвет, размеры. После выбора светодиода подбирайте соответствующий конденсатор нужной емкости руководствуясь таблицей на рисунке.

Видео по этой теме:

P.S. Альтернативным вариантом электрической светодиодной подсветки может быть классическая схема подключения неоновой лампочки (параллельно которой ставится резистор где-то на 500кОм-2мОм). Если сравнивать по яркости, то все таки она больше у светодиодной подсветки, ну а если особая яркость не требуется, то вполне можно обойтись данным вариантом схемы на неоновой лампе.

Индикатор сети 220 вольт

Это самый простой и самый надежный индикатор сети который мне приходилось делать.

Раньше, чтобы вставить индикатор сети 220 в какой-либо прибор надо было мотать отдельную катушку на трансформатор или сооружать целую схему из диодов и конденсаторов, пока мне не попалась эта супер простая схема. На фото видно, что светодиод включён в розетку через резистор — краткость сестра таланта :)

Индикаторы сети часто используют для подсветки комнатных выключателей освещения в темное время суток. В качестве индикатора использовали неоновую лампу и резистор, эти лампы громоздки и к тому же мигают и иногда перегорают. Теперь вместо неоновых ламп можно использовать светодиод один или несколько. Я дома сделал подсветку выключателей с помощью четырёх светодиодов и одного резистора, все детали легко уместились по периметру крышки выключателя.

Схема устройства очень проста, полярность светодиода можно не учитывать. Постоянный резистор сопротивлением 100 кОм и мощностью не менее 0.5 Вт.

В своей схеме на фото я использовал резистор мощностью 2 Вт. потому, как он просто оказался под рукой. А вообще у меня есть целая гирлянда из 20 светодиодов и одного резистора 0.5 Вт. всё это работает от сети 220 в. и при этом резистор ни чуть не греется.

КОММЕНТАРИИ

Скажите уважаемый, а эта схема устойчива к колебаниям напряжения? Резистор вроде как чуствителен к скачкам напряжения, не поплавится если что?

Да нет, всё будет нормально! У меня дома гирлянда из 20 светодиодов на одном резисторе висит, для уверенности можно двухватник поставить и то это для одного светодиода будет много.

Вот буквально вчера вашу идею спаял, диод горел секунд 10, второй вобще не засветился, умер тихо :)) думаю может резистор не 100к взять а 150? Резистор был 2 ватт. Что я сделал не так? Признаюсь это мой первй в жизни опыт в сфере электроники, поэтому не судите строго.

Извиняюсь, всё отлично! Диоды скорее всего подобрал не те. Спасибо за идею!

Читайте также  Электро выключатели света для дома

Этой схемой пользуюсь уже лет 15, только резистор использую в пределах 240-300кОм, мощностью 0,125вт. Насчет светодиодов — действительно встречаются некоторые аномалии, так например синего свечения дохнет в 90% случаев. Причина: величина «обратного» напряжения. Для большей надежности рекомендую последовательно со светодиодом включить обычный диод (например КД522, ка один из самых маленьких 4мм в длину и 2мм в диаметре)

на самом деле пробой светодиода в такой схеме гарантирован практически на 100%, вопрос времени. для того чтобы этого избежать нужно паралельно светодиоду включить в обратной полярности другой диод или светодиод. в этом случае обратное напряжение всегда буддет не больше прямого напряжения на шунтирующем полупроводнике.

резистор нужно брать 180-250кОм

Все работает. 100к резистор на 1 Вт и красный светодиод 5мм.

Резистор 100-200к, кремнивый диод параллельно «на встречу» светодиоду, и всё будет хорошо.

дайте полное описание резистора

Резистор 100К любой, но мощностью не менее 0.5Вт.
А вот светодиоды работают не все. Лучше использовать из серии АЛС.

я собирал светодиод и сопротивление проработал год и вышло из строя с диодом надёжнее но зависит от качества светодиода у меня промышленная схема в кнопке звонка индикация стоит пять лет проработало и всё теперь только в полной темноте лишь заметно еле еле

Соединяю последовательно: резистор 1ком.(0,25вт),светодиод АЛ307А и керамический конденсатор типа КМ на 0,1мкФ х 400 вольт. Параллельно светодиоду паяю диод КД522В в обратном направлении и все прекрасно работает в розетке для стиральной машины уже 5 лет. Все детали имеют комнатную температуру.

как подключить миниатюрную лампочку от китайской гирлянды к 220 в
без адаптера
Просто резистор в 220 -не светит

Около 20-ти лет использую данную схему, на всех семи квартирных выключателях, только резисторы брал 180-220кОм(какие под рукой были), мощностью 0,5Вт. Светодиоды использовал еще Советские — АЛ307, из старых запасов, большинство б/у. За все это время, только пару «светлячков» поменял(один лет 7 назад, другой неделю назад «наелся»).

Это индикатор напряжения, а не индикатор нагрузки. Если нагрузка сгорит, светодиод все равно будет гореть.

нада диод в параллельно впаять. типа кд522

Имеет ли значение в этой схеме, куда фазу подключать, а куда ноль?

Андрей, разницы нет где фаза. Тут главное диоды правильные, современные китайские не работают в этой схеме.

Подключение светодиода к сети 220в

Обычно светодиоды подключаются к 220В при помощи драйвера, рассчитанного под их характеристики. Но если требуется подключить только один маломощный светодиод, например, в качестве индикатора, то применение драйвера становится нецелесообразным. В таких случаях возникает вопрос — как подключить светодиод к 220 В без дополнительного блока питания.

  1. Основы подключения к 220 В
  2. Способы подключения светодиода к сети 220 В
  3. Последовательное подключение диода с высоким напряжением обратного пробоя (400 В и более).
  4. Шунтирование светодиода обычным диодом.
  5. Встречно-параллельное подключение двух светодиодов:
  6. Нюансы подключения к сети 220 В
  7. Безопасность при подключении
  8. Заключение

Основы подключения к 220 В

В отличие от драйвера, который питает светодиод постоянным током и сравнительно небольшим напряжением (единицы-десятки вольт), сеть выдает переменное синусоподобное напряжение с частотой 50 Гц и средним значением 220 В. Поскольку светодиод пропускает ток только в одну сторону, то светиться он будет только на определенных полуволнах:

То есть led при таком питании светится не постоянно, а мигает с частотой 50 Гц. Но из-за инерционности человеческого зрения это не так заметно.

В то же время напряжение обратной полярности, хотя и не заставляет led светиться, все же прикладывается к нему и может вывести из строя, если не предпринять никаких защитных мер.

Способы подключения светодиода к сети 220 В

Самый простой способ (читайте про все возможные способы подключения led) – подключение при помощи гасящего резистора, включенного последовательно со светодиодом. При этом нужно учесть, что 220 В – это среднеквадратичное значение U в сети. Амплитудное значение составляет 310 В, и его нужно учитывать при расчете сопротивления резистора.

Кроме того, необходимо обеспечить защиту светоизлучающего диода от обратного напряжения той же величины. Это можно сделать несколькими способами.

Последовательное подключение диода с высоким напряжением обратного пробоя (400 В и более).

Рассмотрим схему подключения более подробно.

В схеме используется выпрямительный диод 1N4007 с обратным напряжением 1000 В. При изменении полярности все напряжение будет приложено именно к нему, и led оказывается защищенным от пробоя.

Такой вариант подключения наглядно показан в этом ролике:

Также здесь описывается, как определить расположение анода и катода у стандартного маломощного светодиода и рассчитать сопротивление гасящего резистора.

Шунтирование светодиода обычным диодом.

Здесь подойдет любой маломощный диод, включенный встречно-параллельно с led. Обратное напряжение при этом будет приложено к гасящему резистору, т.к. диод оказывается включенным в прямом направлении.

Встречно-параллельное подключение двух светодиодов:

Схема подключения выглядит следующим образом:

Принцип аналогичен предыдущему, только здесь светоизлучающие диоды горят каждый на своем участке синусоиды, защищая друг друга от пробоя.

Обратите внимание, что подключение светодиода к питанию 220В без защиты ведет к быстрому выходу его из строя.

Схемы подключения к 220В при помощи гасящего резистора обладают одним серьезным недостатком: на резисторе выделяется большая мощность.

Например, в рассмотренных случаях используется резистор сопротивлением 24 Ком, что при напряжении 220 В обеспечивает ток около 9 мА. Таким образом, мощность, рассеиваемая на резисторе, составляет:

9 * 9 * 24 = 1944 мВт, приблизительно 2 Вт.

То есть для оптимального режима работы потребуется резистор мощностью не менее 3 Вт.

Если же светодиодов будет несколько, и они будут потреблять больший ток, то мощность будет расти пропорционально квадрату тока, что сделает применение резистора нецелесообразным.

Применение резистора недостаточной мощности ведет к его быстрому перегреву и выходу из строя, что может вызвать короткое замыкание в сети.

В таких случаях в качестве токоограничивающего элемента можно использовать конденсатор. Преимущество этого способа в том, что на конденсаторе не рассеивается мощность, поскольку его сопротивление носит реактивный характер.

Здесь показана типовая схема подключения светоизлучающего диода в сеть 220В при помощи конденсатора. Поскольку конденсатор после отключения питания может хранить в себе остаточный заряд, представляющий опасность для человека, его необходимо разряжать при помощи резистора R1. R2 защищает всю схему от бросков тока через конденсатор при включении питания. VD1 защищает светодиод от напряжения обратной полярности.

Конденсатор должен быть неполярным, рассчитанным на напряжение не менее 400 В.

Применение полярных конденсаторов (электролит, тантал) в сети переменного тока недопустимо, т.к. ток, проходящий через них в обратном направлении, разрушает их конструкцию.

Емкость конденсатора рассчитывается по эмпирической формуле:

где U – амплитудное напряжение сети (310 В),

I – ток, проходящий через светодиод (в миллиамперах),

Uд – падение напряжения на led в прямом направлении.

Допустим, нужно подключить светодиод с падением напряжения 2 В при токе 9 мА. Исходя из этого, рассчитаем емкость конденсатора при подключении одного такого led к сети:

Данная формула действительна только для частоты колебаний напряжения в сети 50 Гц. На других частотах потребуется пересчет коэффициента 4,45.

Нюансы подключения к сети 220 В

При подключении led к сети 220В существуют некоторые особенности, связанные с величиной проходящего тока. Например, в распространенных выключателях освещения с подсветкой, светодиод включается по схеме, изображенной ниже:

Как видно, здесь отсутствуют защитные диоды, а сопротивление резистора выбрано таким образом, чтобы ограничить прямой ток led на уровне около 1 мА. Нагрузка в виде лампы также служит ограничителем тока. При такой схеме подключения светодиод будет светиться тускло, но достаточно для того, чтобы разглядеть выключатель в комнате в ночное время. Кроме того, обратное напряжение будет приложено в основном к резистору при разомкнутом ключе, и светоизлучающий диод оказывается защищенным от пробоя.

Если требуется подключить к 220В несколько светодиодов, можно включить их последовательно на основе схемы с гасящим конденсатором:

При этом все led должны быть рассчитаны на одинаковый ток для равномерного свечения.

Можно заменить шунтирующий диод встречно-параллельным подключением светодиодов:

В обоих случаях нужно будет пересчитать величину емкости конденсатора, т.к. возрастет напряжение на светодиодах.

Параллельное (не встречно-параллельное) подключение led в сеть недопустимо, поскольку при выходе одной цепи из строя через другую потечет удвоенный ток, что вызовет перегорание светодиодов и последующее короткое замыкание.

Еще несколько вариантов недопустимого подключения светоизлучающих диодов в сеть 220В описаны в этом видео:

Здесь показано, почему нельзя:

  • включать светодиод напрямую;
  • последовательно соединять светодиоды, рассчитанные на разный ток;
  • включать led без защиты от обратного напряжения.

Безопасность при подключении

При подключении к 220В следует учитывать, что выключатель освещения обычно размыкает фазный провод. Ноль при этом проводится общим по всему помещению. Кроме того, электросеть зачастую не имеет защитного заземления, поэтому даже на нулевом проводе присутствует некоторое напряжение относительно земли. Также следует иметь в виду, что в некоторых случаях провод заземления подключается к батареям отопления или водопроводным трубам. Поэтому при одновременном контакте человека с фазой и батареей, особенно при монтажных работах в ванной комнате, есть риск попасть под напряжение между фазой и землей.

В связи с этим, при подключении в сеть лучше отключать и ноль, и фазу при помощи пакетного автомата во избежание поражения током при прикосновении к токоведущим проводам сети.

Читайте также  Демонтаж выключателя света

Заключение

Описанные здесь способы подключения светодиодов в сеть 220В целесообразно применять только при использовании маломощных светоизлучающих диодов в целях подсветки или индикации. Мощные led так подключать нельзя, поскольку нестабильность сетевого напряжения приводит к их быстрой деградации и выходу из строя. В таких случаях нужно применять специализированные блоки питания светодиодов – драйверы.

Подключение светодиода к 220В

Светодиоды в качестве источников света получили широкое распространение. Но они рассчитаны на низкое напряжение питания, а зачастую возникает необходимость включить светодиод в бытовую сеть 220 вольт. При небольших познаниях в электротехнике и умении выполнять несложные расчеты это возможно.

Способы подключения

Стандартные условия работы большинства светодиодов – напряжение 1,5-3,5 В и ток 10-30 мА. При пряом включении прибора в бытовую электросеть время его жизни составит десятые доли секунды. Все проблемы подключения светодиодов в сеть повышенного, по сравнению со штатным рабочим, напряжения, сводятся к тому, чтобы погасить излишек напряжения и ограничить ток, протекающий через светоизлучающий элемент. С этой задачей справляются драйверы – электронные схемы, но они достаточно сложны и состоят из большого числа компонентов. Их применение имеет смысл при питании светодиодной матрицы со множеством светодиодов. Для подключения одного элемента есть более простые пути.

Подключение с помощью резистора

Самый очевидный способ – подключить последовательно со светодиодом резистор. На нем упадет лишнее напряжение, и он ограничит ток.

Расчет этого резистора ведется в такой последовательности:

  1. Пусть имеется светодиод с номинальным током 20 мА и падением напряжения 3 В (фактические параметры надо посмотреть в справочнике). За рабочий ток лучше принять 80% от номинала – LED в облегченных условиях проживет дольше. Iраб=0,8 Iном=16 мА.
  2. На добавочном сопротивлении упадет напряжение питающей сети за вычетом падения напряжения на светодиоде. Uраб=310-3=307 В. Очевидно, что практически все напряжение будет на резисторе.

Важно! При расчетах надо применять не действующее значение напряжения сети (220 В), а амплитудное (пиковое) – 310 В.

  1. Значение добавочного сопротивления находится по закону Ома: R=Uраб/ Iраб. Так как ток выбран в миллиамперах, то сопротивление будет в килоомах: R=307/16= 19,1875. Ближайшее значение из стандартного ряда – 20 кОм.
  2. Чтобы найти мощность резистора по формуле P=UI, надо рабочий ток умножить на падение напряжения на гасящем сопротивлении. При номинале в 20 кОм средний ток будет составлять 220 В/20 кОм=11 мА (здесь можно учитывать действующее напряжение!), и мощность составит 220В*11мА=2420 мВт или 2,42 Вт. Из стандартного ряда можно выбрать резистор мощностью 3 Вт.

Важно! Этот расчет упрощенный, в нем не везде учтено падение напряжения на светодиоде и его сопротивление в открытом состоянии, но для практических целей точность достаточная.

Так можно подключать цепочку из последовательно соединенных светодиодов. При расчетах надо умножить падение напряжения на одном элементе на их общее количество.

Последовательное подключение диода с высоким обратным напряжением (400 В и более)

У описанного способа есть существенный недостаток. Светодиод, как любой прибор на основе p-n перехода, пропускает ток (и светится) при прямой полуволне переменного тока. При обратной полуволне он заперт. Его сопротивление велико, намного выше балластного сопротивления. И сетевое напряжение амплитудой 310 В, приложенное к цепочке, упадет большей частью на светодиоде. А он не рассчитан на работу в качестве высоковольтного выпрямителя, и может довольно скоро выйти из строя. Для борьбы с этим явлением часто рекомендуют последовательно включать дополнительный диод, выдерживающий обратное напряжение.

На самом деле при таком включении приложенное обратное напряжение разделится примерно пополам между диодами, и LED будет чуть легче при падении на нем около 150 В или немного меньше, но судьба его будет все равно печальной.

Шунтирование светодиода обычным диодом

Намного более эффективна такая схема включения:

Здесь светоизлучающий элемент включен встречно и параллельно дополнительному диоду. При отрицательной полуволне дополнительный диод откроется, и все напряжение окажется приложенным к резистору. Если расчет, проведенный ранее, был верным, то сопротивление не будет перегреваться.

Встречно-параллельное подключение двух светодиодов

При изучении предыдущей схемы не может не прийти мысль – зачем использовать бесполезный диод, когда его можно заменить таким же светоизлучателем? Это верное рассуждение. И логически схема перерождается в следующий вариант:

Здесь в качестве защитного элемента использован такой же светодиод. Он защищает первый элемент при обратной полуволне и при этом излучает. При прямой полуволне синусоиды светодиоды меняются ролями. Плюсом схемы является полное использование возможностей источника питания. Вместо одиночных элементов можно включать цепочки светодиодов в прямом и обратном направлениях. Для расчета можно использовать тот же принцип, но падение напряжения на светодиодах умножается на их количество, установленное в одном направлении.

С помощью конденсатора

Вместо резистора можно применить конденсатор. В цепи переменного тока он ведет себя в определенной мере как резистор. Его сопротивление зависит от частоты, но в бытовой сети этот параметр неизменен. Для расчета можно взять формулу Х=1/(2*3,14*f*C), где:

  • X – реактивное сопротивление конденсатора;
  • f – частота в герцах, в рассматриваемом случае равна 50;
  • С – емкость конденсатора в фарадах, для пересчета в мкФ использовать коэффициент 10 -6 .

На практике используют формулу:

  • С – необходимая емкость в мкФ;
  • Iраб — рабочий ток светодиода;
  • U-Uд — разница между напряжением питания и падением напряжения на светоизлучающем элементе – имеет практическое значение при применении цепочки светодиодов. При использовании одного светодиода можно с достаточной точностью принять значение U равным 310 В.

Применять конденсаторы можно с рабочим напряжением не менее 400 В. Расчетные значения для токов, характерных для подобных схем, приведены в таблице:

Рабочий ток, мА 10 15 20 25
Емкость балластного конденсатора, мкФ 0,144 0,215 0,287 0,359

Получившиеся значения достаточно далеки от стандартного ряда емкостей. Так, для тока 20 мА отклонение от номинала 0,25 мкФ составит 13%, а от 0,33 мкФ – 14%. Резистор можно подобрать гораздо точнее. Это является первым недостатком схемы. Второй уже упоминался – конденсаторы на 400 и выше В имеют довольно крупные размеры. И это еще не все. При использовании балластной емкости схема обрастает дополнительными элементами:

Сопротивление R1 устанавливается в целях безопасности. Если схему запитать от 220 В, а потом отключить от сети, то конденсатор не разрядится – без этого резистора цепь разрядного тока будет отсутствовать. При случайном касании выводов емкости легко получить поражение электрическим током. Сопротивление этого резистора можно выбрать в несколько сотен килоом, в рабочем состоянии он зашунтирован емкостью и на работу схемы не влияет.

Резистор R2 нужен для ограничения броска зарядного тока конденсатора. Пока емкость не заряжена, она не будет служить ограничителем тока, и за это время светодиод может успеть выйти из строя. Здесь надо выбрать номинал в несколько десятков Ом, на работу схемы он также не будет иметь влияния, хотя его можно учесть при расчете.

Пример включения светодиода в выключатель света

Один из распространенных примеров практического использования светодиода в цепи 220 В – индикация выключенного состояния бытового выключателя и облегчения поиска его местоположения в темноте. Светодиод здесь работает при токе около 1 мА – свечение будет неярким, но заметным в темноте.

Здесь лампа служит дополнительным ограничителем тока при разомкнутом положении выключателя, и возьмет на себя небольшую долю обратного напряжения. Но основная часть обратного напряжения приложена к резистору, поэтому светодиод здесь относительно защищен.

Видео: ПОЧЕМУ НЕ НАДО СТАВИТЬ ВЫКЛЮЧАТЕЛЬ С ПОДСВЕТКОЙ

Техника безопасности

Технику безопасности при работе в действующих установках регламентируют Правила охраны труда при эксплуатации электроустановок. На домашнюю мастерскую они не распространяются, но их основные принципы при подключении светодиода к сети 220 В надо учесть. Главное правило безопасности при работе с любой электроустановкой – все работы надо выполнять при снятом напряжении, исключив ошибочное или непроизвольное, несанкционированное включение. После отключения выключателя отсутствие напряжения надо проверить тестером. Все остальное – применение диэлектрических перчаток, ковриков, наложение временных заземлений и т.п. трудновыполнимо в домашних условиях, но надо помнить, что мер безопасности мало не бывает.

Питание светодиодов от 220В своими руками — схема подключения

Без светодиодов трудно обойтись при проектировании электронной аппаратуры, а также при изготовлении экономичных осветительных приборов. Их надежность, простота монтажа и относительная дешевизна привлекают внимание разработчиков бытовых и промышленных светильников. Поэтому многих пользователей интересуют схемные решения по включению светодиода, предполагающие прямую подачу на него фазного напряжения. Неспециалистам в области электроники и электрики полезно будет узнать, как подключить светодиод к 220В.

  1. Технические особенности диода
  2. Полюса светодиода
  3. Способы подключения
  4. Шунтирование светодиода обычным диодом (встречно-параллельное подключение)
  5. Ограничение с помощью конденсатора
  6. Нюансы подключения к сети 220 Вольт
  7. Схема лед драйвера на 220 вольт
  8. Вариант драйвера без стабилизатора тока
  9. Безопасность при подключении

Технические особенности диода

По определению светодиод, схема которого схожа с обычным диодом, – это тот же полупроводник, пропускающий ток в одном направлении и излучающий свет при его протекании. Его рабочий переход не рассчитан на высокие напряжения, поэтому для загорания светодиодного элемента вполне достаточно всего нескольких вольт. Другой особенностью этого прибора является необходимость подачи на него постоянного напряжения, так как при переменных 220 Вольт светодиод будет мигать с частотой сети (50Герц). Считается, что глаз человека не реагирует на такие мигания и что они не причиняют ему вреда. Но все же согласно действующим стандартам для его работы нужно использовать постоянный потенциал. В противном случае приходится применять особые меры защиты от опасных обратных напряжений.

Читайте также  Датчик движения и звука для включения света

Большинство образцов осветительной техники, в которых диоды используются в качестве элементов освещения, включаются в сеть через специальные преобразователи – драйверы. Эти устройства необходимы для получения из исходного сетевого напряжения постоянных 12, 24, 36 или 48 Вольт. Несмотря на их широкое распространение в быту нередки ситуации, когда обстоятельства вынуждают обходиться без драйвера. В этом случае важно уметь включать светодиоды в 220 В.

Полюса светодиода

Чтобы ознакомиться со схемами включения и распайкой диодного элемента, нужно узнать, как выглядит распиновка светодиода. В качестве его графического обозначения используется треугольник, к одному из углов которого примыкает короткая вертикальная полоса – на схеме она называется катодом. Он считается выходным для постоянного тока, втекающего с обратной стороны. Туда подается положительный потенциал от источника питания и поэтому входной контакт называется анодом (по аналогии с электронными лампами).

Выпускаемые промышленностью светодиоды имеют всего два вывода (реже – три или даже четыре). Известны три способа определения их полярности:

  • визуальный метод, позволяющий определить анод элемента по характерному выступу на одной из ножек;
  • с помощью мультиметра в режиме «Проверка диодов»;
  • посредством блока питания с постоянным выходным напряжением.

Для определения полярности вторым способом плюсовой конец измерительного шнура тестера в красной изоляции подсоединяется к одному контактному выводу диода, а черный минусовой – к другому. Если прибор показывает прямое напряжение порядка полвольта, со стороны плюсового конца расположен анод. Если на табло индикации появляется знак бесконечности или «0L», с этого конца располагается катод.

При проверке от источника питания на 12 Вольт его плюс следует соединить с одним концом светодиода через ограничивающий резистор 1 кОм. Если диод загорается, его анод находится со стороны плюса блока питания, а если нет – с другого конца.

Способы подключения

Установка дополнительного резистора гасит излишки мощности электричества

Простейший подход к решению проблемы недопустимого для диода обратного напряжения – установка последовательно с ним дополнительного резистора, который способен ограничить 220 Вольт. Этот элемент получил название гасящего, так как он «рассеивает» на себе излишки мощности, оставляя светодиоду необходимые для его работы 12-24 Вольта.

Последовательная установка ограничивающего резистора также решает проблему обратного напряжения на переходе диода, которое снижается до тех же величин. В качестве модификации последовательного включения с ограничением напряжения рассматривается смешанная или комбинированная схема подключения светодиодов в 220 В. В ней на один резистор последовательный резистор приходится несколько параллельно соединенных диодов.

Подключение светодиода можно организовать по схеме, в которой вместо резистора используется обычный диод, имеющий высокое напряжение обратного пробоя (желательно – до 400 Вольт и более). Для этих целей удобнее всего взять типовое изделие марки 1N4007 с заявленным в характеристиках показателем до 1000 Вольт. При его установке в последовательную цепочку (при изготовлении гирлянды, например), обратная часть волны выпрямляется полупроводниковым диодом. Он в этом случае выполняет функцию шунта, защищающего чип светового элемента от пробоя.

Шунтирование светодиода обычным диодом (встречно-параллельное подключение)

Другой распространенный вариант «нейтрализации» обратной полуволны состоит в использовании совместно с гасящим резистором еще одного светодиода, включаемого параллельно и навстречу первому элементу. В этой схеме обратное напряжение «замыкается» через параллельно подключенный диод и ограничивается дополнительным сопротивлением, включенным последовательно.

Такое соединение двух светодиодов напоминает предыдущий вариант, но с одним отличием. Каждый из них работает со «своей» частью синусоиды, обеспечивая другому элементу защиту от пробоя.

Существенный недостаток схемы подключения через гасящий резистор – значительная величина непроизводительно расходуемой мощности, выделяемой на нем вхолостую.

Подтверждением этому является следующий пример. Пусть используется гасящий резистор номиналом 24 кОм и светодиод с рабочим током 9 мА. Рассеиваемая на сопротивлении мощность будет равна 9х9х24=1944 мВт (после округления – порядка 2-х Ватт). Чтобы резистор работал в оптимальном режиме, он выбирается со значением P не менее 3 Вт. На самом светодиоде расходуется совсем ничтожная часть энергии.

С другой стороны, при использовании нескольких последовательно подключенных LED элементов ставить гасящий резистор из соображений оптимального режима их свечения нецелесообразно. Если выбрать очень маленькое по номиналу сопротивление, оно быстро сгорит из-за большого тока и значительной рассеиваемой мощности. Поэтому функцию токоограничивающего элемента в цепи переменного тока естественнее выполнять конденсатору, на котором энергия не теряется.

Ограничение с помощью конденсатора

Использование накопительного конденсатора

Простейшая схема подключения светодиодов через ограничительный конденсатор C характеризуется следующими особенностями:

  • предусматриваются цепочки заряда и разряда, обеспечивающие режимы работы реактивного элемента;
  • потребуется еще один светодиод, необходимый для защиты основного от обратного напряжения;
  • для расчета емкости конденсатора используется полученная опытным путем формула, в которую подставляются конкретные цифры.

Для вычисления значения номинала C нужно умножить силу тока в цепи на выведенный эмпирически путем коэффициент 4,45. После этого следует разделить полученное произведение на разницу между предельным напряжением (310 Вольт) и его падением на светодиоде.

В качестве примера рассмотрим подключение конденсатора к RGB или обычному LED-диоду с падением напряжения на его переходе, равным 3 Вольта и током через него в 9 мА. Согласно рассмотренной формуле его емкость составит 0,13 мкФ. Для введения поправки на ее точное значение следует учитывать, что на величину этого параметра в большей мере влияет токовая составляющая.

Выеденная опытным путем эмпирическая формула действительна лишь для расчета емкостей и параметров светодиодов на 220 В., установленных в сетях частотой 50 Гц. В других частотных диапазонах питающих напряжений (в преобразователях, например), коэффициент 4,45 нуждается в перерасчете.

Нюансы подключения к сети 220 Вольт

Схема подключения светодиода к сети 220В

При использовании различных схем подключения светодиода к сети 220 В возможны некоторые нюансы, учет которых поможет избежать элементарных ошибок в коммутации электрических цепей. Они в основном связаны с величиной тока, протекающего через цепочку при подаче на нее питания. Для их понимания потребуется рассмотреть простейший прибор типа подсветки для декорирования, состоящий из целого набора светодиодных элементов или обычный светильник на их основе.

Значительное внимание обращается на особенности процессов, протекающих в выключателе в момент подачи питания. Для обеспечения «мягкого» режима включения к его контактам потребуется подпаять в параллель гасящий резистор и светодиод-индикатор, обозначающий включенное состояние.

Значение сопротивления подбирается по методикам, описанным ранее.

Только после выключателя с резистором в схеме располагается сама лента с чипами светодиодных элементов. В ней не предусмотрены защитные диоды, так что величина гасящего резистора подбирается из расчета протекающего по цепи тока, он не должен превышать значения порядка 1 мА.

Светодиодный индикатор-лампочка в этой схеме выполняет функцию нагрузки, еще больше ограничивающей ток. Из-за небольшой величины он будет светиться очень тускло, но этого вполне хватает для ночного режима. При действии обратной полуволны напряжение частично гасится на резисторе, что защищает диод от нежелательного пробоя.

Схема лед драйвера на 220 вольт

Более надежный способ, позволяющий запитать светодиоды от сети, – применение специального преобразователя или драйвера, понижающего напряжение до безопасного уровня. Основное назначение драйвера под светодиод 220 вольт – ограничить ток через него в рамках допустимого значения (согласно паспорту). В его состав входят формирователь напряжения, выпрямительный мостик и микросхема токового стабилизатора.

Вариант драйвера без стабилизатора тока

При желании собрать устройство питания светодиодов от 220 В своими руками потребуется знать следующее:

  • при использовании выходного стабилизатора амплитуда пульсаций существенно снижается;
  • в этом случае на самой микросхеме теряется часть мощности, что сказывается на яркости свечения излучающих приборов;
  • при использовании вместо фирменного стабилизатора фильтрующего электролита большой емкости пульсации не полностью сглаживаются, но остаются в допустимых пределах.

При самостоятельном изготовлении драйвера схему можно упростить, поставив на место выходной микросхемы электролит.

Безопасность при подключении

Не следует устанавливать в цепь диодов полярные конденсаторы

При работе со схемой включения диодов в сеть 220 Вольт основную опасность представляет соединенный последовательно с ними ограничивающий конденсатор. Под воздействием сетевого напряжения он заряжается до опасного для человека потенциала. Чтобы избежать неприятностей в этой ситуации рекомендуется:

  • предусмотреть в схеме специальную разрядную резисторную цепочку, управляемую отдельной кнопкой;
  • если сделать это невозможно, перед началом настойки после отключения от сети следует разряжать конденсатор с помощью жала отвертки;
  • не устанавливать в цепь питания диодов полярные конденсаторы, обратный ток которых достигает значений, способных «выжечь» схему.

Подключить светодиодные элементы на 220 Вольт удается лишь с помощью специальных элементов, вводимых в схему дополнительно. В этом случае можно обойтись без понижающего трансформатора и блока питания, традиционно используемых для подключения низковольтных осветителей. Основная задача добавочных элементов в схеме подключения светодиода в 220В – ограничить и выпрямить ток через него, а также защитить полупроводниковый переход от обратной полуволны.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: