Типы мигающих светодиодов - ELSTROIKOMPLEKT.RU

Типы мигающих светодиодов

Мигающий светодиод

Мигающий светодиод – это светодиод, в корпус которого уже включены резистор и ёмкость для задания режима работы.

Общая информация

В литературе присутствуют сведения, что маркировка мигающего светодиода оканчивается на латинскую литеру F. Вероятно – от английского flashing. Изучение вопроса показало, что производители предпочитают маркировать мигающие светодиоды через литеру B. От английского blinking. Так называют мигающие светодиоды за рубежом. А значит, не каждому источнику возможно верить.

Мигающий светодиод по внешнему виду не отличается от обычного, демонстрирует повышенное сопротивление контактов, а электроды сконструированы так, что между ними образуется значительной величины электрическая ёмкость (конденсатор). Указанные два элемента задают постоянную времени цепи управления транзистором, микросхемой и т.д. Из-за отсутствия понимания аудиторией возникает главный вопрос – как использовать мигающий светодиод на практике.

При подключении постоянного напряжения конденсатор зарядится до потенциала цепи, и процесс остановится. Следовательно, требуется коммутировать ключ, обеспечивающий разрядку. Как при создании мигающих схем на обычных светодиодах. В связи с этим изложение начинается с момента: как без мигающего светодиода получить мерцание.

Главным становится вопрос необходимости подобного изобретения. Научно доказано, что переменный световой поток гораздо эффективнее привлекает внимание человека, нежели постоянный. Мигающий диод заметнее простого – это очевидный факт! На горе терпящий бедствие альпинист привлечёт внимание, если зеркальцем попробует подать знак. Подобный блеск заметен на протяжении всей прямой видимости, а это – десятки километров. Затронутая тема серьёзна, в подтверждение приводим материалы:

  1. Трупы на горе Эверест: youtube.com/watch?v=EZ3vK-pvBKs. Считается, что первые покорители горы навсегда остались там и погибли уже на спуске. Первый поныне не найден, второй остался лежать (1996 год) на западе от тропы. Если бы на дежурстве оказалась команда, вероятно, люди вернулись бы живыми. Мораль? Поднимаясь за 50 тыс. долларов в гору, оставьте внизу способных прийти на помощь (заплатив предварительно). Координаты по радиосвязи пока передавать не научились, мигающие светодиоды окажут неплохую услугу альпинистам. Для сведения: в разрыв облаков гора просматривается почти до вершины.
  2. Группа Дятлова: murders.ru/Dyatloff_group_1.html#20. Если бы по счастливой случайности отколовшийся от группы Юрий Юдин позаботился об условных знаках и подстраховал команду, исход оказался бы иным. Вещественные источники указывают, что на месте событий уже после катастрофы горел костёр. Мораль? Подобные походы нельзя совершать без страховки.

Итак, мигающий светодиод позволяет реализовать множество схем, причём далеко не все относятся к сфере развлечений. Хотя по большей части оборудование используется как индикация, к примеру, заряда устройства. Любой желающий убедится, что зелёный светодиод незаметен на корпусе системного блока боковым зрением, но мигающий виден.

Компьютер под управлением Windows 10 выключается долго, когда питание пропадает раньше времени, пользователь оценит мигающий светодиод. По цвету возможно простым путём контролировать прогресс. Новые системные блоки имеют опцию «включение по тревоге», при подаче питания. Сети TN-C-S обеспечивают плохую фильтрацию, помехи воспринимаются системными платами как сигнал для включения. Следовательно, в конце рабочего дня требуется убрать снабжение электричеством окончательно. Если сетевые фильтры отключены раньше времени, возможна потеря данных, даже приходится переустанавливать систему с вытекающими последствиями.

Зелёный светодиод непросто заметить, в особенности, если системный блок освещён лучам Солнца. А соседний индикатор, показывающий активность жёсткого диска, в самые интересные моменты отключается, исполняя закон Мерфи. Разработчики системных плат сумели бы заставить светодиод наличия питания мигать при выключении. Аналогично требуется сделать и в режиме ожидания, первой распространённой поломкой в современном компьютере считается неплотная стыковка силового шнура (второй – отсутствие заземления корпуса). По мигающему светодиоду это отслеживать крайне удобно.

Как подключить светодиод, чтобы мигал

Простейшая схема

Первая схема используется давно. В СССР уже известна и базируется на лавинном пробое перехода коллектор-эмиттер биполярного транзистора. Конденсатор заряжается от сети, и напряжение делится между светодиодом и полупроводниковым ключом. Номиналы резистора и конденсатора определяют постоянную времени заряда и, как следствие, частоту мигания.

Лавинный пробой подобен электрической дуге и демонстрирует отрицательное дифференциальное сопротивление. Пока заряд на конденсаторе падает, светодиод спокойно работает. Наконец, разница потенциалов достигает некоего порога, p-n-переход закрывается. Точнее, между эмиттером и коллектором два p-n-перехода. Из сказанного следует, что транзистор возможно заменить любым нелинейным элементом, демонстрирующим вольт-амперную характеристику с отрицательным дифференциальным сопротивлением. В указанную группу попадают лавинные и туннельные диоды.

Большинство биполярных транзисторов демонстрируют нужную характеристику. Выбирается тот, предельное обратное напряжение эмиттер-коллектор которого меньше приложенного питания. Лавинный пробой проще наблюдается на эмиттерном переходе. Соответственно, его потребуется включать в обратном направлении.

Схемы генераторов

В интернете обсуждается схема на мультивибраторе. Выделяются прочие генераторы, полезные простотой сбора и наладки. Релейные устройства применяются и поныне. Их относят к классу контактных генераторов, обозначая наличие движущихся частей.

Пульс-пара, построенная из двух реле, обнаруживает простое достоинство – очевидную работу, устройств измерений для отладки не требуется. На рисунке изображён возможный вариант реализации схемы на электромагнитных размыкающем и замыкающем реле. В начальный момент времени питание подаётся через контакт 2П на катушку 1П. В результате первое реле замыкается. 2П получает питание и:

  1. Разрывает свои контакты в выходной цепи, где стоит светодиод. Он гаснет.
  2. Перестаёт питать 1П.

Пропадает питание на реле 1П, оно открывается. В результате нормально замкнутые контакты 2П возвращают питание светодиоду и 1П. Схема откатывается в исходное состояние, начинается новый цикл работы. Скорость переключения определяется целиком характеристиками реле. Для дополнительной регулировки допустимо добавить в схему задерживающие срабатывание элементы.

На втором рисунке показан генератор, массово использовавшийся в технике. Состоит из пульс-пары, режим работы рассмотрен выше, и вспомогательного реле, с задачей задержки по времени. Кнопки управления (КУ) задают нужные параметры.

При нажатии КП устройство включается в работу. Щётки шагового искателя (ШИ) переходят с ламели на ламель. Выполняется переключение. Вначале через ламель 0, кнопку и катушку 1П потенциал подаётся на реле 1П. Оно срабатывает и выполняет действия:

  • Обрывает цепь питания катушки 2П, где прежде тёк ток.
  • Готовит реле Д к срабатыванию.

При переходе щётки на ламель 1 реле 1П обесточивается, 2П размыкает свои контакты. Реле 1П отпадает. Включается 2П, подавая питание на 1П. Круг замыкается. На втором контакте 2П подключён светодиод, начинающий мигать.

Если нажата КУ, щётка ШИ попадает на вторую ламель, и при включенном 1П сработает реле Д. Последнее на время замедлит переключение 2П. В таком случае светодиод временно перестанет моргать, период удлинится.

Схема на мультивибраторе

Мультивибраторами называют транзисторные генераторы прямоугольных импульсов. В силу особенностей силовые элементы чаще выбираются биполярные. По классификации мультивибраторы относятся к бесконтактным генераторам и часто применяются для питания светодиодов, заставляя мигать.

Транзисторы достать проще, нежели специализированные микросхемы, что обусловливает популярность предлагаемого технического решения. Бесконтактные генераторы отличаются большим сроком службы, а скорость переключения настраивается выбором номиналов пассивных элементов. Мультивибраторы производят импульсы прямоугольной формы. Впрочем, аналогичное говорится о контактных генераторах. В рассматриваемом случае это хорошо.

По схеме на базу первого транзистора через конденсатор подаётся напряжение коллектора второго, открывая ключ. В этот момент происходят одновременно два процесса:

  1. Управляющий конденсатор разряжается через крайний резистор и переход эмиттер-база противоположного транзистора.
  2. Через его коллектор и внутренний резистор заряжается другой конденсатор.

Схема работает, как качели, что, впрочем, характерно для любых генераторов прямоугольных импульсов. Номиналами С и R допустимо изменять период колебания и скважность. Последнее достигается в несимметричной схеме.

Генераторы на микросхемах

Таймер на микросхеме серии 555 позволяет простыми путями заставить светодиод мигать. Для этого радиолюбители используют стандартную батарейку на 9 вольт. Несколько резисторов, микросхема и конденсатор – все, что понадобится в описанной ситуации. Как и ранее, постоянная времени задаётся размерами пассивных элементов конденсатора. Для отладки схемы возможно использовать подстроечную или переменную ёмкость.

Как применять мигающий светодиод

Несложно заметить, что в схемах светодиод используется обычный. Мигающий отличается наличием собственной ёмкости и большого сопротивления контактов. Эти параметры простым путём измеряются при помощи тестера. Для успешного хода опытов небесполезно узнать, что более длинная ножка светодиода считается анодом, и сюда нужно аккуратно подать плюс. Элемент не терпит высоких обратных напряжений и непременно сломается, если не соблюдать предосторожностей.

После измерений тестером рекомендуется нарисовать эквивалентную схему светодиода. Нарисовать на ней ёмкость и сопротивление. Потом расчёт времени переключения ведётся с использованием материала из разделов портала:

  1. Параллельное и последовательное соединение проводников.
  2. Последовательное соединение конденсаторов.
  3. Параллельное соединение конденсаторов.

Информация из топиков поможет рассчитать характеристики практически любого соединения пассивных элементов. После этого вычисляется постоянная цепи заряда. Это делается перемножением номиналов R и С. Время полного перехода системы из одного состояния в другое равно трём вычисленным периодам. К примеру, для ёмкости 10 мкФ и конденсатора 20 кОм величина составит 200 мс. Следовательно, светодиод станет мигать с частотой порядка 2-3 Гц, два или три раза в секунду.

Мигающий светодиод: как сделать, подключить и где применять

Моргающий световой сигнал находит широкое применение – от особого режима работы фонарей до индикации сложной аппаратуры. В его основе все чаще используется мигающий светодиод, как надежная и долговечная альтернатива любым другим видам светоисточников.

Рассмотрим, каков его принцип действия, какие готовые решения подобного прибора доступны сегодня на рынке, как сделать, чтобы лед-элемент, функционирующий в обычном режиме, стал работать в мерцающем ритме, какова общая сфера их применения, а также как своими руками на их основе изготовить гирлянды и бегущие огни.

Принцип действия

Светодиод с мигающим световым излучением – это стандартный лэд-кристалл, в электрическую схему питания которого включены задающие режим функционирования емкость и резистор. Внешне он ничем не отличается от обычных аналогов. При этом механизм его работы на уровне процессов, происходящих в электрической цепи, сводится к следующему:

  1. При подаче тока на резистор R накапливается заряд и напряжение в конденсаторе С.
  2. При достижении его потенциала 12 вольт образуется пробой в p-n-границе в транзисторе. Это повышает проводимость, что и инициирует производство светового потока лед-кристаллом.
  3. Когда напряжение снижается, транзистор снова становится закрытым и процесс начинается заново.

Все модули такой схемы функционируют на единой частоте.

Готовые мигающие светодиоды

Мигающие светодиоды от различных производителей по сути представляют собой функционально завершенные, готовые к применению в различных областях схемы. По внешним параметрам они мало чем отличаются от стандартных лед-устройств. Однако в их конструкцию внедрена схема генераторного типа и сопутствующих ему элементов.

Читайте также  Электро выключатели света для дома

Среди главных преимуществ готовых мигающих светодиодов выделяются:

  1. Компактность, прочность корпуса, все компоненты в одном корпусе.
  2. Большой диапазон напряжения питающего тока.
  3. Многоцветное исполнение, широкое разнообразие ритмов переключения оттенков.
  4. Экономичность.

Совет! Простейший мигающий светодиод можно сделать, если соединить в одну цепочку соблюдая правила полярности led-кристалл, CR-батарейку и резистор 160-230 Ом.

Схемы использования

Самый простой вариант схемы, выпускаемых сегодня мигалок на базе светодиодов, изготовление которых возможно своими силами радиолюбителям, включает:

  1. Транзистор малой мощности.
  2. Конденсатор полярного типа на 16 вольт и 470 микрофарад.
  3. Резистор.
  4. Лед-элемент.

При накоплении заряда осуществляется лавинообразный его пробой с открытием транзисторного модуля и свечением диода. Устройство такого типа часто используется в елочной гирлянде. Недостатком схемы является необходимость применения особого источника питания.

Другой вариант популярных на сегодня схем светодиодов мигающего типа включает пару n-p-n-транзисторов модификации КТ315 Б. Для ее сборки применяются также следующие компоненты:

  1. Две пары резисторов на 6,8–15 кОм и 470–680 Ом.
  2. Два конденсатора емкостью на 47-100 мкФ.
  3. Небольшой светодиод или отрезок лед-полоски.
  4. Источник питания от 3 до 12 В.

Принцип действия устройства обуславливается попеременной сменой цикла зарядки/разрядки конденсаторов, которые в свою очередь открывают транзисторы и питают светодиоды и обеспечивают их мигание.

Обычные светодиоды

Стандартный не мигающий светодиод дает яркое равномерное освещение и характеризуется малым потреблением электроэнергии. Наряду с такими качествами, как долговечность, компактность, энергоэффективность и широкий диапазон температур свечения это делает его вне конкуренции среди прочих искусственных источников света. На базе таких led-элементов и собирается схема мерцающих светильников. Рассмотрим, по какому принципу они изготавливаются.

Как сделать чтобы светодиоды мигали

Мигалка на светодиоде может быть собрана на базе одной из выше представленных схем. Соответственно нужно будет приобрести компоненты, описанные выше. Они необходимы для функционирования того или иного варианта. При этом для сборки потребуется паяльник, припой, флюс и другие необходимые комплектующие для пайки.

Сборка цепочки мигающих светодиодов предваряется обязательным лужением выводных контактов всех соединяемых элементов. Также нельзя забывать о соблюдении правил полярности, особенно при включении конденсаторов. Готовый светильник будет выдавать мерцание с частой около 1,5 Гц или что тоже самое порядка 15 импульсов каждый 10-секундный отрезок времени.

Схемы мигалок на их основе

Чтобы происходили элементарные заданные определенной периодичностью вспышки света, требуется пара транзисторов типа C945 или аналоговых элементов. Для первого варианта коллектор размещается в центре, а у второго – по середине располагается база. Один или пара мигающих светодиодов изготавливается по обычной схеме. При этом частотность вспышек задается наличием в цепочке конденсаторов С1 и С2.

В такую систему допустимо внедрение одновременно нескольких лед-кристаллов при монтаже достаточно мощного транзистора pnp-типа. При этом мигающими светодиоды делаются при соединении их контактов с разноцветными элементами, поочередность вспышек задается генераторным модулем, а частотность – заданными программными настройками.

Область применения

Светодиоды, функционирующие в мигающем ритме, применяются в различных областях:

  1. В развлекательной сфере, в игрушках, для украшения декора, в качестве гирлянд.
  2. Как индикация в бытовых и промышленных приборах.
  3. Светосигнализирующих устройствах.
  4. В элементах рекламы, вывесках.
  5. Информационных табло.

Важно! Светодиоды, излучающие свет в мигающем заданном ритме, применяются не только в видимом диапазоне спектра, но также в инфракрасном и ультрафиолетовом сегментах. Область их назначения – системы автоматизации и дистанционного управления различной техники – отоплением, вентиляцией, бытовыми приборами.

Бегущие огни на светодиодах своими руками

Одной из сфер эксплуатации мигающих светодиодов является устройство «бегущие огни». Для сборки схемы применяются такие компоненты:

  1. Генератор импульсом прямоугольного вида.
  2. Устройство индикации.
  3. Дешифратор.
  4. Счетчик.

Изготовление схемы осуществляется на макетной плате беспаечного типа. При этом по номиналу резисторов и конденсаторов допускается небольшой разброс, но не выше 20%. Светодиоды от HL1 до HL16 могут быть не обязательно одного цвета, но различных оттенков. Однако падение напряжение каждого лед-элемента должно быть в рамках 3 вольт.

Как сделать гирлянду из светодиодов

Для изготовления гирлянды, периодически мигающей с заданным ритмом, потребуются следующие компоненты и набор инструмента:

  1. Светодиоды на 20 мАч.
  2. Проводка площадью сечения 0,5-0,25 мм 2 .
  3. Трансформатор на 6 вольт.
  4. Резистор на 100 Ом.
  5. Паяльная станция с наконечником небольшого сечения, припой, канифоль.
  6. Нож с острым лезвием.
  7. Герметик на силиконовой основе.
  8. Фломастер.
  1. Определиться точно с промежутками между мигающими элементами.
  2. Подготовить провод и обозначить фломастером отметины под светодиоды.
  3. На местах отметок сделать срезы изоляции острым ножом.
  4. Далее на оголенные участки нанести канифоль с припоем.
  5. Припаять электроды диодов к этим местам.
  6. Нанести силиконовый герметик на оголенные участки для обеспечения электроизоляции.

По завершении подсоединяется блок питания и обычный резистор. Устройство включается в сеть и проверяется на работоспособность.

Совет! При изготовлении гирлянд нужно учитывать, что исключительно последовательный характер соединения светодиодов в цепи будет обеспечивать свойственный им мигающий эффект.

Основные выводы

Мигающий светодиод – это стандартный лед-элемент, оснащенный для специфического ритмичного свечения резистором и конденсатором, работающий по следующему принципу:

  1. Поступающий ток накапливает заряд на резисторе.
  2. По достижении заданного потенциала происходит пробой в p-n-переходе транзистора – ток проходит, светодиод вспыхивает.
  3. По мере снижения заряда транзистор закрывается и процесс повторяется.

Схема распространенного мигающего самодельного светодиода может включать один или пару транзисторов. При самостоятельной их сборке нужно заранее подготовить все необходимые компоненты и требуемые в ходе работы инструменты. Область применения мерцающих лед-светильников огромна – от игрушек и гирлянд до сигнализации, индикации и систем дистанционного управления.

Если вы знаете, как другим способом собрать схему мигающего светодиода, обязательно поделитесь полезной информацией в комментариях.

Такие удивительные маленькие огоньки

Дата публикации: 14 декабря 2014

  • Синий–синий иней
  • Московское ГАИ впереди планеты всей!
  • Виды светодиодов
  • Форма и маркировка

Не так давно, перед прошлым Рождеством, я оказался во Франции в городе Перпиньян и пройдя в центр поздно вечером, застыл как вкопанный. Я попал в удивительный разноцветный мир. Огромная аллея из опиленных деревьев была украшена миллионами сверхярких микроскопических огоньков. Вдоль дороги и под деревьями стояли фигуры сказочных животных – медведей, оленей, лис покрытые мигающими и статичными огоньками. Все это давало ощущение Праздника, сказки, и помогали в этом красивом деле светодиоды. Олени, лисы в Перпиньяне были оформлены желтыми светодиодами, а глазки им сформировали синие светодиоды.

Что это за чудо–лампочки? Светодиоды – это приборы, которые при прохождении через них электричества излучают определенный свет в разных диапазонах цвета. Но если мы еще раз упомянем те самые синие глаза у сказочных оленей и медведей в Перпиньоне, то в прошлом именно с синим излучением светодиодов была проблема. А задача получить RGB-огонек (red green blue) и вовсе была трудно достижима.

Синий–синий иней

Например, голубой светодиод можно изготовить, используя полупроводники из карбида кремния или нитридов третьей группы таблицы химика Менделеева. Инженеры самых разных стран в прошлом испытывали трудности в том, чтобы получить излучение синего цвета.

Пробовались различные нитриды, в частности нитрид галлия, но результаты оказались не очень. Почти до конца 80-х годов так и не удавалось сгенерировать эпитаксиальные пленки, которые бы давали синий спектр. Впоследствии синие светодиоды стали обычным явлением, но «отцом» их стал светодиод на сапфировой подложке Якова Исаевича Панчечникова, в то время – 1970-е годы он работал на фирму IBM, США и назывался Жак Панков. Ему удалось тогда получить пленку из нитрата галлия, которая и необходима для синего свечения. Инженеры из IBM имели большие виды на данное открытие, однако долгой работой порадовать этот светодиод не смог: образцы ломались из-за перегрева, и причиной стали проблемы с р-n переходом.

В СССР также пытались создать синий светодиод. Перебирали ученые всевозможные параметры требуемого устройства, но и тут особо успеха не наблюдалось. Центром исследования светодиодов в СССР стал Московский Государственный Университет. Там изучали и RGB цветовую модель.

Но самые радостные новости в плане создания светодиода синего излучения пришли к нам из страны Восходящего Солнца. Японский молодой ученый из компании «Нихия Кемикал» по имени Накамура в 1993 после долгих исследований объявил, что синий светодиод создан. Накамуре повезло: увидев его одержимость открытиями, финансисты поддержали деньгами и средствами молодого ученого, обеспечили ему научную и производственную базу, позволили творить.

Накамура сосредоточил свои силы на выращивании пленок на сапфировой основе, и его упорство было вознаграждено. Еще в 1991 году, 28 марта 1991 года был создан первый синий светодиод. Был ли этот прибор сверхярким? Или это уже был светодиод красно-зеленый-голубой RGB? Отнюдь. Но это творение стало огромной победой, учитывая то, что ученым многих стран так и не удавалось получить излучение именно синего цвета.

Накамура продолжал совершенствовать свое изобретение, доводя его до ума, улучшал характеристики, использовал новые виды материалов. Он хотел получить сверхмощный прибор. И вот в конце концов он создает не просто светодиод, а сверхяркий. Такой, что даже глазу глядеть на него было дискомфортно. Уже в 1994 году на рынок выходит первый синий светодиод, созданный Накамурой на базе гетероструктуры InGaNALGaN с слоем рабочим InGaN, легированным Zn.

Мощность нового устройств составила 3 мвт при прохождении прямого тока в 20 Ма. Накамура увеличил количество In в рабочем слое и в итоге на свет появился уже зеленый светодиод с мощностью силы света в 2кд. Компания «Нихиро Кемикал», в которой работал Накамура, предусмотрительно запатентовала новые марки ультрафиолетовых светодиодов, а также побочные технологические новинки. Буквально через несколько лет эта компания производила уже от 10 до 20 млн зелёных и голубых светодиодов в течение одного календарного месяца. Создание синих светодиодов подтолкнуло инженеров к разработке и производству белых, а также RGB светодиодов.

Московское ГАИ впереди планеты всей!

В Советском Союзе, а затем и в России, научные разработки в области светодиодной промышленности велись в Калуге (Электротехнический Институт), в научном сердце — спутнике Москвы городе Зеленограде, в Политехническом Институте в Ленинграде.

Именно в Зеленограде зеленый светодиод был представлен на суд чиновникам из ГАИ (сейчас ГИБДД). Те высоко оценили новшество. Обычная лампа в светофоре светила более тускло, быстро выходила из строя, в отличии от светодиода. И вот Москва делает первый заказ на светодиоды для светофоров к памятной дате: 850-летию Москвы. Цифра – 1000 светофоров. Несмотря на то, что в те годы наблюдались проблемы с финансированием, именно Москва стала флагманом в использовании светодиодов в светофорных объектах, обойдя в этом плане другие мировые столицы.

Читайте также  Как вставить лампу дневного света в светильник?

Виды светодиодов

Излучаемый светодиодом цвет зависит от полупроводника, что использовался при его производстве. Сейчас можно видеть целую гамму: тут и красный светодиод, оранжевый, фиолетовый, белый, RGB. Особое место занимает инфракрасный светодиод. Человек невооруженным взглядом не может увидеть инфракрасное излучение, поэтому инфракрасный светодиод используется не столь широко. Хотя каждый из нас с ними сталкивается практически ежедневно. Например, когда с ИК-пультов ДУ переключает каналы ТВ. В приборах ночного видения, которые так любят агенты секретных служб также используется ИК.

Все шире применяются ультрафиолетовые, двухцветные, лазерные и многоцветные светодиоды. Например, трехцветный светодиод RGB в корпусе имеет три полупроводника и сделаны они из различных металлов, в итоге мы получаем подчас сверхяркий цветной спектр излучения. Двуцветный диод чаще используется в качестве индикатора, для создания светодиодных экранов в ход идут трех цветные светодиоды. Помимо световой гаммы светодиоды имеют и иные параметры для сравнения.

Лазерный светодиод

Эти диоды реальный шаг вперед в технологиях по сравнению с инфракрасными светодиодами. Здесь самый важный параметр, в отличии от ик, лазер! Полупроводниковые лазерные светодиоды функционируют с помощью инверсии населённостей p-n перехода в ходе процесса инжекции (переход дополнительных носителей через p-n-переход) носителей заряда). В народном хозяйстве они применяются, например, в считывателях штрих кодов в наших супермаркетах. Или в оптических мышках.

Мигающий светодиод

Этот тип диода особенно красив. И экономичен, так как он не горит постоянно, а мигает. Сверхяркий светодиод способен привлечь посетителей в магазин или ресторан, настолько это красиво. А если применяется мигающий RGB светодиод – это создает особый шарм.

Органический светодиод

Но виды светодиодов этим не исчерпываются. Инфракрасные светодиоды, светодиоды с обманкой (лампы с внутренним резистором), сверхяркие, красные, RGB-светодиоды и проч. А тут еще придумали и так называемый органический светодиод.

Это устройство сделано из органических материалов, и органика дает заметное излучение при прохождении через него тока. Органический светодиод является кирпичиком в производстве известных нам дисплеев, а также широкоформатных экранов информационных табло. Различные дисплеи на основе жидких кристаллов — это все же пока еще не дешевые технологии, но технологии органики (OLED) вскоре основательно потеснят жидкокристаллические экраны из-за своей дешевизны. Рынок есть рынок. Органические светодиоды гораздо дешевле. Если рассматривать параметры светодиода на базе органики и их характеристики, то особенностью здесь является наличие многослойных структур. Многослойность проявляется в использовании целого ряда слоев тончайших полимеров.

Когда на анод органического светодиода дают напряжение со знаком плюс, то электроны бегут от катода к аноду. Происходит выброс электронов со стороны анода в так называемый эмиссионный слой. В свою очередь, проводящий слой анод абсорбирует электроны или, иначе говоря, анод «спонсирует» дырки в проводящий слой и последний получает положительный заряд, а эмиссионный слой, наоборот, отрицательный. Далее дырки движутся навстречу электрону, и когда их встреча все -таки случается, под воздействием сил электростатики они начинают рекомбинировать.

Электроны не столь подвижны в полупроводниках органического происхождения по сравнению с дырками, посему процесс рекомбинации имеет место в эмиссионном слое. Параметры этого процесса показывают, что в итоге энергия электрона уменьшается, данный процесс сопровождается эмиссией. От слова «эмиссия»- испускания, назвали данный процесс.

Органические светодиоды при подаче на напряжения со знаком минус на анод не функционируют. Если провести такой эксперимент, то получится что, к аноду устремляются дырки, а к катоду стремятся электроны, но уже в противоположном направлении. В итоге процесс рекомбинации не наблюдается.

Для изготовления анода чаще всего производители использую оксид индия, которое легируется (добавляется) оловом. Оксид олова в своей характеристике имеет такое свойство, как прозрачность для видимого цвета, и его высокая эффективность выхода способствует переходу дополнительных носителей через p-n-переход (инжекции) в полимерный слой. Различные марки металлов используются при производстве катода. Это могут быть кальций или алюминий. Одной их характеристик, что кальция, что алюминия, также является невысокая работа выхода, отчего электроны инжектируются в полимерный слой.

Форма и маркировка

Типы светодиодов по размерам

По размерах светодиоды делятся на самые популярные: 3 мм, 5мм, 8мм и больше. Есть чашеобразные, квадратные, прямоугольные светодиоды и они проходят процесс маркировки. К примеру, АЛ102 АМ. Цвет свечения – красный. Кодовая маркировка – красная точка.

Цветовая температура

При покупке светодиодов мало кто разбирается в надписях с цифрами на упаковке. А ведь это обозначение цветовой температуры светодиодов. То есть она показывает, при какой температуре будет излучаться и какой цвет. Например, маркировка 6500К — 7500К соответствует цвету «Пасмурно».

  • «Повышение энергоэффективности – ключевая задача модернизации экономики России»
  • Если душа просит больше света
  • Выбираем самую лучшую лампочку
  • Солнечные батареи в московской многоэтажке

Вам нужно войти, чтобы оставить комментарий.

Светодиоды и их применение

Светодиоды, или светоизлучающие диоды (СИД, в английском варианте LED — light emitting diode)— полупроводниковый прибор, излучающий некогерентный свет при пропускании через него электрического тока. Работа основана на физическом явлении возникновения светового излучения при прохождении электрического тока через p-n-переход. Цвет свечения (длина волны максимума спектра излучения) определяется типом используемых полупроводниковых материалов, образующих p-n-переход.

Достоинства:

1. Светодиоды не имеют никаких стеклянных колб и нитей накаливания, что обеспечивает высокую механическую прочность и надежность(ударная и вибрационная устойчивость)
2. Отсутствие разогрева и высоких напряжений гарантирует высокий уровень электро- и пожаробезопасности
3. Безынерционность делает светодиоды незаменимыми, когда требуется высокое быстродействие
4. Миниатюрность
5. Долгий срок службы (долговечность)
6. Высокий КПД,
7. Относительно низкие напряжения питания и потребляемые токи, низкое энергопотребление
8. Большое количество различных цветов свечения, направленность излучения
9. Регулируемая интенсивность

Недостатки:

1. Относительно высокая стоимость. Отношение деньги/люмен для обычной лампы накаливания по сравнению со светодиодами составляет примерно 100 раз
2. Малый световой поток от одного элемента
3. Деградация параметров светодиодов со временем
4. Повышенные требования к питающему источнику

Внешний вид и основные параметры:

У светодиодов есть несколько основных параметров:

1. Тип корпуса
2. Типовой (рабочий) ток
3. Падение (рабочее) напряжения
4. Цвет свечения (длина волны, нм)
5. Угол рассеивания

В основном, под типом корпуса понимают диаметр и цвет колбы (линзы). Как известно, светодиод — полупроводниковый прибор, который необходимо запитать током. Так ток, которым следует запитать тот или иной светодиод называется типовым. При этом на светодиоде падает определенное напряжение. Цвет излучения определяется как используемыми полупроводниковыми материалами, так и легирующими примесями. Важнейшими элементами, используемыми в светодиодах, являются: Алюминий (Al), Галлий (Ga), Индий (In), Фосфор (P), вызывающие свечение в диапазоне от красного до жёлтого цвета. Индий (In), Галлий (Ga), Азот (N) используют для получения голубого и зелёного свечений. Кроме того, если к кристаллу, вызывающему голубое (синее) свечение, добавить люминофор, то получим белый цвет светодиода. Угол излучения также определяется производственными характеристиками материалов, а также колбой (линзой) светодиода.

В настоящее время светодиоды нашли применение в самых различных областях: светодиодные фонари, автомобильная светотехника, рекламные вывески, светодиодные панели и индикаторы, бегущие строки и светофоры и т.д.

Схема включения и расчет необходимых параметров:

Так как светодиод является полупроводниковым прибором, то при включении в цепь необходимо соблюдать полярность. Светодиод имеет два вывода, один из которых катод («минус»), а другой — анод («плюс»).

Светодиод будет «гореть» только при прямом включении, как показано на рисунке

При обратном включении светодиод «гореть» не будет. Более того, возможен выход из строя светодиода при малых допустимых значениях обратного напряжения.

Зависимости тока от напряжения при прямом (синяя кривая) и обратном (красная кривая) включениях показаны на следующем рисунке. Нетрудно определить, что каждому значению напряжения соответствует своя величина тока, протекающего через диод. Чем выше напряжение, тем выше значение тока (и тем выше яркость). Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода. Диапазон питающих напряжений между Umin и Umax называется «рабочей» зоной, так как именно здесь обеспечивается работа светодиода.

1. Имеется один светодиод, как его подключить правильно в самом простом случае?

Чтобы правильно подключить светодиод в самом простом случае, необходимо подключить его через токоограничивающий резистор.

Имеется светодиод с рабочим напряжением 3 вольта и рабочим током 20 мА. Необходимо подключить его к источнику с напряжением 5 вольт.

Рассчитаем сопротивление токоограничивающего резистора

R = Uгасящее / Iсветодиода
Uгасящее = Uпитания – Uсветодиода
Uпитания = 5 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R =(5-3)/0.02= 100 Ом = 0.1 кОм

То есть, надо взять резистор сопротивлением 100 Ом

P.S. Вы можете воспользоваться on-line калькулятором расчета резистора для светодиода

2. Как подключить несколько светодиодов?

Несколько светодиодов подключаем последовательно или параллельно, рассчитывая необходимые сопротивления.

Имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 3 светодиода к источнику 15 вольт.

Производим расчет: 3 светодиода на 3 вольта = 9 вольт , то есть 15 вольтового источника достаточно для последовательного включения светодиодов

Расчет аналогичен предыдущему примеру

R = Uгасящее / Iсветодиода
Uгасящее = Uпитания – N * Uсветодиода
Uпитания = 15 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R = (15-3*3)/0.02 = 300 Ом = 0.3 кОм

Пусть имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 4 светодиода к источнику 7 вольт

Производим расчет: 4 светодиода на 3 вольта = 12 вольт, значит нам не хватит напряжения для последовательного подключения светодиодов, поэтому будем подключать их последовательно-параллельно. Разделим их на две группы по 2 светодиода. Теперь надо сделать расчет токоограничивающих резисторов. Аналогично предыдущим пунктам делаем расчет токоограничительных резисторов для каждой ветви.

R = Uгасящее/Iсветодиода
Uгасящее = Uпитания – N * Uсветодиода
Uпитания = 7 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R = (7-2*3)/0.02 = 50 Ом = 0.05 кОм

Так как светодиоды в ветвях имеют одинаковые параметры, то сопротивления в ветвях одинаковые.

Читайте также  Люстра круглая потолочная со светодиодной подсветкой

Если имеются светодиоды разных марок то комбинируем их таким образом, чтобы в каждой ветви были светодиоды только ОДНОГО типа (либо с одинаковым рабочим током). При этом необязательно соблюдать одинаковость напряжений, потому что мы для каждой ветви рассчитываем свое собственное сопротивление

Например имеются 5 разных светодиодов:
1-ый красный напряжение 3 вольта 20 мА
2-ой зеленый напряжение 2.5 вольта 20 мА
3-ий синий напряжение 3 вольта 50 мА
4-ый белый напряжение 2.7 вольта 50 мА
5-ый желтый напряжение 3.5 вольта 30 мА

Так как разделяем светодиоды по группам по току
1) 1-ый и 2-ой
2) 3-ий и 4-ый
3) 5-ый

рассчитываем для каждой ветви резисторы:
R = Uгасящее/Iсветодиода
Uгасящее = Uпитания – (UсветодиодаY + UсветодиодаX + …)
Uпитания = 7 В
Uсветодиода1 = 3 В
Uсветодиода2 = 2.5 В
Iсветодиода = 20 мА = 0.02 А
R1 = (7-(3+2.5))/0.02 = 75 Ом = 0.075 кОм

аналогично
R2 = 26 Ом
R3 = 117 Ом

Аналогично можно расположить любое количество светодиодов

При подсчете токоограничительного сопротивления получаются числовые значения которых нет в стандартном ряде сопротивлений, ПОЭТОМУ подбираем резистор с сопротивлением немного большим чем рассчитали.

3. Что будет если имеется напряжение источник с напряжением 3 вольта (и меньше) и светодиод с рабочим напряжением 3 вольта?

Допустимо (НО НЕЖЕЛАТЕЛЬНО) включать светодиод в цепь без токоограничительного сопротивления. Минусы очевидны – яркость зависит от напряжения питания. Лучше использовать dc-dc конвертеры (преобразователи повышающие напряжение).

4. Можно ли включать несколько светодиодов с одинаковым рабочим напряжением 3 вольта параллельно друг другу к источнику 3 вольта (и менее)? В «китайских» фонариках так ведь и сделано.

Опять, это допустимо в радиолюбительской практике. Минусы такого включения: так как светодиоды имеют определенный разброс по параметрам, то будет наблюдаться следующая картина, одни будут светится ярче, а другие тусклее, что не является эстетичным, что мы и наблюдаем в приведенных выше фонариках. Лучше использовать dc-dc конвертеры (преобразователи повышающие напряжение).

Полноцветный светодиод или по другому RGB-светодиод — Red, Green, Blue. Смешивая эти три цвета в разной пропорции можно отобразить любой цвет. К примеру, если зажечь все три цвета на полную мощность (Red: 100%, Green: 100%, Blue: 100%), то получится свечение белого цвета. Если зажечь только два (Red: 100%, Green: 100%, Blue: 0%), то будет светиться желтый цвет.

Конструктивно, RGB-светодиод состоит из трех кристаллов под одним корпусом и имеет 4 вывода: один общий и три цветовых вывода.
RGB-светодиоды бывают:
1. С общим анодом (CA)
2. С общим катодом (CC)
3. Без общего анода или катода (6 выводов). Как правило в SMD-исполнении.

Самый длинный вывод RGB-светодиода, обычно является общим (анодом или катодом).

При подключении данных светодиодов, следует учесть, что напряжение, подаваемое для свечения цвета может быть разным для разных цветов.
К примеру, возьмем 5мм светодиод MCDL-5013RGB (I=20мА):
Ured = 2.0 Вольт
Ugreen = 3.5 Вольт
Ublue = 3.5 Вольт

Также следует отметить то, что для некоторых типов RGB-светодиодов необходимо использовать рассеиватель, иначе будут видны составляющие цвета.

Представленные выше схемы не отличаются высокой точность рассчитанных параметров, это связано с тем, что при протекании тока через светодиод происходит выделение тепла в нем, что приводит к разогреву p-n перехода, наличие токоограничивающего сопротивления снижает этот эффект, но установление баланса происходит при немного повышенном токе через светодиод. Поэтому целесообразно для обеспечения стабильности применять стабилизаторы тока, а не стабилизаторы напряжения. При применении стабилизаторов тока, можно подключать только одну ветвь светодиодов.

Как подключить светодиод

СВЕТОДИОДЫ. ВИДЫ, ТИПЫ СВЕТОДИОДОВ. ПОДКЛЮЧЕНИЕ И РАСЧЕТЫ.

Вот так светодиод выглядит в жизни :
А так обозначается на схеме :

ДЛЯ ЧЕГО СЛУЖИТ СВЕТОДИОД?

Светодиоды излучают свет, когда через них проходит электрический ток.

Были изобретены в 70-е года прошлого века для смены электрических лампочек, которые часто перегорали и потребляли много энергии.

ПОДКЛЮЧЕНИЕ И ПАЙКА

Светодиоды должны быть подключены правильным образом, учитывая их полярность + для анода и к для катода Катод имеет короткий вывод, более короткую ножку. Если вы видите внутри светодиода его внутренности — катод имеет электрод большего размера (но это не официальные метод).


Светодиоды могут быть испорчены в результате воздействия тепла при пайке, но риск невелик, если вы паяете быстро. Никаких специальных мер предосторожности применять не надо для пайки большинства светодиодов, однако бывает полезно ухватиться за ножку светодиода пинцетом – для теплоотвода.

ПРОВЕРКА СВЕТОДИОДОВ

Никогда не подключайте светодиодов непосредственно батарее или источнику питания!
Светодиод перегорит практически моментально, поскольку слишком большой ток сожжет его. Светодиоды должны иметь ограничительный резистор.Для быстрого тестирования 1кОм резистор подходит большинству светодиодов если напряжение 12V или менее. Не забывайте подключать светодиоды правильно, соблюдая полярность!

ЦВЕТА СВЕТОДИОДОВ

Светодиоды бывают почти всех цветов: красный, оранжевый, желтый, желтый, зеленый, синий и белый. Синего и белого светодиода немного дороже, чем другие цвета.
Цвет светодиодов определяется типом полупроводникового материала, из которого он сделан, а не цветом пластика его корпуса. Светодиоды любых цветов бывают в бесцветном корпусе, в таком случае цвет можно узнать только включив его…

МНОГОЦВЕТНЫЕ СВЕТОДИОДЫ

Устроен многоцветный светодиод просто, как правило это красный и зеленый объединенные в один корпус с тремя ножками. Путём изменения яркости или количества импульсов на каждом из кристаллов можно добиваться разных цветов свечения.

РАСЧЕТ СВЕТОДИОДНОГО РЕЗИСТОРА

Светодиод должен иметь резистор последовательно соединенный в его цепи, для ограничения тока, проходящего через светодиод, иначе он сгорит практически мгновенно…
Резистор R определяется по формуле :
R = (V S — V L) / I

V S = напряжение питания
V L= прямое напряжение, расчётное для каждого типа диодов (как правилоот 2 до 4волт)
I = ток светодиода (например 20мA), это должно быть меньше максимально допустимого для Вашего диода
Если размер сопротивления не получается подобрать точно, тогда возьмите резистор большего номинала. На самом деле вы вряд-ли заметите разницу… совсем яркость свечения уменьшится совсем незначительно.
Например: Если напряжение питания V S = 9 В, и есть красный светодиод (V = 2V), требующие I = 20мA = 0.020A,
R = (- 9 В) / 0.02A = 350 Ом. При этом можно выбрать 390 Ом (ближайшее стандартное значение, которые больше).

ВЫЧИСЛЕНИЕ СВЕТОДИОДНОГО РЕЗИСТОРА С ИСПОЛЬЗОВАНИЕМ ЗАКОНА ОМА

Закон Ома гласит, что сопротивление резистора R = V / I, где :
V = напряжение через резистор (V = S — V L в данном случае),
I = ток через резистор.
Итак R = (V S — V L ) / I

ПОСЛЕДОВАТЕЛЬНОЕ ПОДКЛЮЧЕНИЕ СВЕТОДИОДОВ

Если вы хотите подключить несколько светодиодов сразу – это можно сделать последовательно. Это сокращает потребление энергии и позволяет подключать большое количество диодов одновременно, например в качестве какой-то гирлянды.

Все светодиоды, которые соединены последовательно, долдны быть одного типа. Блок питания должен иметь достаточную мощность и обеспечить соответствующее напряжение.


Пример расчета :
Красный, желтый и зеленый диоды — при последовательном соединении необходимо напряжение питания — не менее 8V, так 9-вольтовая батарея будет практически идеальным источником.
V L = 2V + 2V + 2V = 6V (три диода, их напряжения суммируются).
Если напряжение питания V S 9 В и ток диода = 0.015A,
Резистором R = (V S — V L) / I = (9 — 6) /0,015 = 200 Ом
Берём резистор 220 Ом (ближайшего стандартного значения, которое больше).

ИЗБЕГАЙТЕ ПОДКЛЮЧЕНИЕ СВЕТОДИОДОВ В ПАРАЛЛЕЛИ!

Подключение несколько светодиодов в параллели с помощью одного резистора не очень хорошая идея…


Как правило, светодиоды имеют разброс параметров, требуют несколько различные напряжения каждый. что делает такое подключение практически нерабочим. Один из диодов будет светиться ярче и брать на себя тока больше, пока не выйдет из строя. Такое подключение многократно ускоряет естественную деградацию кристалла светодиода. Если светодиоды соединяются параллельно, каждый из них должен иметь свой собственный ограничительный резистор.

МИГАЮЩИЕ СВЕТОДИОДЫ

Мигающие светодиоды выглядят как обычные светодиоды, они могут мигать самостоятельно потому, что содержат встроенную интегральную схему. Светодиод мигает на низких частотах, как правило 2-3 вспышки в секунду. Такие безделушки делают для автомобильных сигнализаций, разнообразных индикаторов или детских игрушек.

ЦИФРОБУКВЕННЫЕ СВЕТОДИОДНЫЕ ИНДИКАТОРЫ

Светодиодные цифробуквенные индикаторы сейчас применяются очень редко, они сложнее и дороже жидкокристаллических. Раньше, это было практически единственным и самым продвинутым средством индикации, их ставили даже на сотовые телефоны

СМОТРИТЕ ТАКЖЕ:

  1. Светодиоды GNL повышенной яркости диаметром 5 мм
  2. Блоки питания для светодиодов 12 V
  3. Программируемый контроллер класса Dominator
  • Плёнки
    • Oracal 352 зеркальная
    • Oracal 620 для печати
    • Oracal 640 для печати
    • Oracal 641 для плоттерной резки
    • Oracal 6510 флуоресцентная
    • Oracal 8300 витражная
    • Oracal 8500 и 8100 светопропускаяющая
    • Oraguard 210 ламинат с УФ-защитой
    • Oraguard 270 антигравийная
    • Orajet 3640 для печати
    • SAV перфорированная
    • SAV для напольной ламинации
    • SAV 120 для печати
    • ТМ 3100 светоотражающая
  • Листовые пластики
    • Акриловое стекло Acryma 72
    • Акриловое стекло Evoglas
    • Алюминиевые композитные панели WINBOND
    • Зеркальный полистирол Metzoplast
    • Пенокартон
    • Пластик VIKUРЕТ
    • Пластик АБС для гравировки
    • Пластик ПВХ UNEXT
    • Пластик ПВХ Vikupor Light
    • Пластик ПВХ Vikupor Ultra Light
    • Сотовый поликарбонат
    • Полистирол GEBAU
    • Ламинированная фанера
  • Клеи и очистители
    • Клей Cosmofen CA-12
    • Клей Cosmofen Plus
    • Клей Cosmofen PMMA
    • Клей Супер-НН
    • Клей-аэрозоль 3М
    • Очистители Cosmofen
  • Скотчи
    • Orabond 4040
    • Скотч ADHESER
    • Скотч ORABOND 1397 PP
    • Скотч ORAMOUNT 1811
    • Скотч STOKVIS
  • Крепеж, инструменты
    • Держатели дистанционные пластиковые
    • Иструмент для установки люверс
    • Лезвия 18 мм OLFA
    • Люверсы оцинкованные
    • Нож OLFA L-2
    • Ракель ORAFOL пластиковый
    • Ракель ORAFOL фетровый
    • Каталог Lincos 2021
  • Материалы для печати
    • Баннер ламинированный Frontlit
    • Баннер светоблокирующий Blockout
    • Баннер светопропускающий Backlit
    • Баннерная сетка на подложке
    • Бумага Блюбэк 115 гр
    • Бумага постерная 150 гр
    • Магнитный винил
    • Обои для печати
    • ПЭТ Backlit для световых коробов
    • Ткань полиэстеровая 120 гр
    • Ткань флаговая на подложке
    • Фотобумага
    • Холст хлопчатобумажный выбеленный 350 гр
  • Профили
    • Профили пластиковые торцевые
    • Профиль ALS для световых букв
    • Профиль ELKAMET для световых букв
    • Профиль алюминиевый багетный
    • Профиль алюминиевый для световых коробов
    • Профиль алюминиевый защелкивающийся
    • Профиль для световых коробов Квадра
    • Профиль плакатный
  • Стойки рекламные
    • Стенды Roll-up (Ролл-ап)
    • Стенды Х-баннер
    • Штендеры уличные

426008, Республика Удмуртия, Ижевск, ул. Коммунаров, д. 234, цокольный этаж.

Режим работы:
будни: с 9-00 до 18-00
сб: с 10-00 до 14-00
вс: выходной

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: