Защита светодиодов в автомобиле - ELSTROIKOMPLEKT.RU

Защита светодиодов в автомобиле

Запитываем светодиоды, чтобы горели и не сгорали.

В настоящее время в нашу жизнь интенсивно внедряются светодиоды. Основная проблема оказывается как из запитать. Дело в том, что главным параметром для долговечности светодиода является не напряжение его питание, а ток который по нему течет.

Например, красные светодиоды по напряжению питания могут иметь разброс от 1.8 вольта до 2,6, белые от 3,0 до 3,7 вольта. Даже в одной партии одного производителя могут встречаться светодиоды с разным рабочим напряжением.

Нюанс заключается в том, что светодиоды изготовленные на основе AlInGaP/GaAs (красные, желтые, зеленые – классические) довольно хорошо выдерживают перегрузку по току, а светодиоды на основе GaInN/GaN (синие, зеленые (сине-зеленые), белые) при перегрузке по току например в 2 раза живут … часа 2-3. Так, что если желаете чтобы светодиод горел и не сгорел в течении ходя бы 5 лет позаботьтесь о его питании.

Если мы устанавливаем светодиоды в цепочки (последовательное соединение) или подключаем параллельно добиться одинаковой светимости можно только если протекающий ток будет через них одинаков.

Еще хочу заострить внимание на том что светодиоды очень боятся обратного напряжения, оно очень низкое 5 – 6 вольт, импульсы обратного тока (а автомашинах) способны значительно сократить срок службы.

Значить как сделать самый простой стабилизатор тока?

Для этого берем если нужно стабилизировать ток в пределах до 1 ампера или LM317L если необходима стабилизация тока до 0,1 А.

Так выглядят стабилизаторы LM317 с рабочим током до 1,5 А.

А так LM317L с рабочим током до 100 мА.

Для тех кто не знает Vin – это сюда подается напряжение,Vout – отсюда получаем…., а Adjust вход регулировки. В двух словах LM317 это стабилизатор с регулируемым выходным напряжением.

Минимальное выходное напряжение 1,25 вольта (это если Adjust “посадить” прямо на землю) и до входного напряжения минус наши 1,25 вольта. Т.К. максимальное входное напряжение составляет 37 вольт, то можно делать стабилизаторы тока до 37 вольт соответственно.

Для того чтобы LM317 превратить в стабилизатор тока нужен всего 1 резистор!
Схема включения выглядит следующим образом:

С формулы внизу рисунка очень просто рассчитать величину резистора для необходимого тока. Т.е сопротивление резистора равно – 1,25 разделить на требуемый ток. Для стабилизаторов до 0,1 ампера мощность резистора 0,25 W вполне годиться.

На токи от 350 мА до 1 А рекомендуется 2 вата. Для тех кто не хочет считать привожу таблицу резисторов на токи для широко распространенных светодиодов.

Ток (уточненный ток для резистора стандартного ряда) Сопротивление резистора Примечание
20 мА 62 Ом стандартный светодиод
30 мА (29) 43 Ом “суперфлюкс” и ему подобные
40 мА (38) 33 Ом
80 мА (78) 16 Ом четырехкристальные
350 мА (321) 3,9 Ом одноватные
750 мА (694) 1,8 Ом трехватные
1000 мА (962) 1,3 Ом 5 W

А теперь пример с учетом всего выше сказанного. Сделаем стабилизатор тока для белых светодиодов с рабочим током 20 мА, условия эксплуатации автомобиль (сейчас так моден световой тюннинг….).

Для белых светодиодов рабочее напряжение в среднем равно 3,2 вольта. В автомашине (легковой) бортовое напряжение колеблется (в опять же среднем) от 11,6 вольт в режиме работы от аккумулятора и до 14,2 вольта при работающем двигателе. Для российских машин учтем выбросы в “обратке” (и в прямом направлении до 100 ! вольт).
Включить последовательно можно только 3 светодиода – 3,2*3 = 9,6 вольта, плюс 1,25 падение на стабилизаторе = 10,85. Плюс диод от обратного напряжения 0,6 вольта = 11,45 вольта.

Полученное значение 11,45 вольта ниже самого низкого напряжения в автомобиле – это хорошо! Это значит на выходе будет всегда наши 20 мА независимо от напряжения в бортовой сети автомобиля. Для защиты от выбросов положительной полярности поставим после диода супрессор на 24 вольта.

P.S. Подбирайте количество светодиодов так чтобы на стабилизаторе оставалось как можно меньше напряжения (но не меньше 1,3 вольта), это надо для уменьшения рассеиваемой мощности на самом стабилизаторе. Это особенно важно для больших токов. И не забудьте, что на токи от 350 мА и выше LM ка потребует радиатор.

Z1 супрессор или стабилитрон для дешевых светодиодов можно и не ставить, но диод для в автомобиле обязателен Рекомендую его ставить даже если вы просто подключаете светодиоды с гасящим резистором. Как рассчитывать сопротивление резистора для светодиодов я думаю описывать излишне.

Количество светодиодов в цепочки надо выбирать с учетом вашего рабочего напряжения минут падения напряжения на стабилитроне минус на диоде.

Например: Вам необходимо в автомобиле подключить белые светодиоды с рабочим током в 20 мАм. Обратите внимание 20 мАм это рабочий ток для ФИРМЕННЫХ дорогих светодиодов. Только фирменные гарантирует такой ток, поэтому если вы не знаете точного происхождения выбирайте ток в районе 14-15 мАм.

Это для того, что бы потом не удивляться почему так быстро упала яркость или вообще почему они так быстро перегорели. Это тоже актуально и для мощных светодиодов. Потому, то что к нам завозят не всегда то, что маркировано на изделии.

Вопрос 1 – сколько можно включить их последовательно? Для белых светодиодов рабочее напряжение 3,0-3,2 вольта. Примем 3,1. Напряжение минимальное рабочее на стабилизаторе (исходя из его опорного 1,25) приблизительно 3 вольта. Падение на диоде 0,6. Отсюда суммируем все напряжения и получаем минимальное рабочее напряжение выше которого наступает режим стабилизации тока на заданном уровне (если ниже, соответственно ток будет ниже) = 3,1*3 +3,0+0,6 = 12,9 вольта. Для автомобиля минимальное напряжение в сети 12,6 – это нормально.

Для белых светодиодов на 20 мАм можно включать 3 шт, для сети 12,6 вольта. Учитывая, что при включенном двигателе нормально рабочее напряжение сети 13,6 вольта (это номинальное, в других вариантах может быть и выше. ), а рабочее LM317до 37 вольт у нас все в норме.

Вопрос 2- как рассчитать сопротивление резистора задающего ток! Хоты выше и было описано, вопрос задают постоянно.

R1 = 125/Ist
где R1 – сопротивление токозадающего резистора в Омах.
1,25 – опорное (минимальное напряжение стабилизации) LM317
Ist – ток стабилизации в Амперах.

Нам нуден ток в 20 мАм – переводим в амперы = 0,02 Ам.
Вычисляем R1 = 1,25 / 0,02 = 62,5 Ома.

Принимаем ближайшее значение 62 Ома.

Еще пару слов о групповом включении светодиодов. Идеальное это последовательное включение со стабилизацией тока.

Светодиоды – это в принципе стабилитроны с очень малым обратным рабочим напряжениям. Если есть возможность наводок высокого напряжения от близ лежащих высоковольтных проводов необходимо каждый светодиод зашунтировать защитным диодом. (для справки многие производители особенно для мощных диодов это уже делают в монтируя в изделие защитный диод).


если необходимо подключить массив из светодиодов, то рекомендую такую схему включения

Резисторы необходимы для выравнивания токов по цепям и являются балластными нагрузками при повреждениях светодиодов в массиве.

Как рассчитать значение гасящего резистора для светодиода. Расчет проводиться по закону Ома.

Ток в цепи равен напряжение разделить на сопротивление цепи.
I led = V pit / на сопротивление диода и резистора.
сопротивление резистора и диода мы не знаем, но знаем наш рабочий ток и падения на напряжения на светодиоде. Для маломощных светодиодов ток 20 мАм необходимо принимать

Тип светодиода Рабочее напряжение (падение на светодиоде)
Инфракрасный 1,6-1,8
Красный 1,8-2,0
Желтый (зеленый) 2,0-2,2
Зеленый 3,0-3,2
Синий 3,0-3,2
Ультрафиолетовый 3,1-3,2
Белый 3,0-3,1

Зная падения на на светодиоде можно вычислить остаток на напряжения на резисторе.

Например. Питающее напряжение V pit = 9 вольт. Мы подключаем 1 белый светодиод падение на нем 3,1 вольт. Напряжение на резисторе будет = 9 – 3,1 = 5,9 Вольта.

Вычисляем сопротивление резистора
R1 = 5.9 / 0.02 = 295Ом.
Берем резистор с близким более высоким сопротивлением 300 ом.

Почему перегорают светодиодные лампочки? Проводим эксперимент

Локализация проблемы и чуть-чуть теории

Вот типичный пост с одного из «светодиодных» форумов:

— Поменял в машине лампы на светодиоды (никакого драйвера, тупо понижающие сопротивления) в плафоне салона, габаритах и подсветке багажника, через 3-4 месяца начал мерцать плафон в салоне (именно моргать как стробоскоп, одна линейка SMD-диодов, потом две), затем такая же мутотень с одним габаритом произошла. Поменял в плафоне лампу на новую — через 2 месяца эффект повторился. Вопрос — почему это происходит? Дело в качестве компонентов или тут другая проблема?

Ernesto

Читайте также  Прожектор с датчиком света для улицы

Попробуем разобраться! И начнем с теории. Светодиод питается строго определенным током, который нормирован производителем. Меньше – можно, больше – нельзя! Поэтому последовательно с «гирляндой» диодов включается элемент, ограничивающий или стабилизирующий ток через них до значения, рекомендованного производителем диодов.

Собственно, к долговечности диодов в лампах со встроенным стабилизатором тока (который часто называют «драйвером») нет претензий. Однако большинство продающихся сегодня LED-ламп небольшой мощности (габаритные огни, подсветка салона, приборной панели, поворотников и т.п.) – это лампы, сделанные без «драйвера», по упрощенной схеме: не со стабилизатором тока, а с ограничителем, роль которого выполняет простой резистор. С ним схема простейшей диодной лампочки небольшой мощности выглядит так:

Наиболее характерные неисправности таких светодиодных ламп:

  • Полное перегорание – выход из строя одного диода в цепочке. Если цепочка в лампе одна, то из-за сгорания любого из диодов последовательная цепь разрывается, и лампа гаснет целиком.
  • Частичное перегорание – выход из строя одной из цепочек, если их в лампе несколько. Не вызывает погасание, но яркость падает.
  • Мерцание-«стробоскоп» – своеобразный дефект «умирающего» диода в цепочке, когда от перегрева меняется p-n-структура кристалла – на полупроводнике образуется нестабильная область, то пропускающая ток, то нет.

Так почему LED-лампочки перегорают? В чем кроется проблема их недолговечности? В том, что производители не используют стабилизаторы тока, а применяют элементарные резисторные ограничители? Отчасти да. но не только!

Даже простейший резистор неплохо выполняет свою функцию в качестве «бронежилета» для светодиодов, защищая их от избыточного тока и преждевременной гибели. Но только в том случае, если:

  • Номинал этого резистора корректно рассчитан и обеспечивает безопасный ток через диоды;
  • Напряжение питания стабильно.

А вот ни того, ни другого зачастую нет. Китайские горе-инженеры знают, что автовладельцы, как правило, покупают LED-лампочки по принципу: «А включите мне её, я посмотрю, как светит!». И продавцы готовы идти навстречу покупателям – у них всегда под рукой специальный стенд с разнообразными патронами и аккумулятором, на котором они готовы зажечь любую лампу на пробу. А раз клиент «любит глазами», то производители ламп рассуждают следующим образом – нужно поставить такой токоограничительный резистор, чтобы лампочка загорелась отчаянным светом и выглядела привлекательно даже на 10-11 вольтах питающего стенд старого аккумулятора, который давно не заряжался!

В итоге диоды лампы даже при 12 вольтах УЖЕ работают с перегрузкой, а после того, как двигатель завели, напряжение в бортсети, питающее диоды, поднимается с 12 до 14,2 вольт – а это, на минуточку, почти 20% разницы! Ток еще вырос – уже до опасных величин. Вырос ток – выросла температура кристаллов диодов, что дало лавинообразно еще больший рост тока – и диоды перешли в режим работы на износ!

Переходим к практике!

Чтобы продемонстрировать, как это выглядит, переходим к экспериментам – элементарным, но наглядным! Просто подадим на несколько наобум купленных диодных ламп стандартное для автомобильной бортсети напряжение 14,2 вольта и посмотрим на потребляемый лампой ток, разогрев лампы и дальнейший рост тока.

Протестируем пару разных моделей ламп типа W5W, лампу C5W, лампу-панель с цоколем C5W, а также влагозащищенные лампы в корпусе с креплением под болт, рассчитанные на монтаж в бампер в качестве ДХЛ:

Поделки своими руками для автолюбителей

Почему мигает светодиод в авто и что надо сделать?

В этой статье хочу вам рассказать почему мигают светодиоды в автомобиле и что нужно сделать, чтобы этого не происходило. В автомобиле стоит много светодиодов, везде, например габаритные огни, ДХО и т.д.

В обычных светодиодных лампочках (автомобильных) используется вместо драйвера всего 1 резистор, который, во-первых настроен на 12 вольт, а во-вторых он никак не может защитить светодиод от бросков бортовой сети авто, поэтому они служат нам не так долго, как нам хотелось бы.Как умирает светодиод, сначала он начинает мерцать, мигать, подмигивать, то есть начинается деградация кристалла, ну и в конце концов он просто перестаёт гореть.

В автомобильной сети автомобиля напряжение плавает от 12 до 14,4 вольт, а иногда бывает и побольше. Вот нам и надо затачивать наш светодиод, вернее сказать сделать драйвер или стабилизатор именно под это напряжение, который будет питать наш светодиод.

В интернете полно схем стабилизаторов для светодиодов, но я хочу предложить самый простой и самый проверенный.
Конечно, стабилизатор можно купить в интернет магазине типа алиэкспресса, но я вас уверяю, что сделать своими руками намного приятней, тем более, что эта схема состоит всего из 3 деталей, не требует никакой регулировки и работает исправно годами.
И еще немаловажный момент, что эта схема в отличие от китайских, не создает высокочастотных помех, которые влияют на прием радиостанций и прослушивания музыки в автомобиле, потому что она не является высокочастотным импульсом устройством, а является линейным стабилизатором.

Собственно, вот сама схема.

Наша схема рассчитана на ток в 1.5 ампера. То есть простые лампочки, которые, например, изображены на рисунке будут работать без всякого нагрева стабилизатора.

А вот если подсоединять ходовые огни, то придется ставить теплоотвод, так сказать, радиатор, нужно будет просто прикрутить какую-нибудь железяку к нашему стабилизатору, чтобы он меньше грелся.

Схема очень простая, рассчитана как раз на простого автолюбителя, собрана на таких простых стабилизаторах как L7812 или КРЕНки, можно взять такую КР142ЕН8Б.Входное напряжение может колебаться от 12 до 30 вольт, а на выходе мы всегда будем иметь стабилизированное и постоянное напряжение в 12 вольт.

Конденсаторы можно использовать от 100 n до 1 мкф, они являются фильтрами, но если вы не разу не паяли или просто у вас их нет, то можно и не ставить.

Вот в конечном итоге, что у меня получилось…

плату посадил в термоусатку, припаял клемники для простоты соединения.

Не поленитесь и спаяйте для каждой своей лампочки такой стабилизатор и вы забудете об их замене. Тем более, что ничего проще нет.

Всего вам доброго и мирного неба над головой.

Стабилизатор напряжения 12 Вольт для светодиодов в авто своими руками

Выбор стабилизатора

В бортовой сети автомашины рабочее питание составляет примерно от 13 В, большинству же светодиодов подходит 12 В. Поэтому обычно ставят стабилизатор напряжения, на выходе которого 12 В. Таким образом, обеспечиваются нормальные условия для работы светотехники без ЧП и преждевременного выхода из строя.

На этом этапе любители сталкиваются с проблемой выбора: конструкций опубликовано множество, но не все хорошо работают. Выбрать нужно тот, что достоин любимого транспортного средства и, кроме того:

  • действительно будет работать;
  • обеспечит безопасность и защищенность светотехнике.

Выбор устройства


Стабилизатор напряжения 12 вольт

При выборе стабилизатора учитывают следующие характеристики:

  • Размеры. Выбранный стабилизатор должен компактно размещаться в запланированном для него месте для установки с возможностью нормального доступа.
  • Вид. Из имеющихся в продаже устройств наиболее надежными, компактными и недорогими являются стабилизаторы на основе небольших микросхем.
  • Возможность самостоятельного ремонта. Так как даже самые надежные устройства выходят из строя, необходимо отдавать предпочтение ремонтопригодным стабилизаторам, радиодетали к которым имеются в продаже в достаточном количестве и по доступной цене.
  • Надежность. Выбранный стабилизатор должен обеспечивать постоянное значение напряжения без значительных отклонений от заявленного их производителем диапазона.
  • Стоимость. Для электрической системы автомобиля достаточно приобрести устройство стоимостью до 200 рублей.

Также при выборе стабилизатора необходимо учитывать отзывы их покупателей, которые можно найти на специализированных форумах и сайтах.

Самый простой стабилизатор напряжения, сделанный своими руками

Если у вас нет желания покупать готовое устройство, тогда стоит узнать, как сделать простенький стабильник самому. Импульсный стабилизатор в авто сложно изготовить своими руками. Именно поэтому стоит присмотреться к подборке любительских схем и конструкций линейных стабилизаторов напряжения. Самый простой и распространенный вариант стабильника состоит из готовой микросхемы и резистора (сопротивления).

Читайте также  Светодиоды вместо люминесцентных ламп

Сделать стабилизатор тока для светодиодов своими руками проще всего на микросхеме LM317. Сборка деталей (см. рисунок ниже) осуществляется на перфорированной панели или универсальном печатном плато.

Устройство позволяет сохранить равномерное свечение и полностью избавить лампочки от моргания.

Схема 5 амперного блока питания с регулятором напряжения от 1,5 до 12 В.

Для самостоятельной сборки такого устройства понадобятся детали:

  • плато размером 35*20 мм;
  • микросхема LD1084;
  • диодный мост RS407 или любой небольшой диод для обратного тока;
  • блок питания, состоящий из транзистора и двух сопротивлений. Предназначен для отключения колец при включении дальнего или ближнего света.

При этом светодиоды (в количестве 3 шт.) соединяются последовательно с токоограничивающим резистором, выравнивающим ток. Такой набор, в свою очередь, параллельно соединяется со следующим таким же набором светодиодов.

Разновидности 12В стабилизаторов

В зависимости от конструкции и способа поддержания 12-ти вольтного напряжения выделяют две разновидности стабилизаторов:

  • Импульсные – стабилизаторы, состоящие из интегратора (аккумулятора, электролитического конденсатора большой емкости) и ключа (транзистора). Поддержание напряжения в заданном интервале значений происходит благодаря циклическому процессу накопления и быстрой отдачи заряда интегратором при открытом состоянии ключа. По конструктивным особенностям и способу управления такие стабилизаторы подразделяются на ключевые устройства с триггером Шмитта, выравниватели с широтно-импульсной и частотно-импульсной модуляцией.
  • Линейные – стабилизирующие напряжение устройства, в которых в качестве регулирующего устройства применяются подключаемые последовательно стабилитроны или специальные микросхемы.

Наиболее распространены и популярны среди автолюбителей линейные устройства, отличающиеся простотой самостоятельной сборки, надежностью и долговечностью. Импульсный вид используется значительно реже из-за дороговизны деталей и сложностей самостоятельного изготовления и ремонта.

Стабилизатор для светодиодов на микросхеме L7812 в авто

Стабилизатор тока для светодиодов может быть собран на базе 3-контактного регулятора напряжения постоянного тока (серии L7812). Устройство навесного исполнения отлично подходит для питания, как светодиодных лент, так и отдельных лампочек в автомобиле.

Необходимые компоненты для сборки такой схемы:

  • микросхема L7812;
  • конденсатор 330 мкф 16 В;
  • конденсатор 100 мкф 16 В;
  • диод выпрямительный на 1 ампер (1N4001, к примеру, или аналогичный диод Шоттки);
  • провода;
  • термоусадка 3 мм.

Вариантов на самом деле может быть много.

Еще важно знать 3 нюанса о том, как собрать стабилизатор напряжения 12 вольт собственными руками

  1. Светодиоды желательно подключать через стабилизатор тока. Таким образом можно будет уравновесить колебания электрической сети, и хозяин автомобиля не будут беспокоиться о бросках тока.
  2. Требования к электропитанию нужно также соблюдать, поскольку, таким образом, свой самостоятельно собранный стабилизатор можно будет правильно подстроить под электрическую сеть.
  3. Собирать желательно такой агрегат, который обеспечит достойную устойчивость, надежность и стабильность – стабилизатор должен держаться в течение долгих лет. Именно поэтому на компонентах не стоит дешевить – приобретайте в хороших магазинах электроники.


Схемы простых стабилизаторов

Схема подключения на базе LM2940CT-12.0

Корпус стабилизатора можно выполнить практически из любого материала, кроме дерева. При использовании более десяти светодиодов, рекомендуется к стабильнику приделать алюминиевый радиатор.

Может кто-то пробовал и скажет, что можно запросто обойтись без лишних заморочек, напрямую подключив светодиоды. Но в этом случае последние большую часть времени будут находиться в неблагоприятных условиях, посему прослужат недолго или вовсе сгорят. А ведь тюнинг дорогих авто выливается в довольно крупную сумму.

А по поводу описанных схем, их главное достоинство – простота. Для изготовления не требуется особых навыков и умений. Впрочем, если схема слишком сложная, то собирать её своими руками становится не рационально.

Интегральный стабилизатор


Устройства собирают с использованием небольших по размерам микросхем, способных работать при входном напряжении до 26-30 В, выдавая постоянный 12-ти вольтный ток силой до 1 Ампер. Особенностью данных радиодеталей является наличие 3 ножек – «вход», «выход» и «регулировка». Последняя используется для подключения регулировочного резистора, который используется для настройки микросхемы и предотвращения ее перегрузок.

Более удобные и надежные, собранные на основе стабилизирующих микросхем выравниватели постепенно вытесняют собранные на дискретных элементах аналоги.

Стабилизатор тока, схема

Мне приходится часто просматривать ассортимент на Aliexpress в поисках недорогих но качественных модулей. Разница по стоимости может быть в 2-3 раза, время уходит на поиск минимальной цены. Но благодаря этому делаю заказ на 2-3 штуки для тестов. Покупаю для обзоров и консультаций производителей, которые покупают комплектующие в Китае.

В июне 2020 года оптимальным выбором стал универсальный модуль на XL4015, цена которого 110руб с бесплатной доставкой. Его характеристики подходят для подключения мощных светодиодов до 100 Ватт.

Типовая схема включения понижающего преобразователя

Схема в режиме драйвера.

В стандартном варианте корпус XL4015 припаян к плате, которая служит радиатором. Для улучшения охлаждения на корпус XL4015 надо поставить радиатор. Большинство ставят его сверху, но эффективность такой установки низкая. Лучше систему охлаждения ставить снизу платы, напротив места пайки микросхемы. В идеале её лучше отпаять и поставить на полноценный радиатор через термопасту. Ножки скорее всего придется удлинить проводами. Если потребуется такое серьезное охлаждение контроллеру, то оно потребуется и диоду Шотки. Его тоже придётся поставить на радиатор. Такая доработка значительно повысит надежность всей схемы.

В основном модули не имеют защиты от неправильной подачи питания. Это моментально выводит их из строя, будьте внимательны.

Разновидности XL4015, добавлен вольтметр

Светодиоды в дневных ходовых огнях

Светодиодные лампы имеют высокую популярность среди автолюбителей ввиду своей небольшой мощности и низкого энергопотребления. К тому же оптимальный ресурс работы светодиода может достигать пятидесяти тысяч часов при соблюдении надлежащих условий. Однако в автомобилях, особенно это касается автотранспорта отечественного производства, срок службы диода может значительно сократиться и всего через месяц он уже может начать мерцать, а затем и вовсе перегореть.

Оптимальным напряжением для долгой службы лампы при максимально возможной яркости считается 12 В. Однако напряжение бортовой сети автомобильного средства изначально превышает 12 В, составляя примерно 12,6 В, а при заведённом двигателе может достигать всех 14,5 В. С учётом скачков при переключении мощных лам дальнего и ближнего света, а также высокой мощности импульсов по напряжению и магнитных наводок при запуске двигателя стартером бортовая автомобильная сеть предлагает не самые хорошие условия для питания светодиодных ламп.

Светодиодные лампы обладают высокой чувствительностью к любым скачкам напряжения и при отсутствии ограничивающих элементов (в дешёвых вариантах они отсутствуют, если не считать уменьшающих ток резисторов) очень быстро выходят из строя вследствие постоянного перенапряжения.

Регулируемый стабилизатор тока

Универсальный регулируемый вариант

Меня как радиолюбителя со стажем 20 лет радует ассортимент продаваемых готовых блоков и модулей. Сейчас из готовых блоков можно собрать любое устройство за минимальное время.

Я начал терять доверие к китайской продукции, после того, как у видел в «Танковом биатлоне», как у лучшего китайского танка отпало колесо.

Лидером по ассортименту блоков питания, преобразователей тока DC-DC, драйверов стали китайские интернет-магазины. У них в свободной продаже можно найти практически любые модули, если поискать получше, то и очень узкоспециализированные. Например за 10.000 т.руб можно собрать спектрометр стоимостью 100.000 руб. Где 90% цены это накрутка за бренд и немного доработанный китайский софт.

Защита светодиодных ламп от перегорания: схемы, причины, продлеваем жизнь

На рынке светодиодных ламп и светильников представлен широкий спектр продукции в разных ценовых диапазонах. Основное отличие приборов низкого и среднего ценовых сегментов заключается в большей степени не в используемых светодиодах, а в источниках питания для них.

Светодиоды работают от постоянного тока, а не от переменного, который протекает в бытовой электрической сети, а от качества преобразователя в большей степени зависит надежность ламп и режим работы светодиодов. В этой статье мы рассмотрим, как защитить светодиодные лампы и продлить жизнь дешевым моделям.

Всё описанное ниже справедливо и для светильников и для ламп.

Содержание статьи

Два основных вида источников питания для светодиодов: гасящий конденсатор и импульсный драйвер

В самой дешевой светодиодной продукции используется гасящий конденсатор в качестве источника питания. Принцип его работы основан на реактивном сопротивлении конденсатора. Отметим простыми словами, что в цепях переменного тока конденсатор представляет собой аналог резистора. Отсюда следуют такие же недостатки, что и при использовании резистора:

Читайте также  Светодиоды для осветительных ламп

1. Отсутствие стабилизации по напряжению или току.

2. Соответственно при росте входного напряжения увеличивается и напряжение на светодиодах, соответственно растёт и ток.

Эти недостатки связаны между собой. В отечественных электросетях, особенно в отдаленных районах, дачных поселках, деревнях и частном секторе часто наблюдаются скачки напряжения. Если напряжение проседает ниже 220В это не так страшно для ламп собранных по этой схеме, ток через светодиоды будет ниже, соответственно они прослужат дольше.

Схема светодиодной лампы с гасящим конденсатором:

А вот если напряжение будет выше номинального, например 240В, то светодиодная лампы быстро сгорит, по причине того, что и ток через светодиоды возрастет. Также очень опасны и импульсные скачки напряжения в сети, они возникают вследствие коммутации мощных электроприборов: вы наверняка замечали, что при включении холодильника или пылесоса, например, свет «моргает» — это и есть проявление этих импульсных скачков. Также они возникают во время грозы или аварийных ситуациях на ЛЭП или электростанции. Выглядит импульс следующим образом:

Импульсные драйвера для светодиодов

В светодиодных лампочках среднего и высокого ценового сегмента используются драйвера импульсного типа со стабилизацией тока.

Светодиоды работают от стабильного тока, напряжение для них не является основополагающей величиной. Поэтому драйвером называют источник тока. Его основными характеристиками является сила выходного тока и мощность.

Стабилизация тока реализуется с помощью цепей обратной связи, если не вдаваться в подробности существует два основных типа драйверов, которые используются в светодиодных лампочках и светильниках:

1. Бестрансформаторный, соответственно без гальванической развязки.

2. Трансформаторный – с гальванической развязкой.

Гальваническая развязка – это система, которая обеспечивает отсутствие прямого электрического контакта между первичной цепью питания и вторичной цепью питания. Она реализуется с помощью явлений электромагнитной индукции, иначе говоря, трансформаторами, а также с помощью оптоэлектронных устройств. В блоках питания для гальванической развязки используется именно трансформатор.

Типовая схема бестрансформаторного 220В драйвера для светодиодов изображена на рисунке ниже.

Обычно они построены на интегральной микросхеме со встроенными силовым транзистором. Она может быть в разных корпусах, например TO92, он используется также и в качестве корпуса для маломощных транзисторов и других ИМС, например линейных интегральных стабилизаторов, типа L7805. Встречаютcя и экземпляры в «восьминогих» корпусах для поверхностного монтажа, типа SOIC8 и другие.

Для таких драйверов повышения или понижения напряжения в питающей сети не страшны. Но крайне нежелательны импульсные перенапряжения – они могут вывести из строя диодный мост, если драйвер бестрансформаторный, то 220В попадут на выход микросхемы, или же мост пробьёт на КЗ по переменному току.

В первом случае высокое напряжение «убьёт светодиоды», вернее один из них, как это обычно происходит. Дело в том, что светодиоды в лампах, прожекторах и светильников обычно соединены последовательно, в результате сгорания одного светодиода цепь разрывается, остальные остаются целыми и невредимыми.

Во втором – выгорит предохранитель или дорожка печатной платы.

Типовая схема драйвера для светодиодов с трансформатором изображена ниже. Они устанавливаются в дорогую и качественную продукцию.

Защита светодиодных ламп: схемы и способы

Есть разные способы защиты электроприборов, все они справедливы для защиты светодиодных светильников, среди них:

1. Использование стабилизатора напряжения – это самый дорогой способ и для защиты люстры его использовать крайне неудобно. Однако можно запитать весь дом от сетевого стабилизатора напряжения, они бывают различных типов – релейные, электромеханические (сервоприводные), релейные, электронные. Обзор их преимуществ и недостатков может стать темой для отдельной статьи, пишите в комментарии, если вам интересна эта тема.

2. Использование варисторов – это прибор ограничивающие всплески напряжения, может использоваться как для защиты конкретного светильника или другого прибора, так и на вводе в дом.

3. Использование дополнительного гасящего конденсатора последовательном включении. Таким образом, ограничивается ток лампы, конденсатор рассчитывают исходя из мощности лампы. Это скорее не защита, а понижение мощности лампы, в результате при повышенных значениях напряжения в электросети срок её службы не сократится.

Варистор для защиты ламп и другой бытовой техники

Варистор – это прибор ограничивающий напряжение, его действие подобно газовому разряднику. Это полупроводниковый прибор с переменным сопротивлением. Когда на его выводах напряжение достигает уровня напряжения срабатывания варистора, его сопротивление снижается с тысяч мегаом до десятков Ом и через него начинает протекать ток. Его подключают в цепь параллельно. Таким образом, происходит защита электрооборудования.

Внешний вид варисторов

Un — классификационное напряжение. Это такое напряжение, при котором через варистор начинает протекать ток силой в 1 мА;

Um — максимально допустимое действующее переменное напряжение (среднеквадратичное);

Um= — максимально допустимое постоянное напряжение;

Р — номинальная средняя рассеиваемая мощность, это та, которую варистор может рассеивать в течение всего срока службы при сохранении параметров в установленных пределах;

W — максимальная допустимая поглощаемая энергия в джоулях (Дж), при воздействии одиночного импульса.

Ipp — максимальный импульсный ток, для которого время нарастания/длительность импульса: 8/20 мкс;

Со — емкость, измеренная в закрытом состоянии, при работе ее значение зависит от приложенного напряжения, и когда варистор пропускает через себя большой ток, она падает до нуля.

Для увеличения рассеваемой мощности производители увеличивают размер самого варистора, а также делают его выводы более массивными. Они выступают в качестве радиатора для отвода выделенной тепловой энергии.

Для защиты электроприборов в отечественных электросетях переменным напряжением в 220В подбирают варистор больший, чем амплитудное значение напряжения, а примерно равно 310В. То есть можно устанавливать варистор с классификационным напряжением около 380-430В.

Например, подойдет TVR 20 431. Если вы установите варистор с меньшим напряжением, то возможны его «ложные» срабатывания при незначительных превышениях напряжения питающей сети, а если установите с большим – защита не будет эффективной.

Как уже было сказано, варисторы могут устанавливаться непосредственно на вводе в дом, таким образом, вы защитите все электроприборы в доме. Для этого промышленностью выпускаются модульные варисторы, так называемые УЗИП.

Вот схема его подключения для трёхфазной сети, для однофазной – аналогично.

Эти схемы с использованием дифавтомата и защитой от высокого потенциала на одном или двух проводах однофазной цепи не менее интересны.

Для защиты одного светильника или лампочки используют такую схему включения, она приведена на примере самодельного светодиодного светильника, но при использовании готового светильника или лампы варистор устанавливается также – параллельно по цепи 220В.

Вы его можете установить как в корпусе самого осветительного прибора, так и на питающих проводах снаружи. Если он подключается к розетке – варистор можно расположить в розетке. Варистор можно заменить супрессором.

В этом видео ролике автор интересно рассказывает о таком способе защиты.

Готовые решения

Устройство защиты от импульсных перенапряжений для светодиодных светильников – от производителя LittleFuse. Обеспечивают защиту от перенапряжений величиной до 20 кВ. В зависимости от конструкции устанавливается в параллель или последовательно.

На рынке имеются устройства с разными характеристиками – напряжением срабатывания и пиковый ток.

Устройство защиты светодиодов сохраняет лампы при импульсах напряжения. Подключается параллельно цепи освещения после выключателя. Также предотвращает самопроизвольное мигание светодиодных лампочек при использовании выключателей с подсветкой.

Суть работы такого устройства заключается в том, что внутри установлен конденсатор. Ток подсветки выключателей течет через него, также он сглаживает всплески напряжений.

Подобное или аналогичное устройство от фирмы Гранит, модель БЗ-300-Л. Индекс «Л» в конце говорит о том, что это блок защиты для светодиодных и энергосберегающих ламп (клл).

Внутри расположено три детали, одну из которых мы рассмотрели выше:

Вот принципиальная схема. Вы можете её повторить.

Заключение

Полностью исключить вероятность перегорания светодиодных ламп и светильников невозможно. Однако вы можете продлить лампочкам жизнь, минимизировав влияние скачков напряжение. Сделать это можно либо своими руками, либо купив блок защиты светодиодных ламп заводского исполнения.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: