Переходное сопротивление заземления ГОСТ - ELSTROIKOMPLEKT.RU

Переходное сопротивление заземления ГОСТ

Методика измерения переходного сопротивления

  • Нормативные ссылки.
В данной методике использованы ссылки на нормативные документы:
  • Правила эксплуатации электроустановок потребителей М.: Энергоатомиздат, 1992.
  • Правила устройства электроустановок (ПУЭ). Изд. 6 с изменениями и дополнениями.
  • Правила устройства электроустановок (ПУЭ). Изд.7. Раздел 6. Раздел 7, гл. 7.1,
  • Правила по охране труда при эксплуатации электроустановок. (Приказ министерства труда и социальной защиты РФ от 24.07.2013 г. №328н).
  • ГОСТ Р 50571.16-99 «Приемо-сдаточные испытания».
  • ГОСТ Р 8.563-2009 «Методики выполнения измерений».
  • ГОСТ Р 50571.1-93 «Электроустановки зданий. Основные положения».
  • ГОСТ Р 50571.3-94 «Электроустановки зданий. Часть 4. Требования по обеспечению безопасности. Защита от поражения электрическим током».
  • ГОСТ Р 50571.10-96 «Электроустановки зданий. Выбор и монтаж электрооборудования. Заземляющие устройства и защитные проводники.»
  • ГОСТ Р 50571.16-99 «Электроустановки зданий. Часть 6. Испытания. Приемо-сдаточные испытания».
  • Инструкция по эксплуатации «Измеритель сопротивления заземления ИС-10»
  • Термины и определения.

В настоящем стандарте используются термины и определения, принятыми согласно ПУЭ изд. 6 и комплекса стандартов ГОСТ Р 50571.

3.1 Электрооборудование — любое оборудование, предназначенное для производства, преобразования, передачи, распределения или потребления электрической энергии, например: машины, трансформаторы, аппараты, измерительные приборы, устройства защиты, кабельная продукция, электроприемники.

3.2 Электроустановка — любое сочетание взаимосвязанного электрооборудования в пределах данного пространства или помещения.

3.3 Электрическая цепь — совокупность электрооборудования, соединенного проводами и кабелями, через которое может протекать электрический ток.

3.4 Защитный проводник (РЕ) — проводник, применяемый для каких-либо защитных мер от поражения электрическим током в случае повреждения и для соединения открытых проводящих частей:

— с другими открытыми проводящими частями;

— со сторонними проводящими частями;

— с заземлителями, заземляющим проводником или заземленной токоведущей частью.

3.5 Нулевой защитный проводник (РЕ) — проводник в электроустановках напряжением до 1 кВ, соединяющий зануляемые части с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухо-заземленной средней точкой источника в сетях постоянного тока.

3.6 Нулевой рабочий проводник (N) — проводник, используемый для питания приемников электрической энергии и соединения одного из их выводов с заземленной нейтралью электроустановки.

3.7 Совмещенный нулевой рабочий и защитный проводник (PEN — проводник ) — проводник, сочетающий функции защитного и нулевого рабочего проводников.

3.8 Заземляющий проводник — защитный проводник, соединяющий заземляемые части электроустановки с заземлителем.

3.9 Заземлитель — проводник (электрод) или совокупность электрически соединенных между собой проводников, находящихся в контакте с землей или ее эквивалентом, например, с неизолированным от земли водоемом.

3.10 Защита от непосредственного прикосновения к токоведущим частям; защита от прямого контакта — технические мероприятия, электрозащитные средства и их совокупности, предотвращающие прикосновение к токоведущим частям, находящимся под напряжением, или приближение к ним на расстояние менее безопасного.

  • Характеристики измеряемой величины, нормативные значения измеряемой величины.

Объектами измерений являются:

— зануляющие (заземляющие) защитные проводники;

  • проводники уравнивания потенциалов.

Действующий ГОСТ 50571.10-94 регламентирует требования к электробезопасности, согласно которым:

4.1 Заземление или зануление следует выполнять:

— при напряжение 380 В и выше переменного тока и 440В и выше постоянного тока во всех электроустановках,

— при номинальных напряжениях выше 42В, но ниже 380В переменного тока и выше 110В, но ниже 440 В постоянного тока – только в помещениях с повышенной опасностью, особо опасных и наружных установках.

4.2 Заземление и зануление электроустановок не требуется при номинальных напряжениях до 42В переменного тока и до 110В постоянного тока во всех случаях (исключение составляет металлические оболочки и броня контрольных и силовых кабелей и проводов напряжением до 42В переменного тока и 110В постоянного тока, проложенных на общих металлических конструкциях, в том числе в общих трубах, коробах, лотках и т.п. Вместе с кабелями и проводами, металлические оболочки и броня которых подлежат заземлению или занулению).

К частям, подлежащим занулению или заземлению относятся:

— корпуса электрических машин, трансформаторов, аппаратов, светильников и.т.п;

— приводы электрических аппаратов;

— вторичные обмотки измерительных трансформаторов;

— каркасы распределительных щитов, щитов управления, щитков и шкафов, а также съёмные или открывающие части, если на последних установлено электрооборудование напряжением выше 42В переменного тока или более 110В постоянного тока;

— металлические конструкции распределительных устройств, металлические кабельные

конструкции, металлические кабельные соединительные муфты, металлические оболочки и броня контрольных и силовых кабелей, металлические оболочки проводов, металлические рукава и трубы электропроводки, кожухи и опорные конструкции шинопроводов, лотки, короба, струны, тросы и стальные полосы, на которых укреплены кабели и провода (кроме струн, тросов и полос, по которым проложены кабели с заземленной металлической оболочкой или броней.), а также другие металлические конструкции, на которых устанавливается электрооборудование;

— металлические корпуса передвижных электроприёмников:

а) Заземляющие и нулевые защитные проводники, а также проводники металлической связи корпусов оборудования передвижных электроустановок должны быть медными, гибкими, как правило находиться в общей оболочке с фазными проводами и иметь равное с ними сечение.

б) В сетях с изолированной нейтралью допускается прокладка заземляющих проводников металлической связи корпусов оборудования отдельно от фазных проводов. При этом их сечение должно быть не менее 2,5см 2 .

— металлические корпуса переносных электроприёмников:

а) Заземление или зануление переносных электроприёмников должно осуществляться специальной жилой, расположенной в одной оболочке с фазными жилами переносного провода и присоединяемый к корпусу электроприёмника и к специальному контакту вилки втычного соединителя. Сечение этой жилы должно быть равным сечению фазных проводов. Использование для этой цели нулевого рабочего провода ,в том числе расположенного в одной оболочке не допускается.

б) Жилы проводов и кабелей, используемые для заземления или зануления переносных электроприёмников, должны быть медными, гибкими, сечением не менее 1,5мм 2 для переносных электроприёмников в промышленных установках и не менее 0,75мм 2 для

бытовых переносных электроприёмников.

Заземляющие и нулевые защитные проводники в электроустановках до 1кВ в соответствии с ПУЭ п. 1.7.76 табл. 1.7.1. должны иметь размеры не менее приведенных в таблице 1.

Таблица 1. Наименьшие размеры заземляющих и нулевых защитных проводников.

Заземляющие и нулевые жилы кабелей и многожильных проводов в общей оболочке с фазными жилами:

Толщина полки, мм

Водогазопроводные трубы (стальные):

Толщина стенки, мм

Тонкостенные трубы (стальные):

Толщина стенки, мм

4.3 В соответствии с ПТЭЭП Приложение 1, измеренное значение сопротивления цепи между заземленными установками и элементами заземленной установки должно быть не выше 0,05 Ома.

4.4 Во взрывоопасных зонах любого класса подлежат занулению ( заземлению):

-Электроустановки при всех напряжениях переменного и постоянного тока;

-Электрооборудование, установленное на занулённых (заземленных) металлических конструкциях (которые в невзрывоопасных зонах разрешается не занулять (не заземлять))

Это требование не относится к электрооборудованию, установленному внутри зануленных заземленных) корпусов шкафов и пультов.

В качестве нулевых защитных (заземляющих) проводников должны быть использованы

проводники, специально предназначенные для этой цели.

4.5 Электросварочные установки подлежат заземлению (занулению).

В электросварочных установках кроме заземление (зануления) корпуса и других металлических нетоковедущих частей оборудования, как указано выше, как правило, должно быть предусмотрено заземление одного из зажимов (выводов) вторичной цепи источников сварочного тока: сварочных трансформаторов, статических преобразователей и тех двигателей – генераторных преобразователей, у которых обмотки возбуждений генераторов присоединяются к электрической сети без разделительных трансформаторов.

В электросварочных установках, в которых дуга горит между электродом и электропроводящим изделием, следует заземлять (занулять) зажим вторичной цепи источника сварочного тока, соединяемый проводником (обратным проводом) с изделием.

Если указанное выше по условиям электротехнического процесса не может быть выполнено, а также переносные и передвижные электросварочные установки, заземление ( зануление ) оборудования которых представляет значительные трудности, должны быть снабжены устройством защитного отключения.

4.6 На вводе в здание должна быть выполнена система уравнивания потенциалов путем объединения следующих проводящих частей:
— основной (магистральный) защитный проводник;
— основной (магистральный) заземляющий проводник или основной заземляющий зажим;

— стальные трубы коммуникаций зданий и между зданиями;
— металлические части строительных конструкций, молниезащиты, системы центрального отопления, вентиляции и кондиционирования. Такие проводящие части должны быть соединены между собой на вводе в здание.

Рекомендуется по ходу передачи электроэнергии повторно выполнять дополнительные системы уравнивания потенциалов.

4.7 К дополнительной системе уравнивания потенциалов должны быть подключены все доступные прикосновению открытые проводящие части стационарных электроустановок, сторонние проводящие части и нулевые защитные проводники всего электрооборудования (в том числе штепсельных розеток).

Для ванных и душевых помещений дополнительная система уравнивания потенциалов является обязательной и должна предусматривать, в том числе, подключение сторонних проводящих частей, выходящих за пределы помещений. Если отсутствует электрооборудование с подключенными к системе уравнивания потенциалов нулевыми защитными проводниками, то систему уравнивания потенциалов следует подключить к РЕ шине (зажиму) на вводе. Нагревательные элементы, замоноличенные в пол, должны быть покрыты заземленной металлической сеткой или заземленной металлической оболочкой, подсоединенными к системе уравнивания потенциалов. Не допускается использовать для саун, ванных и душевых помещений системы местного уравнивания потенциалов.

  • Условия измерений.
Читайте также  Как собрать удлинитель с заземлением?

При выполнении измерений, согласно руководству по эксплуатации «Измеритель сопротивления ИС-10, соблюдают следующие условия:

— измерения производятся в светлое время суток, при естественном или искусственном освещении, при температуре от минус 30 до плюс 40 0 С, и относительной влажности воздуха до 90% (при температуре 30 0 С). Внешние магнитные поля, кроме поля земного магнетизма, должны отсутствовать.

— схема цепи заземления на период проверки должна быть полностью смонтирована, укомплектована всеми элементами согласно проекту.

  • Метод измерений.

6.1 Измерения активного сопротивления зануляющих (заземляющих) защитных проводников выполняют методом прямых измерений.

6.2 Прочность контактных сварок и сварных соединений определяется ударом молотка массой не более 1 кг.

6.3 Сечение заземляющих (зануляющих) проводников проверяют, измеряя их геометрические размеры с помощью штангенциркуля.

6.4 Измерение сопротивления переходных контактов сети заземления производится Измерителем сопротивления ИС-10.

6.5 За величину измеренного активного сопротивления принимают показания цифрового индикатора.

  1. Требования к средства измерения, вспомогательным устройствам.

При выполнении измерений применяются средства измерения и другие технические средства, приведенные в таблице 2.

Таблица 2. Приборы, средства измерений.

Порядковый номер и наименование средства измерений (СИ), испытательного оборудования (ИО), вспомогательных устройств

Обозначение стандарта, ТУ и типа СИ, ИО

Метрологические характеристики (кл. точности, пределы погрешностей, пределы измерений)

Переходное сопротивление заземления ГОСТ

ВНИМАНИЕ: официальные документы (законы, постановления, приказы, стандарты), размещенные на сайте, предназначены исключительно для ознакомления. Вы не должны использовать информацию с сайта, в качестве официального документа, поскольку я не гарантирую отсуствие ошибок в ней. Если Вам необходима официальная копия этих документов, обращайтесь в государственный орган, уполномоченный их распространять.

ГОСТ 464-79 Заземления для стационарных установок проводной связи, радиорелейных станций, радиотрансляционных узлов проводного вещания и антенн систем коллективного приёма телевидения. Нормы сопротивления.

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ЗАЗЕМЛЕНИЯ ДЛЯ СТАЦИОНАРНЫХ
УСТАНОВОК ПРОВОДНОЙ СВЯЗИ,
РАДИОРЕЛЕЙНЫХ СТАНЦИЙ,
РАДИОТРАНСЛЯЦИОННЫХ УЗЛОВ
ПРОВОДНОГО ВЕЩАНИЯ И АНТЕНН
СИСТЕМ КОЛЛЕКТИВНОГО ПРИЕМА
ТЕЛЕВИДЕНИЯ

НОРМЫ СОПРОТИВЛЕНИЯ

Москва

Дата введения 01.01.80

Настоящий стандарт распространяется на станционные и линейные сооружения установок проводной связи, радиорелейные станции, радиотрансляционные узлы проводного вещания (ПВ), установки избирательной железнодорожной связи и антенн систем коллективного приема телевидения (СКПТ), для которых оборудуют стационарные заземляющие устройства, и устанавливают нормы сопротивления заземляющих устройств, обеспечивающих нормальную работу сооружений и установок, перечисленных выше, а также безопасность обслуживающего персонала.

Стандарт не распространяется на заземляющие устройства, которые предусматриваются в технике специального назначения.

Термины, применяемые в настоящем стандарте, и их определения приведены в приложении.

(Измененная редакция, Изм. № 2).

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. К рабоче-защитному или защитному заземляющему устройству при помощи заземляющих проводов кратчайшим путем должны быть подключены:

один из полюсов электропитающей установки;

нейтраль трансформаторов, вывод источника однофазного тока трансформаторной подстанции или собственной электростанции, питающей оборудование предприятий связи, радиорелейную станцию или станцию ПВ;

металлические части силового, стативного и коммутаторного оборудования;

металлическая опорная эквипотенциальная поверхность электронных телефонных станций;

металлические трубопроводы водопровода и центрального отопления и других металлических конструкций внутри здания;

экраны аппаратуры и кабелей;

металлические оболочки кабелей, элементы схем защиты, молниеотводы;

антенны СКПТ, подлежащие молниезащите в соответствии с нормативно-технической документацией (далее НТД).

Число заземляющих проводов и порядок подключения к ним аппаратуры и оборудования устанавливают в НТД на аппаратуру конкретного вида.

(Измененная редакция, Изм. № 2).

1.2. На предприятиях связи следует оборудовать защитное заземляющее устройство, если отсутствуют соединительные линии и цепи дистанционного питания аппаратуры, использующие землю в качестве провода электрической цепи.

Требования к защитным заземлениям и занулениям — по ГОСТ 12.1.030.

(Измененная редакция, Изм. № 1).

1.3. На предприятиях связи следует оборудовать одно рабоче-защитное заземляющее устройство, если заземлен «минус» источника тока дистанционного питания, (при этом цепи дистанционного питания допускается включать по схеме «провод-земля») или заземлен «плюс» источника тока, но отсутствуют цепи дистанционного питания по схеме «провод-земля». При этом соединительные линии могут использовать «землю» в качестве провода электрической цепи. Контур рабоче-защитного заземляющего устройства при наличии цепей дистанционного питания должен иметь два самостоятельных ввода в здание (до щитка заземления).

На предприятиях следует оборудовать обособленные рабочее и защитное заземляющие устройства, если имеются цепи дистанционного питания по схеме «провод-земля» с заземлением «плюса» источника тока.

1.4. Нейтраль трансформаторов, вывод источника однофазного тока трансформаторной подстанции или собственной электростанции, питающей оборудование предприятий связи, радиорелейную станцию или станцию ПВ, должны быть присоединены к защитному или рабоче-защитному заземляющему устройству. При этом заземляющее устройство для указанного выше предприятия и для трансформаторной подстанции должно быть общим, если расстояние между предприятием и трансформаторной подстанцией менее 100 м.

Сопротивление общего заземляющего устройства должно соответствовать нормам сопротивления заземляющих устройств для каждой подключаемой установки.

Сопротивление заземляющего устройства, к которому присоединены нейтрали генераторов или трансформаторов или вывод источника однофазного тока, при удельном сопротивлении грунта до 100 Ом·м не должно быть более, Ом:

2 — установок напряжением 660/380 В;

4 — установок напряжением 380/220 В;

8 — установок напряжением 220/127 В.

При удельном сопротивлении грунта r более 100 Ом·м допускается повысить значение сопротивления заземляющего устройства в r/100 раз, но не более чем в десять раз, а также не более значений, указанных в табл. Таблица 1-Таблица 3, Таблица 5 и в пп. Пункт 2.1.5, Пункт 2.4.5, Пункт 2.7.2.

1.3, 1.4. (Измененная редакция, Изм. № 2).

1.4а. Сопротивление защитного или рабоче-защитного заземляющего устройства должно быть обеспечено с учетом использования естественных заземлителей (проложенные под землей металлические трубы, металлические конструкции, арматура зданий и их бетонных фундаментов и другое, за исключением трубопроводов горючих и взрывоопасных смесей, канализации, центрального отопления и бытового водопровода, расположенных вне здания, в котором размещено оборудование предприятия связи или станция ПВ).

(Введен дополнительно, Изм. № 2).

1.5. Конструкция искусственных заземлителей или различных контуров заземляющего устройства, марка и сечение соединяющих проводников от заземляющего устройства к щитку заземления, перечень аппаратуры, оборудования и элементов защиты, присоединяемых к заземляющему устройству, способы присоединения проводок и их число, методика измерения сопротивления заземляющих устройств и удельного сопротивления грунта устанавливают в НТД на аппаратуру конкретного вида.

(Измененная редакция, Изм. № 2).

1.6. Расстояние между отдельными неизолированными частями разных заземляющих устройств (между рабочим, защитным, измерительным и др.) на участке до ввода в здание не должно быть менее 20 м.

1.7. Сопротивление измерительного заземляющего устройства не должно быть более 100 Ом в грунтах с удельным сопротивлением до 100 Ом·м и 200 Ом — в грунтах с удельным сопротивлением более 100 Ом·м.

1.8. Сопротивление линейно-защитных заземляющих устройств для линий связи и проводного вешания на участках опасного влияния линий электропередачи, электрифицированных железных дорог, а также при влиянии радиостанций и импульсных воздействиях (исключая грозовые разряды), определенное расчетом в соответствии с требованиями НТД, не должно превышать значений, устанавливаемых настоящим стандартом.

(Измененная редакция, Изм. № 2).

1.9. При эксплуатации заземляющих устройств следует проверять их сопротивления с периодичностью:

два раза в год — летом (в период наибольшего просыхания грунта) и зимой (в период наибольшего промерзания грунта) — на междугородных, городских и сельских телефонных станциях, телеграфных станциях, телеграфных трансляционных, оконечных и абонентских пунктах;

раз в год — летом (в период наибольшего просыхания грунта) — на радиорелейных станциях, на станциях и подстанциях радиотрансляционных узлов;

раз в год — перед началом грозового периода (апрель — май) — в необслуживаемых усилительных пунктах (НУП) и регенерационных пунктах (РП) междугородной, городской и сельской связи; для контейнеров аппаратуры систем передачи (ИКМ-30 и др.);

раз в год — перед началом грозового периода — на кабельных и воздушных линиях связи и радиотрансляционных сетей, у кабельных опор и опор, на которых установлены средства защиты, на абонентских пунктах телефонных и радиотрансляционных сетей, у понижающих трансформаторов таксофонных кабин;

не реже раза в год (перед началом грозового периода) — для антенн систем коллективного приема телевидения.

Дальше на Нормы сопротивления. Нормы сопротивления заземляющих устройств для междугородных телефонных станций и оконечных пунктов избирательной железнодорожной связи. Нормы сопротивления заземляющих устройств для необслуживаемых усилительных пунктов междугородной связи и промежуточных пунктов избирательной железнодорожной связи. Нормы сопротивления заземляющих устройств для телеграфных станций и телеграфных трансляционных оконечных и абонентских пунктов. Нормы сопротивления заземляющих устройств для городских телефонных станций и станций местной железнодорожной связи
Вернуться к списку нормативных документов электросвязи

Читайте также  Защитное заземление организация контроля

Что такое переходное сопротивление и как его измерить

Электрическая цепь включает в себя контактные соединения в большем или меньшем количестве. Такие соединения нужны, чтобы отдельные ее элементы в передающих сетях, электроустановках или электрических аппаратах работали как единое целое. В контактных соединениях обеспечивается соприкосновение проводников с целью предотвращения обрыва цепи. Место контакта характеризуется электрическим сопротивлением, превышающим данный показатель каждого из проводников. От величины этого параметра во многом зависит надежность работы электрических устройств, поэтому в электротехнике понятию переходное сопротивление контактов уделяется особое внимание.

Почему в месте соединения проводников сопротивление возрастает

Обеспечить 100 % прилегание мест касания проводников практически невозможно. На поверхностях всегда будут существовать мелкие впадины и бугорки, которые не уберет никакая механическая обработка. Они как раз являются причиной того, что пятно контакта поверхности воспринимающей усилие будет меньше воспринимаемой визуально. Уменьшение проходного сечения проводника в месте перехода увеличивает сопротивление протеканию тока.

Кроме этого абсолютное большинство проводников подвержены окислению поверхностей контакта. Окисная пленка наиболее часто применяемых в качестве материала проводников меди и алюминия имеет большее удельное сопротивление, чем основной металл. Поэтому окисление контактных соединений приводит к увеличению переходного сопротивления.

Негативные факторы, возникающие от высокого переходного сопротивления

Законы электротехники констатируют факт увеличения выделяемого тепла на контактах при высоком переходном сопротивлении. Это приводит к тепловому расширению проводников и соответственно к ослаблению места контакта. Слабый контакт, в свою очередь повышает переходное сопротивление, которое в конечном итоге стремится к бесконечности. Резко возрастающий ток вызывает отгорание или сваривание контактных соединений. Процесс нагрева может происходить с образованием электрической дуги, что создает реальную опасность возникновения пожара.

Как уменьшить величину переходного сопротивления

Для обеспечения нормальной работы электрооборудования, недопущения аварийных ситуаций существуют рекомендации по применению способов реализации контактных соединений.

Механические

Этот способ основан на сжатии соприкасаемых поверхностей проводников для увеличения пятна контакта. Зависимость переходного сопротивления (Rn) от усилия сжатия F (давления) показана на графике.

Из графика следует, что чем больше усилие сжатия, тем меньше переходное контактное сопротивление. Однако целесообразность в повышении усилия сжатия имеет ограничения. При достижении определенной величины оно уже перестает влиять на изменение сопротивления. Следует учитывать прочностные характеристики сжимаемых контактов при выборе оптимального давления. Для примера рассмотрим несколько наиболее часто применяемых механических способов соединения проводников.

  • Опрессовка. Этот способ заключается в совместном деформировании опрессовочной гильзы и соединяемых контактных проводников. Основными инструментами для опрессовки служат пресс-клещи и переносные гидропрессы. Гильза для повышения электрических характеристик соединения выполняется из специальных материалов (электротехническая медь, электротехнический алюминий).
  • Зажимы с помощью резьбовых соединений. В качестве рабочего материала для таких соединений применяются клеммные колодки. Они состоят из пластикового корпуса, в который вставлены с обеих сторон латунные трубки с резьбой с предварительно накрученными винтиками. Для соединения в отверстия клеммы вставляются соединяемые проводники и закручиванием винтов с определенным усилием крепятся в ней.
  • Пружинные зажимы. Отличаются разнообразием конструкций, но в основе всех заложена пружина, обеспечивающая своей силой упругости давление на контактируемые поверхности проводников. Здесь важно использовать пружинные зажимы от производителей. Некачественные пружины со временем могут потерять упругость и ослабить контакт. На изображении зажим при помощи листовой пружины от немецкого производителя WAGO.

Соединение контактов с помощью сварки

Эта технология позволяет создать надежный контакт с минимальным превышением переходного сопротивления. Применяется в электромонтажных работах, где в качестве расходника используется угольный электрод. Малый сварочный ток дает относительно слабую электрическую дугу и практически нулевое разбрызгивание металла дают электромонтажнику возможность работы в защитных очках вместо маски.

Сварку следует производить на короткой дуге, при увеличенной внешняя воздушная среда оказывает отрицательное воздействие на зону сварки в виде появления на ней пор, что повышает величину переходного сопротивления.

Пайка контактов

Перед пайкой важно правильно выполнить скрутку соединяемых проводников. Самостоятельная эксплуатация контактов выполненных в виде скруток запрещено ПУЭ («Правилами устройства электроустановок»). Сам процесс не требует особых навыков в отличие от сварки, где надо уметь держать короткую дугу. Так как материал, с помощью которого производят пайку (свинцово-оловянный и ему подобные) не обладает высокими прочностными характеристиками, то эта технология используется для соединения малых сечений (кабеля контрольные, управления, интернет кабеля).

Борьба с окислениями поверхностей контактов повышает эффективность передачи тока через соединение. Следует не допускать длительный период работы контактов из меди или алюминия, необходимо периодически выполнять чистку поверхностей спиртом.

Покрытие контактов серебром, платиной, лужение, никелирование, цинкование добавляют им коррозионную стойкость. При этом указанное покрытие практически не влияет на электрические характеристики соединения.

Нормы электроустановок по величине переходного сопротивления

На качественное выполнение функций электрических коммутационных аппаратов влияет величина сопротивления переходных контактов. Она оказывает существенное значение на быстроту срабатывания, как мощных электрических устройств типа масляных выключателей, так и слаботочной аппаратуры типа кнопок, переключателей, тумблеров. Так как допустимую величину переходного сопротивления необходимо периодически контролировать она обычно заносится в паспорт на изделие заводом — изготовителем.

Если в паспорте отсутствует информация по допустимой норме переходного сопротивления, следует обратиться к следующим нормативно — техническим документам: ПУЭ (7 издание), ГОСТ 24606.3–82, ГОСТ 17441–78 и другим стандартам, включая отраслевые. В зависимости от мощности и вида электрического оборудования (выключателей, разъединителей, отделителей и других) задается величина номинального тока, которому соответствует предельное значение переходного сопротивления. Его допустимое значение составляет достаточно малую величину, измеряемую в тысячных долях (мкОм).

Важным показателем эффективности работы заземления является минимальное сопротивление прохождению тока через грунт. Так как конструкция заземления состоит из нескольких соединенных между собой элементов, то одним из факторов, влияющих на его работу, будет переходное сопротивление. Его максимальное значение согласно требованиям ПУЭ не должно быть большим 0.05 Ом на любом контактном переходе заземления. Такая величина позволит быстро сбросить мощный потенциал, возникший, например, во время короткого замыкания.

Как контролировать величину переходного сопротивления

В графики планово — предупредительного ремонта электрического оборудования, в котором имеются контактные устройства в обязательном порядке входит проверка их переходного сопротивления. Периодичность таких работ учитывает требования ПТЭЭП («Правил технической эксплуатации электроустановок»). Однако решающее слово о назначении проверки переходного напряжения остается за эксплуатирующей электрооборудование организацией. Своевременное обнаружение неисправности контактов позволяет предотвратить выход из строя всего оборудования.

Выявить неисправность контакта поможет измерение переходного сопротивления. Существует несколько методов в определении этого параметра. Однако общим для всех способов замера служит измерение переходного сопротивления в установленных нормативно — технической документацией значений тока и напряжения.

Метод измерения с помощью простой схемы

Установленные ПУЭ значения номинального тока и напряжения для определения допустимого переходного сопротивления не позволяют напрямую применять для измерения обычные омметры или тестеры. Выйти из положения поможет простая схема с применением амперметра и милливольтметра.

Увеличением/уменьшением нагрузки R подбирается рабочий ток контактной пары, а милливольтметр фиксирует при данном токе напряжение. По формуле закона Ома переходное сопротивление контакта определяется расчетным путем.

Метод измерения с помощью специальных приборов

Существуют специальные миллиомметры и микроомметры с помощью которых переходное сопротивление контакта можно определить, подключив зажимы непосредственно к его концам.

Эти измерительные приборы отличаются по принципу действия, весогабаритным характеристикам, метрологическими показателями. Однако требования к зажимам («крокодильчикам») у них одинаковые. Они должны плотно прилегать к подключаемым с их помощью концам входа и выхода, для чего зажимы оснащаются болтовыми соединениями, пружинами сжатия и другой подобной оснасткой.

Некоторые электрические устройства имеют конструктивные особенности, которые необходимо учитывать при измерении переходного сопротивления. Например, высоковольтные выключатели оснащены трансформаторами тока. В процессе измерения переходного сопротивления подача тока вызывает переходной процесс, возникающий в обмотках трансформатора. Измерительный прибор должен иметь в конструкции устройство обеспечивающее исключение такой погрешности.

Устранить под ноль переходное сопротивление согласно законам физики невозможно. Надо просто научиться с ним мирно сосуществовать, соблюдая все технические регламенты по профилактике контактных пар, контролю их с помощью измерительных приборов. В этом случае величина переходного сопротивления будет столь мала, что ее негативное влияние не будет ощущаться при работе электроустановок.

Читайте также  Виды заземления и их назначения

Видео по теме

Норма сопротивления контура заземления

Очень часто энергетики спорят на тему, какие должны быть нормы растекания тока контура заземления? Какова величина сопротивления контура заземления? Какое допустимое сопротивление контура заземления? Как правило, в таких спорах можно услышать разные цифры, одни называют 4 Ом, от других можно услышать 20 Ом, некоторые специалисты говорят, что сопротивление контура заземлителя не нормируется. Так какие же должны быть нормы и почему такая путаница?

Какие бывают испытания?

Начну с того, что поясню, какие бывают испытания. Электролаборатория проводит приёмо-сдаточные или эксплуатационные испытания. Приёмо-сдаточные испытания проводятся после окончания монтирования новой электроустановки, после того как, электроустановка смонтирована и сдана в эксплуатацию, с этого момента начинаются эксплуатационные испытания. Соответственно приёмо-сдаточные испытания проводятся только один раз, после окончания электромонтажных работ, а эксплуатационные испытания проводятся периодически, в процессе эксплуатации.

И так, существуют приёмо-сдаточные и эксплуатационные испытания. Приёмо-сдаточные испытания регламентируются Правилами Устройства Электроустановок (ПУЭ), а эксплуатационные Правилами технической эксплуатации электроустановок потребителей (ПТЭЭП).

Почему спорят специалисты?

Наконец, мы подошли к самому главному. Почему спорят специалисты, почему такие разные цифры они называют?

Во первых, нужно понять о каких испытаниях идёт речь. Если разговор идёт о приёмо-сдаточных испытаниях, то ответ нужно смотреть в ПУЭ, Глава 1.8, Нормы приёмо-сдаточных испытаний, а если об эксплуатационных, то ответ ищем в ПТЭЭП, Приложение 3, Нормы испытаний электрооборудования и аппаратов электроустановок потребителей.

Во вторых нужно понять предназначение контура заземления. Контур заземления бывает для подстанций и распределительных пунктов выше 1000 Вольт, воздушных линий электропередач до 1000 Вольт и выше 1000 Вольт и электроустановок до 1000 Вольт.

Какие нормы?

1. Контур заземления для электроустановки напряжением до 1000 Вольт:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 3 гласит: при измерении в непосредственной близости к трансформаторной подстанции, сопротивление контура заземления должно быть: 15, 30 или 60 Ом, при измерении с учетом естественных заземлителей и повторных заземлителей отходящих линий: 2, 4 или 8 Ом соответственно для напряжений 660, 380 и 220 Вольт.

ПТЭЭП, Приложение № 3, таблица 36 гласит: сопротивление контура заземления — 15, 30 или 60 Ом для напряжений сети 660-380, 380-220 и 220-127 Вольт соответственно (трёхфазная/однофазная сеть), а при измерении с учётом присоединённых повторных заземлений должно быть не более 2, 4 и 8 Ом при напряжениях соответственно 660, 380 и 220 Вольт источника трехфазного тока и напряжениях 380, 220 и 127 Вольт источника однофазного тока.

2. Контур заземления для трансформаторной подстанции и распредпунктов напряжением больше 1000 Вольт:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 1 гласит: при измерении в электроустановке с глухозаземленной и эффективно заземленной нейтралью, должно быть не более 0,5 Ом.

ПТЭЭП, Приложение № 3, таблица 36 гласит: при измерении в электроустановке напряжением 110 кВ и выше, в сетях с эффективным заземлением нейтрали, сопротивление контура должно быть не более 0,5 Ом.

В электроустановке 3 — 35 кВ сетей с изолированной нейтралью — 250/Ip, но не более 10 Ом, где Ip — расчетный ток замыкания на землю.

3. Контур заземления воздушной линии электропередачи напряжением выше 1 кВ:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 2 гласит: Заземляющие устройства опор высоковольтной линии (ВЛ) при удельном сопротивлении грунта, ρ, Ом·м: 100/100-500/500-1000/1000-5000 – 10, 15, 20 и 30 Ом соответственно.

ПТЭЭП, Приложение № 31, таблица 35, п. 4 гласит:

А. Для воздушных линий электропередач на напряжение выше 1000 В: Опоры, имеющие грозозащитный трос или другие устройства грозозащиты, металлические и железобетонные опоры ВЛ 35 кВ и такие же опоры ВЛ 3 — 20 кВ в
населенной местности, заземлители оборудования на опорах 110 кВ и выше: 10, 15, 20 или 30 Ом при удельном сопротивлении грунта, соответственно: 100, 100-500, 500-1000, 1000-5000 Ом·м.

Б. Для воздушных линий электропередач на напряжение до 1000 Вольт: Опора ВЛ с грозозащитой – 30 Ом, Опоры с повторными заземлителями нулевого провода – 15, 30 и 60 Ом для напряжений питающей сети 660-380, 380-220 и 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Подведём итог

Для электромонтажников, работающих в сетях напряжением ниже 1000 Вольт:

Сопротивление растекания контура заземления на вновь построенной электроустановке должно быть 15, 30 или 60 Ом или 2, 4 и 8 Ом при измерении с присоединёнными естественными заземлителями и повторными заземлителями отходящих линий для напряжений питающей сети 660-380, 380-220 или 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Сопротивление растекания контура заземления на уже эксплуатирующейся электроустановке, тоже 15, 30 и 60 Ом или 2, 4, 8 Ом при измерении с присоединёнными естественными и повторными заземлителями для напряжений сети 660-380, 380-220 и 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Как видим, значения сопротивления контура заземления одинаковы, не зависимо от вида испытаний, но разные в зависимости от назначения контура заземления!

Переходное сопротивление заземления ГОСТ

Некоторые застройщики требуют от дольщика, хоть это и неправомерно, официальное подтверждение выявленных нарушений от компании, проводившей осмотр и зафиксировавшей такие дефекты. В основном данное требование необходимо застройщику, чтобы устранить нарушения, связанные с отклонениями и выявленные с помощью приборов (лазерный построитель плоскостей, тепловизор и т.п. ).
Следует отметить, что такой отчет не требуется, если в акт осмотра внесены все замечания и акт подписан надлежащим образом.

Отчет о недостатках строительства на бланке компании содержит перечень нарушений с ссылками на действующие нормативные акты (ГОСТы, СНИПы, СП и т.п. ) и пункты, требования которых не соблюдаются.
К отчету подкреплены фото нарушений, копия удостоверения специалиста, сертификаты о поверках и калибровках приборов, используемых для выявления строительных дефектов.
Предоставляется клиенту в течение 3 (трех) рабочих дней после дня оказания услуги «Помощь в приемке квартиры» и отправляется в pdf — формате на адрес электронной почты клиента.

Услуга носит информационный характер и не может быть доказательством в производстве по делу в суде. Отчёт о недостатках строительства, а также последующие разъяснения тех или иных вопросов, не имеют статус экспертного содержания, не являются документом юридического характера, а также не накладывают на специалиста-приёмщика и организацию «Профприёмка» никаких обязательств.

В акцию включена «Приемка квартиры» + дополнительные услуги:
— «Замер площади»;
— «Замер радиации»;
— «Замер ЭМИ»;
— «План квартиры в AutoCAD»*.

Стоимость услуги:
75р/м2, но не менее 3000. Суммируется вместе с услугой «Приемка квартиры»

* — Отчет по услуге «План квартиры в AutoCAD» предоставляется заказчику в течении 5 рабочих дней после дня оказания услуги «Помощь в приемке квартиры» в dwg — формате и pdf — формате с изображением схемы помещения и указанием площади.

Площадь квартиры — одна из самых важных характеристик квартиры. Поэтому от того, как она изменится относительно проектной, напрямую зависит сумма доплат или возврата участникам договора, а также дальнейшие коммунальные платежи.

Существует несколько значений площади:
а) Проектная площадь, указанная в ДДУ — в соответствие с этим значением изначально происходит оплата; б) Итоговая общая площадь, полученная по результатам обмеров БТИ (или другой кадастровой службы) — в соответствие с этим значением происходят окончательные взаиморасчеты сторон, если таковые предусмотрены договором;
в) Площадь, выявленная покупателем самостоятельно в процессе приемки объекта недвижимости или с помощью специалиста;
г) Экспертиза площади или экспертное заключение по площади, на основании которого можно подавать заявление в суд. Применяется, когда досудебное урегулирование споров сторонами не достигнуто.

Задачей специалиста нашей компании стоит произвести корректный замер площади с целью выявления действительных значений и сравнить их с данными застройщика (итоговой площадью). Стоит иметь ввиду, что такой замер носит информационный характер и не является заключением специалиста или экспертизой. То есть устанавливается факт наличия или отсутствия расхождений.

Если будет выявлено расхождение, то дольщиком определяется существенность такой величины (дело сугубо индивидуальное) и целесообразность дальнейших действий, а именно — подача претензии застройщику с целью произвести перезамеры БТИ, проведение экспертизы, подача досудебной претензии и возможного иска в суд. На момент проведения таких действий, квартира должна оставаться в неизменном виде. То есть производить ремонтные работы нельзя.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: